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Abstract: In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous
attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse
range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.)
of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs.
Plant extracts, microbial biomass or culture supernatant contain various biomolecules including
enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping
and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally
characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a
serious problem for global public health. Due to mutation, shifting environmental circumstances and
excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To
solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized
ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature
and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong
antimicrobial activity against various pathogenic microorganisms including multidrug-resistant
bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen
species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA,
enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction.
In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization
have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of
biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.

Keywords: ZnONPs; biosynthesis; characterization; antimicrobial applications; antimicrobial mechanisms

1. Introduction

Nanoparticles (NPs) have been proposed as an intervention approach for suppressing
microbial growth, as well as contamination, because of their high surface-to-volume ratio.
They have distinctive chemical and physical properties that may interfere with bacterial
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adaptation [1]. Due to their numerous uses in disciplines of research like the health sector,
agriculture, textiles, food technology, electronics, and so on, nanoparticles have attracted
the attention of scientists [2–6]. However, due to their high propensity, NPs can survive
in the environment, and this persistent attribute may be a viable tactic for preventing
the bacterial growth used in the manufacturing of various food products including meat
products, dairy or vegetables products, sausage products, etc. [7].

Numerous nanomaterials, such as zinc oxide nanoparticles (ZnONPs), silver nanopar-
ticles (AgNPs), gold nanoparticles (AuNPs) and titanium dioxide nanoparticles (TiO2NPs),
have potent capacity to both fight bacteria and prevent microbial adhesion, as well as
contamination [6–11]. Among them, ZnONPs have received a lot of attention due to their
safe and non-toxic nature and powerful antibacterial characteristics, which are related to
the release of reactive oxygen species (ROS) on their surface [12–15]. ZnONPs outperform
their bulkier counterparts in terms of antibacterial activity because of quantum confinement
and size effects [16]. Due to the multiple ways ZnONPs prevent bacterial development,
they can succeed easily to protect bacterial-contamination-associated diseases in humans,
whereas conventional antibiotics face difficulties to prevent the development of bacte-
rial resistance [12]. Due to its benign properties, ZnO has “generally recognized as safe”
(GRAS) classification, and the antimicrobial efficacy of ZnONPs indicates that they are a
potent antimicrobial agent for preventing foodborne pathogen contamination in the food
sector [17].

These nanoparticles are often created via physical and chemical processes like photo-
chemistry, chemical reduction and microwave irradiation [18–20]. The main problems of
these techniques are that they are costly, involve labor-intensive equipment and produce
harmful consequences due to the use of poisonous substances [21,22]. Nowadays, scholars
are focusing on biological strategies for affordable and simple production of nanoparticles
due to the different limitations of physicochemical methods. Biological synthesis is a facile,
rapid, cost effective, non-toxic and ecofriendly productive method because it is not very
expensive, and it can also substitute toxic chemicals and decrease capping and stabilizing
agents. A variety of biological resources such as plants and their various parts and different
microbes (bacteria, algae, fungi, etc.) could be used for the facile and green synthesis of
bioactive nanoparticles [23–27].

A serious problem for global public health is antibiotics resistance. Antibiotics resis-
tance is mostly a result of the abuse of antibiotics. The overuse of antibiotics to treat bacterial
infections in humans and aquatic animals has resulted in the spread of numerous antibiotic-
resistant strains into the environment [28–30]. Since numerous infectious diseases that
might be fatal are brought on by pathogenic bacteria, multidrug-resistant microorganisms
pose a severe threat to public health globally [31–33]. Due to mutation, shifting environmen-
tal circumstances and high drug use, the number of multidrug-resistant bacterial strains is
continuously rising. To solve this issue, researchers are working to create novel medications
for the treatment of these microbial illnesses [9,34]. Biosynthesized ZnONPs could be
novel and effective agents to control these multidrug-resistant pathogenic microorganisms
because of their safe and non-toxic nature and powerful antibacterial characteristics. Many
recent studies have shown that different pathogenic microorganisms can be successfully
controlled using biosynthesized ZnONPs [15,35–38]. This review emphasizes the facile
and rapid biological synthesis of ZnONPs using both microbes and plants and their char-
acterizations, potential antimicrobial applications and antimicrobial mechanisms against
pathogenic microorganisms.

2. Biosynthesis of ZnONPs

Biosynthesis of ZnONPs is a simple, facile, cost-effective and eco-friendly method
compared to the physical and chemical methods that produce various toxic by-products that
could be dangerous for our environment [39]. Moreover, biosynthesized nanoparticles are
more biocompatible and show significantly higher antimicrobial activity than chemically
or physically synthesized nanoparticles [40,41]. For these reasons, scientists are focusing
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more on utilizing different biological resources for the green, safe and effective synthesis
of ZnONPs [3,8,23,36]. For the biosynthesis of ZnONPs, different microorganisms such
as bacteria, fungi, yeast or various parts of plants such as leaf, root, fruit, flower, peel,
stem, etc. could be used. Figure 1 shows the various steps of facile, cost-effective and
eco-friendly biosynthesis of bioactive ZnONPs using the extracts of plants and microbes
and their potential antimicrobial efficacy against pathogenic microorganisms.
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2.1. Microbe-Mediated Biosynthesis of ZnONPs

Microbe-mediated nanoparticles (NPs) have recently received a lot of attention because
of the availability of microorganisms, their easy reproduction and their safe utilization
for the biosynthesis of nanoparticles [27,39,42]. Chemical and physical methods can be
used to produce NPs, but the microbial synthesis of ZnONPs is considerably more useful
than other methods due to their environmental friendliness and low cost. Because of
their prevalence in living microorganisms, ZnONPs have become quite popular among
other nanoparticles. ZnONPs can be produced by microbial cells, proteins and a variety
of enzymes in both prokaryotes and eukaryotes [43]. There are many recent studies on
the cost-effective biosynthesis of ZnONPs using various microorganisms such as bacteria,
fungi, yeast, algae, etc. (Table 1). Both intracellular and extracellular methods can be used
for the facile and eco-friendly synthesis of ZnONPs using microbes [8,13,44]. The culture
supernatant of microorganisms and the microbial biomass contain different bioactive
compounds including enzymes, proteins, amino acids and many other biomolecules that
serve as reducing, capping and stabilizing agents during the synthesis process [30,39].
Previous studies have reported that the bioreduction of Zn2+ was initiated by the electron
transfer from NADH by an NADH dependent reductase enzyme that acts as an electron
carrier. Consequently, the ZnONPs are formed. Subsequently, various biomolecules such as
proteins, amino acids, flavonoids, etc. attached with ZnO and stabilized the ZnONPs [39].
It is also reported that the amino acids present in the proteins were found to interact with
the Zn2+ ions to form ZnONPs [39].
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Table 1. Microbe-mediated biosynthesis and potential antimicrobial applications of ZnONPs. NA, Not Available.

Microbes Used
for Synthesis Synthesis Method

Optimum Synthesis
Conditions (Salt
Concentration,
Temperature,

Incubation Time)

Size (nm, Nanoparti-
cles/Crystallite) Shape Target Pathogens Reference

Paraclostridium
benzoelyticum Extra cellular 0.1 M zinc nitrate, 80 ◦C

for 24 h 50 (Average) Spherical and rectangular Helicobacter suis, H. felis,
H. bizzozeronii, H. salomonis [15]

Aspergillus sp. Extra cellular 0.1 N zinc acetate, 40 ◦C
for 6 h 80–100 Sphere shape Escherchia coli, Pseudomonas

aeruginosa, Salmonella typhi [3]

Pseudomonas aeruginosa Extra cellular 2 mM zinc acetate,
35 ± 2 ◦C for 24 h 14.9 ± 3.5 Spherical

Staphylococcus aureus,
Escherichia coli, Bacillus subtilis,

Pseudomonas aeruginosa,
Candida albicans

[44]

Lactobacillus spp. Intracellular 500 mM zinc salt, 37 ◦C
for 24 h 32 (Average) Spherical

Clostridium difficile, E. coli,
Clostridium perfringens, S. typhi,

Aspergillus flavus, C. albicans
[8]

Marinobacter sp. 2C8 and
Vibrio sp. VLA Extra cellular 0.1 M zinc sulfate, 30 ◦C

for 24 h 10.2–20.3 Spherical
E. coli, P. aeruginosa, Listeria

innocua, S. aureus,
Bacillus subtilis

[35]

Bacillus cereus RNT6 Extra cellular 0.1 zinc sulfate, 80 ◦C
for 15 min 21–35 Spherical Burkholderia glumae, B. gladioli [42]

Lactobacillus
plantarum TA4 Extra and intracellular 500 mM zinc salt, 24 h

at 37 ◦C 152.8–613.5 Flower pattern E. coli, Salmonella sp., S. aureus,
S. epidermidis [13]

Endophytic fungus
Alternaria tenuissima Extra cellular

2 mM zinc sulphate, at
room temperature

for 20 min
10–30 Spherical P. aeruginosa, Klebsiella

pneumoniae, E. coli, S. aureus [24]

Pseudomonas putida Combine of intra and
extracellular

100 mg zinc nitrate into
100 mL culture solution,

24 h at 37 ◦C
44.5 (Average) Spherical

Pseudomonas otitidis,
Enterococcus faecalis,

Acinetobacter baumannii,
P. oleovorans, B. cereus

[45]

Aeromonas hydrophila Intracellular Zinc salt, 37 ◦C, for 24 h 57.7 (Average) Spherical P. aeruginosa, Aspergillus flavus [46]
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Table 1. Cont.

Microbes Used
for Synthesis Synthesis Method

Optimum Synthesis
Conditions (Salt
Concentration,
Temperature,

Incubation Time)

Size (nm, Nanoparti-
cles/Crystallite) Shape Target Pathogens Reference

Bacillus megaterium Intracellular Zinc nitrate solution, 37 ◦C
for 48 h 45–95 Rod and cubic Helicobacter pylori [47]

Halomonas elongate Extracellular Zinc chloride, 37 ◦C for
one week 18.1 ± 8.9 Multiform E. coli, S. aureus [48]

Lactobacillus paracasei LB3 Intracellular Zinc nitrate solution, 37 ◦C
for 24 h 1179 ± 137 Spherical S. aureus,

Acetinobacter baumannii [49]

Lactobacillus sporogens Extracellular 0.1 M zinc sulfate, 37 ◦C
for 24 h 145.7 (Average) Hexagonal S. aureus [50]

Rhodococcus
pyridinivorans NT2b Extracellular 0.1 M zinc sulfate, 30 ◦C

for 72 h 100–120 Roughly spherical S. epidermidis [51]

Sphingobacterium
thalpophilum Extracellular Zinc nitrate solution, 37 ◦C

for 24 h 40 (Average) Triangle P. aeruginosa,
Enterobacter aerogens [52]

Staphylococcus aureus Extracellular zinc acetate solution
(1 mM), 37 ◦C. 10–50 Acicular S. aureus [53]

Streptomyces sp. Extracellular Zinc chloride solution,
28 ◦C for 7 days 20–50 Spherical E. coli, B. subtilis [54]

Pichia kudriavzevii Extracellular zinc acetate solution, 35 ◦C
for 36 h 10–61 Hexagonal wurtzite

B. subtilis, S. epidermidis,
S. aurous, E. coli,

Serratia marcescens
[55]

Pichia fermentas JA2 Extracellular 1 mM zinc nitrate, 28 ◦C
for 96 h NA Smooth and elongated P. aeruginosa [56]

Aspergillus fumigatus JCF Extracellular 1.0 mM zinc sulfate, 32 ◦C
for 96 h 60–80 Spherical K. pneumoniae, P. aeruginosa,

E. coli, S. aureus, B. subtilis [57]

Aspergillus niger Extracellular 5 mM Zinc nitrate, 32 ◦C
for 48 h 61 ± 0.65 Spherical E. coli, S. aureus [58]

Aspergillus terreus Extracellular Zinc salt solution, 32 ◦C
for 4 days 54.8–82.6 Spherical A. niger, A. fumigatus,

A. aculeatus [59]
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Yusof et al. [13] reported the Lactobacillus plantarum TA4 mediated the biosynthesis of
ZnONPs using both intracellular and extracellular methods (Figure 2). They added the
zinc nitrate solution to the cell-free supernatant (CFS) for the extracellular biosynthesis
of ZnONPs; as well, the cell biomass (CB) was added to the zinc nitrate solution for the
intracellular biosynthesis of the ZnONPs. The synthesis of NPs was confirmed by visual
observation. The synthesized ZnONPs were collected by high-speed centrifugation and
dried at 100 ◦C to obtain the powder form. Through the FTIR analysis, they found different
biomolecules present both in the cell-free culture supernatant and in the cell biomass,
as well as in the synthesized ZnONPs, and concluded that these biomolecules may be
involved as reducing and capping agents during the biosynthesis process [13].
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Kumar et al., 2022 [3] reported the extracellular synthesis of bioactive ZnONPs us-
ing fungal isolate (Aspergillus sp.). The authors added the culture supernatant dropwise
into the zinc acetate solution and confirmed the biosynthesis of ZnONPs by visual ob-
servation of color change [3]. Abdo et al. [44] successfully synthesized ZnONPs using
cell-free filtrate of P. aeruginosa. They concluded that various metabolites present in the
cell-free culture supernatant of P. aeruginosa are responsible for the formation and stabi-
lization of the synthesized ZnONPs [44]. Suba et al. [8] demonstrated the intracellular
biosynthesis of ZnONPs using the cell biomass of Lactobacillus spp. within 24 h of reaction
and found spherical-shaped ZnONPs with a 32 nm average size. Abdelhakim et al. [24]
used endophytic fungi Alternaria tenuissima for the extracellular production of spherical-
shaped ZnONPs that possess significant antimicrobial activity against different pathogenic
microbes. Table 1 summarizes the microbe-mediated biosynthesis of ZnONPs and their
potential antimicrobial applications.

2.2. Plant-Mediated Biosynthesis of ZnONPs

Plant-extract-mediated biosynthesis of ZnONPs has been revealed as a viable option
due to its convenience, stability and ease of synthesis compared to all other organisms.
Mostly during the synthesis of ZnONPs, extracted phytochemicals function as reducing
and capping agents. In the synthesis of ZnONPs as a natural green medium for metallic
ion reduction, active bioorganic chemicals in plant extract were crucial [60]. Plant-based
NP production has various advantages including minimal cost, ease of use, fast produc-
tion time, reliability and the ability to scale up production volumes [61]. Furthermore,
the availability of bioorganics with many active chemicals in plant components increases
demand for ZnONPs, resulting in low-cost, secure and simple syntheses [60]. Various
parts of plants such as the roots, shoots, fruits, seeds, leaves, etc. were utilized for the
rapid, facile and eco-friendly synthesis of ZnONPs. There are many recent reports on
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the biosynthesis of ZnONPs and their potential antimicrobial applications using different
parts of plants (Table 2). Abomuti et al. [62] reported the plant-mediated biosynthesis
of bioactive ZnONPs using the leaf extract of Salvia officinalis. They added aqueous leaf
extract to the zinc nitrate solution under constant stirring at a 50 ◦C temperature. In the
second step, they added NaOH solution dropwise under continuous stirring at 50 ◦C
to maintain the stable pH of the reaction mixture. Finally, the biosynthesized ZnONPs
were collected by centrifugation and dried to obtain the powder form. Through the FTIR
analysis, they found different biomolecules including phenolic and flavonoid compounds
present in both the aqueous leaf extract of Salvia officinalis and the synthesized ZnONPs
and concluded that these biomolecules may be involved as reducing and capping agents
during the biosynthesis process [62]. Fouda et al. [63] reported that the peel extract of
Punica granatum mediated the synthesis of bioactive ZnONPs. The author added the
aqueous peel extract of Punica granatum into the zinc acetate solution and confirmed the
biosynthesis of ZnONPs by visual observation of color change [63]. Fruit extract of Myrica
esculenta was used by Lal et al. [23] for the rapid and eco-friendly synthesis of ZnONPs.
Urge et al., 2023 [2] successfully synthesized ZnONPs using the bulb extract of Allium
sativum and the root extract of Zingiber officinale. They identified various functional groups
associated with the formation of ZnONPs [2]. Alotaibi et al. (2022) [64] demonstrated
the biosynthesis of ZnONPs using the leaf extract of Gardenia thailandica within 1 h of
reaction and found spherical-shaped ZnONPs with a 37.4 nm average size. The leaf ex-
tract of Carica papaya was used for rapid and green synthesis of bioactive ZnONPs [65].
Menazea et al. (2021) [66] used the peel extract of orange for the rapid and facile synthesis
of cubic-shaped ZnONPs. Suručić et al. (2020) [67] synthesized ZnONPs using flower ex-
tract of Geranium robertianum. Plant extract contains various biomolecules such as enzymes,
proteins, amino acids, flavonoids, terpenoids and phenolic compounds that play signif-
icant roles during the biosynthesis of ZnONPs as reducing and capping agents. Table 2
summarizes the plant-mediated biosynthesis of ZnONPs and their potential antimicro-
bial applications.

Table 2. Plant-mediated biosynthesis and potential antimicrobial applications of ZnONPs.

Plant Used Part

Optimum Synthesis
Conditions (Salt
Concentration,
Temperature,

Incubation Time)

Size (nm, Nanopar-
ticles/Crystallite) Shape Target Pathogens Reference

Punica granatum Peel extract
5 mM Zinc acetate,
room temperature

for overnight
10–45 Spherical

Staphylococcus aureus,
Bacillus subtilis,

Pseudomonas aeruginosa,
Escherichia coli,

Candida albicans

[63]

Cassia siamea Leaf extract 1.0 mM zinc nitrate,
heated for 3 to 4 h 13 (Average) Spherical,

oval, spheroidal
Pseudomonas aeruginosa,

Chromobacterium violaceum [14]

Cinnamon and bay Leaves Zinc salt, room
temperature for 24 h

~10, 18.5 and
~30 (Average) Spherical

Staphylococcus aureus,
Staphylococcus epidermidis,

Escherichia coli,
Klebsiella pneumoniae

[9]

Allium sativum,
Zingiber officinale

Bulb extract,
root extract

Zinc acetate solution,
50 ◦C for 2 h

19.8, 21.9 and
23.9 (Average) Wurtzite

Escherichia coli,
Pseudomonas putida,

Staphylococcus aureus,
Streptococcus pyogenes

[2]

Pisonia Alba Leaf extract 0.1 M zinc acetate,
70 ◦C for 2 h Aggregated NA Staphylococcus aureus,

Klebsiella pneumoniae [36]

Sargassum muticum Plant extract

5 mM zinc nitrate,
70 ◦C for 20 min and

room temperature
for 2 h

15–50 Wurtzite
hexagonal

Bacillus flexus,
Bacillus filamentosus,

Acinetobacter baumannii,
Pseudomonas stutzeri

[68]

Punica granatum
peel and

coffee ground
Plant extract 10 mM zinc acetate,

1 h at 70 ◦C
118.6, 115.7 and
111.2 (Average) Nanorod

Pseudomonas aeruginosa,
Staphylococcus aureus,
Klebsiella pneumoniae,
Enterobacter aerogenes

[69]
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Table 2. Cont.

Plant Used Part

Optimum Synthesis
Conditions (Salt
Concentration,
Temperature,

Incubation Time)

Size (nm, Nanopar-
ticles/Crystallite) Shape Target Pathogens Reference

Myrica esculenta Fruits extract 0.5 M zinc acetate,
40 ◦C for 2 h 31.7 (Average) NA

Fusarium oxysporum,
Staphylococcus aureus,

Pseudomonas aeruginosa,
Rosellinia necatrix,

Escherichia coli

[23]

Gardenia
thailandica triveng Leaves

Zinc acetate solution,
70 ◦C for 30 min, room

temperature for 1 h
37.4 (Average) Spherical Pseudomonas aeruginosa

clinical isolates [64]

Cocos nucifera Extract 1 M zinc nitrate, 4 h at
ambient temperature 28–59 Rock shaped S. aureus, E. coli,

B. subtilis, K. pneumoniae [70]

Clitoria ternatea Flower extract 0.1 M zinc nitrate, 4 h
at 80 ◦C 40–81 Rod S. aureus, E. coli [71]

Carica papaya Leaf extract 0.1 M Zinc acetate, 4 h
at 80 ◦C 15–50 Semi-spherical

Rosellinia necatrix,
Sclerotinia sclerotiorum,

Fusarium spp.
[65]

Tagetes erecta Flower extract 1.5 mM zinc nitrate,
24 h at 60 ◦C 30–50 Spherical E. coli, S. aureus [72]

Spinacea oleracea Extract Aqueous zinc acetate
solution, 24 h at 60 ◦C 13.0 (Average) granular Pseudomonas aeruginosa [73]

Salvia officinalis Leaf extract 0.1 M zinc nitrate, 4 h
at 50 ◦C 26.1 (Average) Wurtzite hexagonal Candida albicans isolates [62]

Orange Peel extract 1 M zinc nitrate, 2 h at
room temperature 20–60 cubic Pseudomonas aeruginosa,

B. subtilis [66]

Phoenix dactylifera Waste

5 g zinc nitrate in
50 mL of extract,
30 min at room

temperature

30 (Average) Spherical
Streptococcus pyogenes,

Pseudomonas aeruginosa,
Staphylococcus aureus

[38]

Brassica rapa Leaf extract Zinc nitrate solution,
4 h at 80 ◦C 27.5 (Average) Irregular Micrococcus luteus,

Enterobacter aerogenes [74]

Red Paprika Aqueous plant
extract

2 M Zinc acetate, 6 h
at room temperature 70–80 Rod S. enterica. [75]

Aloe barbadense Leaf extract 10 mM zinc
nitrate, 60 ◦C 44 (Average) Quasi-hexagonal

Bacillus subtilis,
Bacillus licheniformis,
Klebsiella pneumonia,

Escherichia coli,
Candida albicans,
Aspergillus niger

[76]

Geranium
robertianum Flower extract

10 mM zinc acetate,
2 h at

room temperature
40 (Average) Irregular

Escherichia coli,
Pseudomonas aeruginosa,
Acinetobacter baumannii,

Staphylococcus
aureus isolates

[67]

Ocimum
americanum Plant extract 1 mM zinc nitrate, 1 h

at 60 ◦C 21 (Average) Spherical

B. cereus,
Staphylococcus aureus,
Klebsiella pneumonia,

Vibrio parahaemolyticus,
Pseudomonas aeruginosa,

Escherichia coli,
Salmonella typhi,
Candida albicans,

Xanthomonas citri,
Aspergillus parasiticus

[77]

Azadirachta indica Leaves
Zinc nitrate solution,
boiled at 350 ± 10 ◦C

for 4 min
9–38 Hexagonal Klebsiella aerogenes and

Staphylococcus aureus [78]

Cannabis sativa Leaf Zinc acetate solution,
80 ◦C for 12 h 34–38 Spherical

Escherichia coli,
Klebsiella pneumonia,

MRSA,
Pseudomonas aeruginosa,

Salmonella typhi,
Staphylococcus aureus

[79]

Carica papaya Latex Zinc nitrate solution,
37 ◦C for 36 h 11–26 Hexagonal

Pseudomonas aeruginosa
and Staphylococcus aureus

compared to
Klebsiella aerogenes and

Pseudomonas desmolyticum

[80]
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Table 2. Cont.

Plant Used Part

Optimum Synthesis
Conditions (Salt
Concentration,
Temperature,

Incubation Time)

Size (nm, Nanopar-
ticles/Crystallite) Shape Target Pathogens Reference

Dolichos lablab L. Leaf
Zinc acetate solution,

incubated 70 ◦C
for 1 h

29 (Average) Hexagonal Bacillus pumilus and
Sphingomonas paucimobilis [81]

Tabernaemontana
divaricata Green leaf

Zinc nitrate solution,
80 ◦C

until precipitation.
20–50 Spherical

Salmonella paratyphi,
Escherichia coli and

Staphylococcus aureus
[41]

Moringa oleifera
(drumstick) Leaves Zinc acetate solution,

24 ◦C for 1 h 52 (Average) Hexagonal wurtzite Bacillus subtilis and
Escherichia coli [82]

Mussaenda frondosa Leaf/stem Zinc nitrate solution,
400 ◦C for 10–30 min 5–20 Spherical Staphylococcus aureus and

Bacillus subtilis [83]

Phyllanthus emblica Plant extract Zinc chloride solution,
90 ◦C for 2 h Aggregated square-shaped S. pyogenes, S. aureus,

S. typhi and E. coli [84]

Plectranthus
amboinicus Plant extract

Zinc sulfate solution,
room temperature

for 2 h
Aggregated Irregular aggre-

gated nanoflakes S. aureus and E. coli [85]

3. Critical Parameters for Rapid and Stable Biosynthesis of ZnONPs

Different parameters significantly affect the rapid and stable synthesis of ZnONPs.
Several critical parameters have been identified for the rapid and stable synthesis of
ZnONPs, including the concentration of the plant extract and metal salt, incubation time,
temperature, pH and stirring rate. The optimal conditions for each parameter may vary
depending on the specific plant extract or microbial species and metal salt used. However,
some general trends have been observed, such as higher concentrations of plant extracts
and metal salts leading to larger yields of nanoparticles, longer incubation times leading to
larger particle sizes and higher temperatures leading to faster reaction rates [86–88]. The
pH of the reaction also significantly affects the rate of ZnONP formation [62,89].

3.1. Factors Influencing the Mass Production of ZnONPs

The mass production of ZnONPs can be affected by several parameters, including
the concentration of plant extracts and metal salts, incubation time, temperature, and
pH. Higher concentrations of plant extracts and metal salts generally lead to larger yields
of nanoparticles, although there may be an optimal concentration beyond which further
increases have little effect. Longer incubation times generally lead to larger particle sizes,
which can affect the stability and biocompatibility of the nanoparticles. Higher temper-
atures can lead to faster reaction rates and larger yields of nanoparticles but may also
promote agglomeration and reduce the stability of the particles. The pH can also affect
the rate of particle formation, with more acidic or alkaline conditions generally leading to
faster reaction rates [62,89,90].

3.2. Factors Influencing the Shape and Size of Synthesized ZnONPs

The shape and size of synthesized ZnONP nanoparticles can be influenced by several
factors, including the concentration of plant extracts and metal salts, pH, temperature
and stirring rate. Higher concentrations of plant extracts and metal salts generally lead to
larger particles, while more acidic or alkaline conditions may promote the formation of
rod-shaped particles. pH is an important factor for the biosynthesis of ZnONPs and could
alter the shape and size of the synthesized nanoparticles [39,91]. Higher temperatures
and faster stirring rates can also promote the formation of smaller particles with more
uniform shapes. However, other factors, such as the type of plant extract or microbial
species and metal salt used, can also play a role in determining the final size and shape of
the nanoparticles [47,92,93].
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4. Characterization of Biosynthesized ZnONPs

The use of various analytical techniques such as UV-visible spectrophotometry, XRD,
SEM, TEM, FTIR, DLS and zeta potential analyzer analysis in the characterization of
biosynthesized ZnONPs has been extensively reported in the literature. These techniques
provide valuable information on the physical and chemical properties of nanoparticles,
including their size, shape, surface charge, crystallinity and surface functional groups.
For instance, UV-visible spectrophotometry is commonly used to determine the optical
properties of ZnONPs, including their absorption spectra and bandgap energy. In ZnO,
like in any other semiconductor, there is a valence band (VB) and a conduction band
(CB) separated by a bandgap of a few eV. The ZnO absorption peaks at the transitions
between VB and CB. Under irradiation, when enough energy is provided, an electron
can be promoted from VB to CB, which will be recorded by a spectrophotometer as an
absorption band/peak. The energy value of this peak is related to the value of the bandgap.
Recombination of the excited electron from CB with the hole from VB will produce the
fluorescent emission at about 380 nm, which is called exciton recombination. The slight
variation of the absorption peak appears due to the different intermediary electronic
levels generated by impurities or lattice defects [44]. XRD analysis provides information
on the crystalline structure and phase purity of nanoparticles. The crystal size of the
biosynthesized ZnONPs is generally calculated on the basis of XRD analysis [44]. SEM
and TEM techniques are used to visualize the morphology, size and shape of nanoparticles.
In both TEM and DLS, the size of nanoparticles and particle size distribution can be
determined. While in TEM, the shape and crystallinity can also be determined, in DLS, the
obtained size is usually larger due the presence of a solvent layer on the nanoparticle surface.
DLS and a zeta potential analyzer provide information on the particle size distribution and
surface charge, respectively.

FTIR analysis provides information on the functional groups present on the nanopar-
ticle surface. The quantity of organics from plant or microbial extracts that are adsorbed
on the ZnONP surface can be evaluated by thermal analysis. The chemical composition of
produced ZnONP samples was also evaluated by using X-ray photoelectron spectroscopy
(XPS) [36]. Several studies have reported the use of these techniques to characterize
green-synthesized ZnONPs for various applications. For example, Faisal et al. [15] used
UV-visible spectrophotometry, XRD, SEM, EDX and FTIR to characterize the Paraclostrid-
ium benzoelyticum-bacterium-mediated biosynthesized ZnONPs and investigate their an-
tibacterial, antidiabetic, anti-inflammatory and antiarthritic activities. In another study,
Supraja et al. [94] used FTIR, DLS and zeta potential analyzer analysis to characterize
Alstonia scholaris stem-bark-extract-mediated ZnONPs and evaluate their antimicrobial
efficacy. Abomuti et al. [62] used UV-visible spectrophotometry, Raman spectroscopy,
SEM, TEM, XRD and FTIR to characterize the biosynthesized ZnONPs using leaf extract of
Salvia officinalis and investigate their antimicrobial activity against Candida albicans isolates.
TEM analysis revealed the wurtzite hexagonal shape of synthesized ZnONPs (Figure 3a),
and the average size was 26.14 nm (Figure 3b). An SEM image revealed the aggregated
form of synthesized ZnONPs and explored some rough, clumsy materials surrounding the
ZnONPs (Figure 3c). EDX analysis confirmed the majority of ZnONPs present in the sam-
ples. Additional carbon peaks in the EDX spectrum suggested the presence of biomolecules
such as vitamins, amino acids, polyphenols, flavonoids and saponins (Figure 3d).

The FTIR spectrum also showed various biomolecules such as polyphenols and other
biomolecules present in both aqueous leaf extract of S. officinalis and the synthesized
ZnONPs, which suggested that these biomolecules are responsible for the synthesis and
stabilization of ZnONPs and their biological activities (Figure 4a–c) [62].
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Other studies have reported the use of these techniques to investigate the antimicro-
bial and antioxidant properties of green-synthesized ZnONPs for various applications.
Sonia et al. [95] used UV-visible spectrophotometry, XRD, SEM and DLS to characterize
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biosynthesized ZnONPs and evaluate their antimicrobial and antioxidant potential for use
in a cold-cream formulation. Barsainya and Singh [96] used XRD, SEM and TEM to char-
acterize Pseudomonas aeruginosa-mediated ZnONPs and investigate their broad-spectrum
antimicrobial effects. Overall, the use of various analytical techniques in the characteri-
zation of biosynthesized ZnONPs has provided valuable insights into their physical and
chemical properties, enabling researchers to optimize their synthesis and tailor their proper-
ties for specific applications. Table 3 summarizes the different characterization techniques
used for biosynthesized ZnONPs.

Table 3. Different characterization techniques used for biosynthesized ZnONPs.

Characterization Technique Principle Advantage Reference

UV-visible spectrophotometry Measures absorbance of light Rapid and nondestructive [97]

X-ray diffraction (XRD) Measures crystal structure
and size

Provides detailed
crystallographic information [62]

Scanning electron microscope (SEM) Provides surface morphology
and size High resolution imaging [98]

Transmission electron
microscope (TEM)

Provides detailed information on
size, shape and structure

High resolution imaging and
analysis of individual particles [62]

Fourier transform infrared
spectroscopy (FTIR)

Measures functional groups on
the nanoparticle surface

Provides information on
surface chemistry [97]

Dynamic light scattering (DLS) Measures particle
size distribution Rapid and nondestructive [97]

Zeta potential analyzer Measures the surface charge of
particles in solution

Provides information on
particle stability [97]

5. Antimicrobial Applications and Mechanisms of Biosynthesized ZnONPs

In recent years, there has been a growing interest in the development and utiliza-
tion of nanomaterials for various applications, particularly in the field of antimicrobial
research. Among these nanomaterials, ZnONPs have emerged as a promising candidate
due to their unique physicochemical properties and potent antimicrobial activity. ZnONPs
have been extensively studied for their ability to inhibit the growth of a wide range of
microorganisms, including bacteria, fungi and viruses [24,42,62,99–104]. ZnONPs have
potential applications in various fields, including food, agriculture, pharmaceuticals and
biotechnology [43]. In the food and agriculture industries, ZnONPs have been shown to
have potential applications as a food preservative and to enhance the antifungal activity of
endophytic Bacillus sp. Fcl1. The extracts prepared from the Bacillus sp. Fcl1 cultured in
the presence of ZnONPs had an increased production of lipopeptide surfactin derivatives
and iturin, which are known for their antimicrobial properties [105]. In the medical field,
ZnONPs have shown promise as antimicrobial agents for the treatment of various infec-
tions, including skin and wound infections, respiratory tract infections, and urinary tract
infections. They have demonstrated broad-spectrum activity against both Gram-positive
and Gram-negative bacteria, including multidrug-resistant strains. Furthermore, ZnONPs
have been explored for their antifungal activity against pathogenic fungi, such as the
Candida species, and have shown potential as antiviral agents against a range of viruses,
including herpes simplex virus and influenza virus [106,107]. In the pharmaceutical indus-
try, ZnONPs have been investigated for their potential use as a new antimicrobial agent
to combat antibiotic-resistant bacteria. ZnONPs exhibited antimicrobial activity against
methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus
faecalis (VRE) [108].

ZnONPs have also been investigated for their potential use in wound healing. The
incorporation of ZnONPs into chitosan hydrogels improved their antimicrobial activity
against Staphylococcus aureus and Pseudomonas aeruginosa. The use of ZnONPs in wound
dressings could be a promising approach to preventing infections and promoting wound
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healing. In agriculture, ZnONPs have been utilized as antimicrobial agents for crop pro-
tection and disease management. They have been shown to effectively inhibit the growth
of plant pathogens, including bacteria and fungi, offering an eco-friendly alternative to
conventional pesticides. Additionally, the use of ZnONPs in food packaging materials has
gained attention due to their antimicrobial properties, which can help extend the shelf life
of perishable food products by inhibiting the growth of spoilage microorganisms. More-
over, ZnONPs have been investigated for their potential in environmental remediation,
particularly in water treatment, where they can effectively eliminate waterborne pathogens
and provide a sustainable approach for disinfection [40,109–112]. Studies have shown that
the antimicrobial activity of ZnO nanoparticles is size-dependent, with smaller particles
exhibiting higher antimicrobial activity due to their increased surface area and higher reac-
tivity [113]. In addition, the shape of ZnONPs also plays a crucial role in their antimicrobial
activity, with rod-shaped particles exhibiting higher activity than spherical particles [114].

The green synthesis approach utilizes plant extracts, microbes and waste biomate-
rials as reducing and stabilizing agents, thus reducing the use of hazardous chemicals
and energy consumption during the synthesis process. Studies have shown that green
synthesis methods produce ZnONPs with superior antimicrobial activity compared to
those synthesized using chemical methods. For example, ZnONPs synthesized using
aqueous extracts of Heritiera fomes and Sonneratia apetala mangrove plant species showed
significant antimicrobial activity against E. coli, S. aureus and B. subtilis [92]. Similarly, Alsto-
nia scholaris stem-bark-extract-mediated ZnONPs demonstrated significant antimicrobial
activity against P. aeruginosa, S. aureus and B. subtilis [94]. There are many recent reports
on the biosynthesis of ZnONPs using plants and microbes and their potential utilization
to control drug-resistant pathogenic microorganisms (Tables 1 and 2). Abomuti et al. [62]
reported the biosynthesis of ZnONPs using leaf extract of Salvia officinalis and evaluated
their antimicrobial activity against pathogenic Candida albicans isolates. They found that the
biosynthesized ZnONPs strongly suppressed the growth of C. albicans isolates and showed
a strong zone of inhibition (Figure 5). Faisal et al. [15] reported on the Paraclostridium
benzoelyticum-bacterium-mediated extracellular synthesis of ZnONPs and evaluated their
antimicrobial activity against Helicobacter suis, H. felis, H. bizzozeronii and H. salomonis. The
biosynthesized ZnONPs strongly inhibited the growth of the tested pathogenic bacteria.
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ZnONPs have gained significant attention as promising antimicrobial agents due
to their unique physicochemical properties and broad-spectrum activity against various
microorganisms. The antimicrobial mechanisms of ZnONPs involve a combination of
physical, chemical and biological processes that collectively contribute to their efficacy in
inhibiting the growth and survival of microorganisms [107,111,115]. One of the primary
mechanisms by which ZnONPs exert their antimicrobial activity is through the genera-
tion of reactive oxygen species (ROS). ZnONPs can undergo redox reactions and produce
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ROS, such as superoxide radicals (O2−), hydrogen peroxide (H2O2) and hydroxyl radicals
(OH·). These ROS are highly reactive and can cause oxidative stress in microbial cells by
damaging cellular components, including lipids, proteins and nucleic acids. The accu-
mulation of ROS disrupts normal cellular functions, leading to cell membrane damage,
protein denaturation and DNA/RNA degradation, ultimately resulting in microbial cell
death [111,116,117]. Moreover, ZnONPs possess a high surface-area-to-volume ratio, which
enhances their contact with microbial cells and facilitates physical interactions. The small
size of ZnONPs allows them to penetrate microbial cell membranes and enter the cyto-
plasm. Once inside the cell, ZnONPs can interact with intracellular components, such as
enzymes and proteins, disrupting their structure and function. This disruption further
contributes to the inhibition of microbial growth and proliferation [111,115,118]. Another
important antimicrobial mechanism of ZnONPs is their ability to disrupt the integrity and
permeability of microbial cell membranes. ZnONPs can interact with the lipid bilayer of the
cell membrane, leading to membrane destabilization and increased membrane permeability.
This disruption of the cell membrane integrity compromises the structural integrity of
microorganisms and leads to leakage of cellular contents, loss of vital ions and ultimately
cell death [111,115,119]. Furthermore, ZnONPs have been found to interfere with microbial
enzyme activity. Certain enzymes, such as ATPases and respiratory chain enzymes, are
crucial for microbial metabolism and energy production. ZnONPs can inhibit the activity of
these enzymes, disrupting the energy balance and metabolic processes of microorganisms.
This interference with enzyme activity further contributes to the antimicrobial effects of
ZnONPs [111,120]. Table 4 summarizes the modes of action of biosynthesized ZnONPs
against different pathogenic microbes.

Abomuti et al. [62] applied plant-mediated biosynthesized ZnONPs to treat the
pathogenic C. albicans isolates and found that the biosynthesized ZnONPs damaged the
cell wall and cell membrane of C. albicans and inhibited the production of ergosterol, which
lead to the death of the cell (Figure 6).
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According to Ahmed et al. [42], bacterial-mediated biosynthesized ZnONPs effectively
control the growth of pathogenic microorganisms B. glumae and B. gladioli. They reported
that synthesized ZnONPs damaged the cell membrane, proteins, ribosome and cytoplasmic
materials of B. glumae and B. gladioli, produced reactive oxygen species and were involved
in the leakage of genetic materials, resulting in cell death (Figure 7).
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Table 4. Modes of action of green synthesized ZnONPs against pathogenic microbes.

Treated Pathogenic Microbes Mode of Action References

H. suis, H. felis, H. bizzozeronii, H. salomonis
Lead to the damage of cell wall, cell membrane and
DNA, mitochondrial dysfunction, apoptosis, generation
of reactive oxygen species and, finally, cell death.

[15]

S. aureus, E. coli, B. subtilis, P. aeruginosa,
C. albicans.

Inhibit different metabolic functions including cell
metabolisms, transportation, enzyme activity, etc.;
generate reactive oxygen species and lead to the death
of cell.

[44]

S. aureus, E. coli, E. faecalis, S. enteritidis,
K. pneumoniae, P. aeruginosa, A. baumannii,
S. typhimurium, C. albicans

Damage of cell membrane and DNA, leakage of
intracellular molecules, denaturation of enzymes and
proteins, inhibition of protein synthesis, generation of
reactive oxygen species.

[121]

Burkholderia glumae, B. gladioli

Damage cell membrane, proteins, ribosome, and
cytoplasmic materials; produce reactive oxygen species
and cause leakage of genetic materials, resulting
cell death.

[42]

E. coli, Salmonella sp., S. aureus, S. epidermidis
Damage the cell membrane, cause leakage of
intracellular materials and generate reactive oxygen
species, which lead to the death of the cell.

[13]

S. aureus, K. pneumoniae Generation of reactive oxygen species, DNA damage,
protein denaturation and mitochondrial dysfunction. [36]

P. aeruginosa, C. violaceum Attach to cell membrane, break membrane permeability,
release Zn ions, generate reactive oxygen species. [14]

E. coli, P. putida, S. aureus, S. pyogenes Interact with cell membrane, produce reactive oxygen
species, damage cell wall, DNA, protein and iron. [2]

B. flexus, B. filamentosus, A. baumannii, P. stutzeri
Damage of cell wall, inhibition of cellular metabolism
and respiration, destruction of DNA and inactivation
of protein.

[68]

C. albicans
Disrupt and deform the cell wall and cell membrane and
inhibit the production of ergosterol, which lead to
cell death.

[62]

S. pyogenes, P. aeruginosa, S. aureus
Production of significant oxygen reactive species
including hydroxyl radicals, superoxides and
hydrogen peroxide.

[38]

F. oxysporum, S. aureus, P. aeruginosa,
R. necatrix, E. coli

Damage cell membrane, generate reactive oxygen
species, damage DNA, denature protein, cause
ribosomal destabilization and mitochondrial
dysfunction, which lead to the death of cell.

[23]

It is important to note that the antimicrobial mechanisms of ZnONPs can vary de-
pending on the type of microorganism and the specific conditions. While ZnONPs exhibit
broad-spectrum antimicrobial activity, some microorganisms may exhibit varying degrees
of susceptibility due to differences in cell wall composition, membrane structure or de-
fense mechanisms. In conclusion, ZnONPs possess multiple antimicrobial mechanisms
that collectively contribute to their effectiveness in inhibiting the growth and survival of
microorganisms. These mechanisms include the generation of reactive oxygen species,
physical interactions, disruption of cell walls and cell membranes, damage of DNA, inter-
ference with microbial enzyme activity, protein denaturation, ribosomal destabilization
and mitochondrial dysfunction. Understanding the antimicrobial mechanisms of ZnONPs
is crucial for the development of novel antimicrobial strategies and the optimization of
their application in various fields, including medicine, food industry, agriculture and
environmental remediation.
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6. Conclusions and Future Prospects

The use of green synthesis methods for the production of ZnONPs has emerged as
a promising approach to achieve enhanced antimicrobial activity with reduced environ-
mental impact. Biosynthesis of ZnONPs using microbes and plants is a facile, non-toxic,
cost-effective and eco-friendly method. In this review, the biosynthesis of ZnONPs using
microbes and plants has been comprehensively reviewed. The antimicrobial applications
and mechanisms of the biosynthesized ZnONPs against various pathogenic microorgan-
isms have also been highlighted. Plant extracts, microbial biomass or culture supernatant
contain various biomolecules including enzymes, amino acids, proteins, vitamins, alka-
loids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the
safe, facile and rapid biosynthesis of ZnONPs. The antimicrobial activity of ZnONPs is
attributed to several mechanisms, including physical damage to microbial cell walls and
cell membranes, production of reactive oxygen species and inhibition of microbial enzyme
activity. As ZnONPs are edible and safe for utilization, ZnONPs could be potentially
utilized in different food industries to control foodborne pathogens, as well as in many
other sectors such as health care and agriculture to effectively control different pathogenic
microorganisms. ZnONPs also exhibit antioxidant and wound-healing properties, making
them suitable for use in cosmetics and dermatological formulations.
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In conclusion, the antimicrobial applications of ZnONPs hold great promise for the
development of new antimicrobial agents to combat the growing threat of antimicrobial
resistance. ZnONPs have potential applications in various fields, including food, agri-
culture, pharmaceuticals and biotechnology. It is worth mentioning that the safety and
potential toxicity of ZnONPs are important considerations for their practical applications.
While ZnONPs have demonstrated significant antimicrobial activity, their potential adverse
effects on human health and the environment should be thoroughly evaluated. Proper
characterization of ZnONPs, including size, shape and surface modifications, is crucial for
understanding their interactions with biological systems and optimizing their antimicrobial
efficacy while minimizing potential toxic effects.
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