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Abstract: Obesity has reached an epidemic proportion in the last thirty years, and it is recognized
as a major health issue in modern society now with the possibility of serious social and economic
consequences. By the year 2030, nearly 60% of the global population may be obese or overweight,
which emphasizes a need for novel obesity treatments. Various traditional approaches, such as phar-
macotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However,
these methods frequently show the possibility of side effects while remaining ineffective. There is,
therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity.
Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs)
to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active
molecules such as natural ingredients. Designing DDSs is currently a top priority research objective
with an eye towards creating obesity treatment approaches. In reality, the most recent trends in
the literature demonstrate that there are not enough in-depth reviews that emphasize the current
knowledge based on the creation and design of DDSs for obesity treatment. It is also observed
in the existing literature that a complex interplay of different physical and chemical parameters
must be considered carefully to determine the effectiveness of the DDSs, including microneedles,
for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is
synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS
techniques would significantly enhance the development of safe and efficient treatment approaches
for obese people in the future. Considering these, this review provides an overview of the current
anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article
aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling
in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.

Keywords: anti-obesity drugs; active molecules; microneedles; nanoparticles; natural ingredients

1. Introduction

Obesity is a multifaceted issue that is of significant public health importance world-
wide. It has the potential to impact individuals across all ages and socioeconomic strata
and poses risks to all nations [1,2]. Obesity, and being overweight, refer to the buildup of
an excessive amount of fat in an individual’s body with body mass indexes (BMI) of ≥30
and 25–29.9, respectively [2,3].

Back in 1995, the World Health Organization (WHO) estimated that around 200 million
adults were obese, and 18 million children were overweight, around the world. Later in
2000, the number of obese adults escalated by over 300 million, according to the WHO’s
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2005 report [1,2]. In 2016, there were more than 1.9 billion overweight adults, with over
650 million of them being labelled as obese. This means that about 13% of the global adult
population was obese, with women having a higher obese percentage (15%) compared to
men (11%). Furthermore, around 79% of the world’s adult population aged 18 and above
were overweight during that year, with the men and women comprising of 39% and 40%
of that population, respectively [4]. From 1975 to 2016, there was a significant increase in
the worldwide occurrence of obesity, which nearly tripled.

In 2019, there was a total of 38.2 million children under the age of five who were
identified as overweight or obese. While these issues were initially associated with high-
income countries, they are now becoming more prevalent in metropolitan areas of low- and
middle-income nations. For example, the proportion of under-fives who are overweight
is increasing (WHO 2022) in Africa [4]. The prevalence of obesity among adults in the
time period of 1975–2015 is demonstrated in Figure 1. It is clear that women are showing
higher numbers during this period; however, the numbers of both males and females
are significantly increasing with time. These numbers have encouraged scientists to start
looking for treatments for people suffering from obesity and its complications.
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Obesity is strongly related to a variety of life-threatening conditions such as dia-
betes, heart disease, sleep apnoea, various types of cancers, osteoarthritis, etc. [5–8]. It
causes many other diseases that include central nervous system (CNS) diseases such as
Alzheimer’s disease and depression [9–11], respiratory problems such as emphysema and
chronic bronchitis [12,13], cardiovascular diseases such as atherosclerosis and hyperten-
sion [14], digestive diseases such as fatty liver and ulcerative colitis, bone and joint diseases
such as osteoarthritis [15,16], and metabolic diseases such as diabetes and gout [17,18].
Obesity can also cause male sexual dysfunction, kidney disease, irregular menstruation,
and female infertility [19,20]. Obesity-associated diseases are demonstrated in Figure 2.
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Obesity is well known to cause a variety of cancers such as endometrial cancer, colorec-
tal cancer, stomach cancer, breast cancer, liver cancer, and others [21–23]. Obese patients
have a higher risk of inflammation, lower immunity, and premature aging [24]. Obese
people with a BMI greater than 27 kg/m2 and other obesity-related complications must
be treated with medication [24]. In the case of obese individuals, excessive secretion of
pro-inflammatory adipokines by adipocytes within adipose tissue can lead to a systemic
inflammatory state. Additionally, the hydrolysis of triglycerides in adipose cells releases
free fatty acids that are transported to where they can be utilized metabolically. However, in
obese patients, there are elevated levels of fatty acids and cholesterol, resulting in a greater
mass of adipose cells, causing an increase in their size and volume. Although the lipids can
be found in adipose tissue, they are also present in a variety of cell types in the form of small
cytoplasmic organelles called liposomes, which can lead to the expansion of liver tissue
and cause various pathological conditions like non-alcoholic fatty liver disease, steatohep-
atitis, and cirrhosis. In some non-fatty tissues, excessive amounts of lipoidal intermediates
can cause cell depletion and death through lipotoxicity. In overweight or obese patients,
elevated levels of free fatty acids, inflammatory proteins, and lipoidal intermediates in
non-adipose tissues can compromise insulin resistance and signalling. Additionally, there
is a strong link between excess intra-abdominal fat and insulin resistance. A high number
of white adipocytes, which retain various triglycerides, are present in subcutaneous fat
cells, while a relatively small and consistent number of brown and beige adipocytes with
thermogenic properties exist in adults. When adipose tissue undergoes modifications
due to adipocyte cell death, obesity is often accompanied by an increase in immune cells,
particularly macrophages. These immune cells release pro-inflammatory proteins as cell
signalling molecules, which contribute to the insulin resistance commonly observed in
obese individuals [25].

Obesity is a treatable disease that can be managed by either physical or therapeutic
control, as discussed briefly below. Different obesity treatments are illustrated in Figure 3,
including classical treatment techniques using natural products and advanced techniques
that include different DDSs.
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Physical control: Obesity is primarily managed through dieting and physical activ-
ity [2]. Obese and overweight people must follow a strict diet plan and engage in strenuous
exercise. Regular diet program maintenance is typically challenging, and in a majority of
cases, a person must adhere to these lifestyles indefinitely [26,27]. A low-calorie diet and
strenuous exercise have a variety of negative effects, including an increased risk of loss of
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lean muscle mass and gout. A person who follows this lifestyle for a long time should be
monitored by a physician to avoid complications [28]. However, only 2–20% of long-term
weight loss attempts involving lifestyle changes are successful [29].

The non-therapeutic treatments are essential for the management of obesity, as they can
help individuals achieve and maintain healthy weights. Non-pharmacological treatments
for obesity include behavioural and lifestyle modifications, such as increased physical
activity, dietary changes, and behavioural therapy. These interventions have been shown
to be effective in reducing body weight and improving overall health. A healthy diet for
weight loss typically involves reducing calorie intake and increasing the consumption of
nutrient-dense foods. Regular physical activity helps to burn calories, increase muscle
mass, and improve overall health. Behavioural therapy helps individuals to identify and
modify unhealthy behaviours that contribute to weight gain, such as overeating and a
sedentary lifestyle [30].

Therapeutic control: The most effective obesity treatment is bariatric surgery. Due to
several complications after surgery, only those who are extremely obese should consider
this surgery (BMI > 40) [31]. There are only a limited number of therapeutic substances,
like Orlistat, Sibutramine, Lorcaserin and Phentermine/Topiramate, that have the ability
to decrease body weight by either reducing food intake and absorption or increasing
energy expenditure [32,33]. Regrettably, the effectiveness of these medications in regulating
body weight has been restricted, and the majority of them have been removed from the
market due to severe adverse reactions [34]. Comprehensive research is required to gain a
better understanding of the development of obesity and to identify the safe and effective
therapeutic methods for controlling it, due to the current state of obesity, its associated
conditions, as well as the limitations of obesity drugs [34].

Paul Ehrlich developed the idea of targeted drug delivery systems as “magic bullets”
nearly a century ago, which deliver medication to their target organ while preventing
it from affecting healthy organs of the body [35]. Targeted drug delivery is also known
as smart drug delivery [36]. An intensive effort has been directed over the last three
decades towards the advancement of drug delivery systems (DDSs) for disease treatment.
A DDS can be characterized as a technique for effectively delivering the medication to its
therapeutic site of action by choosing the right carrier, route, and target. The selection of
these three critical factors determines the efficacy of the DDS.

Employing a carrier system to transport medication within the body presents various
possibilities for successfully achieving the objective of drug targeting. Some of the potential
benefits of DDSs are as follows [35–37]:

• Maintaining constant drug levels within the therapeutic range.
• When drugs are targeted to specific tissues/organs, they have less toxicity and fewer

side effects.
• Administration is made easier, which increases patient compliance.
• Defence against the degradation of biologically active drug particles such as proteins

and peptides.
• Small doses of the drug and a reduction in the number of dosages.

Keeping the above trends in consideration, this review paper aims to clarify various
methods for treating obesity by discussing traditional medicines as well as the treatment
methods that have been used most recently to treat this common disease. Possible applica-
tions of DDSs such as nanoparticles (NPs) and microneedles (MNs) have been discussed to
fill the gap between traditional and recent treatment approaches and provide more in-depth
knowledge of how obesity can be managed safely. The review structure includes an intro-
duction to the disease of obesity and the increasing number of people infected with it based
on the data provided by the World Health Organization, as well as the symptoms related
to this disease, methods, treatments, traditional methods, and health problems associated
with these medicines and their danger to the public health of users of these medicines.
These factors led to the necessity of searching for methods and treatments that are safer
for the health of patients, until the drug delivery techniques were developed, which have
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proven their effectiveness in treating obesity as well as their safety. The literature for this
review has been selected from the literature search engine Scopus, and the main keywords
used to select the papers were “obesity treatment”, “microneedles”, “obesity associated
disorders”, “conventional obesity drugs”, “natural ingredients”, “advanced treatment” and
“drug delivery systems”.

2. Conventional Anti-Obesity Drugs

Anti-obesity drugs are still primarily administered orally or via injection. The US Food
and Drug Administration (FDA) has recommended five types of anti-obesity drugs: Orlistat,
Phentermine/Topiramate ER, Naltrexone SR/Bupropion SR, Lorcaserin, and Liraglutide.
By using the current delivery method, the efficacy of these drugs has only been found to be
3–7%. At the moment, Liraglutide is administered intravenously, whereas all other drugs
are administered orally [38,39]. Common anti-obesity drugs alongside their principles of
action, delivery mode, and side effects are listed in Table 1.

The major effects of Phentermine/Topiramate ER, Naltrexone SR/Bupropion SR,
Lorcaserin, and Liraglutide are to reduce calorie intake by controlling appetite and boosting
satiety. Furthermore, investigation on the precise mechanism is ongoing [40]. These
medications have a variety of side effects, including high blood pressure, arrhythmia,
nausea, dizziness, insomnia, taste failure, constipation, and so on. As a result, using
these medications is frequently disallowed in patients with cardiovascular diseases, people
taking other medications, and pregnant women [41]. Orlistat is a lipase inhibitor, which
checks fat absorption in the body, reduces calorie intake, and regulates weight gain [38].
Orlistat is the world’s bestselling over-the-counter (OTC) anti-obesity drug, and it is safe
for teenagers [42].

Table 1. Known principles, delivery modes, and side effects of common anti-obesity drugs.

Action Principle Delivery Method Name of Drug Drawbacks Reference

Reduce appetite
Oral administration

Phentermine/Topiramate
ER

Taste disorders, insomnia,
dizziness and constipation [43]

Naltrexone
SR/Bupropion SR

Headache, diarrhoea and
constipation [43]

Lorcaserin Nausea, dizziness and
constipation [44]

Rimonabant Discomfort, nausea and
gastrointestinal distress [43]

Fenfluramine Hypertension and heart
valve damage [43]

Hypodermic injection Liraglutide Neuropsychiatric diseases,
depression and dizziness [38,39]

Block the
absorption of fat

Oral administration

Orlistat Flatulence and diarrhoea [42]

Increase energy
consumption and
reduce appetite

Sibutramine Cerebrovascular diseases
and cardiovascular [43]

Although these drugs are widely used for losing weight, they do have some drawbacks,
including diarrhoea and flatulence. It has also been demonstrated that metformin aids in
weight loss. For patients with type 2 diabetes who were obese, metformin was the first
oral medication of choice. Constipation and stomach aches are among its reported side
effects [45–47]. There are numerous drawbacks to these drugs entering the human body
via injection or the traditional oral route, such as limited effectiveness, some side effects,
large doses, patient non-compliance, and inconvenience of use. Some FAD-approved oral



Pharmaceutics 2023, 15, 2635 6 of 42

anti-obesity medications are no longer available. The FDA released a caution in early 2020
that the weight loss medications BelviqXR (Lorcaserin) and Belviq could increase the risk
of cancer in obese patients, but it is unclear whether the drugs will be prohibited [44].
The administration of drugs throughout the body is believed to be a significant factor in
producing a range of undesirable effects that arise due to excessive dosages. These effects
can significantly impede the availability of the medication [48].

3. Advanced Treatments of Obesity

An imbalance between caloric intake and consumption is what leads to obesity.
Adipocytes will store excess caloric intake that cannot be consumed promptly [49]. In
addition to suppressing appetite, increasing the feeling of fullness, and preventing the
absorption of nutrients, the latest medications for treating obesity also target the promotion
of heat production or breakdown of fat in adipocytes [50,51]. Most adipose tissue (AT) is
found in the subcutaneous and visceral organs. With over 80% of total body fat stored in
the subcutaneous tissue, treating obese patients by lowering localized subcutaneous AT is
very useful [52]. White adipose tissue (WAT) and brown adipose tissue (BAT) are the two
types of adipose tissue [53]. The process of “browning” causes white fat cells to transform
into brown-like adipocytes through various drug-related triggers [54].

The new anti-obesity agents and their delivery methods alongside their mechanism of
actions are illustrated in Table 2.

WAT’s nature has been considered one of the reasons why there are so many difficulties
with obesity; WAT’s main function is to store energy, of which there is typically more than
there should in obese patients [55]. In contrast to WAT, brown fat cells found in BAT are
metabolically active, which produces heat and raises energy consumption in the body.
The primary protein responsible for this process as a thermogenic protein is known as
uncoupling protein 1 (UCP1). One potential method for combating obesity is targeting
WAT and converting it into cells resembling brown adipocytes. This approach is believed
to have great potential for increasing energy expenditure in humans [56–58].

Several substances, including β3-adrenoceptor agonists (CL316243), thyroid hormone
(T3), rosiglitazone (ROSI), bile acid, fucoxanthin, curcumin, and others, have been shown to
enhance browning and, thus, to increase thermogenesis [49,59–61]. Gelatine, gold NPs, and
caffeine have all been shown to aid in fat decomposition [62–64]. It was discovered that
glucagon-like peptide 1 (GLP1) analogues and resveratrol may activate brown adipocytes to
promote not only thermogenesis, but also browning [48,65,66]. Some researchers began to
investigate anti-obesity medications delivered transdermally to enhance their effectiveness
and prevent adverse effects brought on by DDSs.

CL316243 was found to enhance adipocyte browning in obese mice [67]. Mirabegron
(β3-adrenoceptor agonist) has been licensed by the FDA for overactive bladder treatment.
Frequent usage of the medication, in addition, can cause an increase in blood pressure
and heart rate [68]. The thyroid hormone T3 has been shown to induce fat browning and
thermogenesis. It has been observed that T3 or T4 causes loss of weight in humans and
animals [69,70]. Long-term frequent usage of thyroid hormone could cause cardiovascular
disease and hyperthyroidism [71], which is why it has not been licensed as an anti-obesity
medicine.

The peroxisome proliferator-activated receptor (PPAR), which is responsible for regu-
lating the storage of fatty acids and glucose metabolism, is also a crucial transcriptional
regulator for the synthesis of BAT [72]. ROSI is a type of PPAR activator that can increase
insulin sensitivity in AT, liver, and skeletal muscle, and it has been utilized for diabetes
treatment [73]. Recent research has revealed that it also has a browning effect [60]. However,
taking ROSI may increase the risk of cardiovascular disease [74].
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Table 2. Possible principles of actions and delivery methods of new anti-obesity agents.

Action Principle Delivery Mode Name of Drug References

Activation of
brown adipocytes

Transdermal and hypodermic injection
β3-adrenoceptor agonist

(CL316243) [67,75]

thyroid hormone (T3) [76,77]

Transdermal and oral administration
ROSI [73,78]

curcumin [79,80]

Oral administration

fucoxanthin [81]

bile acid [82]

capsaicin [83]

olive oil [84]

Hypodermic injection GLP1 analogue [65]

Oral administration resveratrol [48]

Fat decomposition
Transdermal and oral administration

gelatine [62]

caffeine [64,85]

Transdermal administration gold NPs [63,86]

4. Natural Anti-Obesity Extracts

Natural products, such as animal-derived natural products (e.g., fish oil and chitosan
from crab and shrimp shells) and plant-derived natural products (e.g., citrus limon and
Panax ginseng) have been reported to reduce obesity-related metabolic disorders [87–144].
A well-known therapeutic ingredient is green tea that is abundant in catechins, a type
of polyphenol [92,93]. The primary catechin in green tea, (-)-epigallocatechin-3-gallate
(EGCG), is thought to be a major factor in the health benefits of green tea, such as its ability
to prevent cancer [94–96] and antimetabolic syndrome [97–99]. It also has antiviral and
anti-infectious effects [100,101], protects the heart from cardiovascular diseases [102], and
has neuroprotective effects [103]. In zebrafish models of diet-induced obesity, green tea
extract (GTE) was found to lower total cholesterol (TCHO) levels and plasma triglyceride
(TG) and visceral adipose tissue (VAT) volume in 2019 [104]. It was reported that people
who consume green tea habitually were shown to have lower fat levels in numerous epi-
demiological analyses [98,105–107]. Natural anti-obesity agents and their active ingredients
and mechanisms of action are demonstrated in Table 3.

It was found that natural extractions such as phenolic acids, flavans-3-ol (catechin), an-
thocyanins, curcuminoids, lignans, flavonols, iso-flavonoids, flavones, alkaloids (caffeine),
and phytosterols have anti-obesity effects [108].

Table 3. Natural anti-obesity extractions.

Principle of Action Natural Agent Active Constituent Reference

Pancreatic lipase inhibitor

Panax japonicus Chikusetsusaponins [109]

Thea sinensis (oolong tea) Crude aqueous extract
(caffeine) [110]

Cassia mimosoides Proanthocyanidin [111]

Trigonella foenum graecum L.
(seed) Crude ethanolic extract [112]

Salix matsudana (leaf) Polyphenol [113]
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Table 3. Cont.

Principle of Action Natural Agent Active Constituent Reference

Vitis vinifera Crude ethanolic extract [114]

Salvia officinalis L. (leaf) Methanolic extract (carnosic
acid) [115]

Cassia nomame Flavan dimers [116]

Citrus unshiu Hesperidin [117]

Chitosan-chitin Chitosan (80%), chitin (20%) [118]

Streptomyces toxytricini (fungus) Lipistatin [119]

Actinomycetes sp. Valilactone [120]

Caulerpa taxifolia (marine algae) Caulerpenyne [121]

Appetite suppressant

Panax ginseng (root) Crude saponins [122]

Camellia sinensis (leaf) (-)-Epigallocatechin gallate
(EGCG) [123]

Hoodia gordonii and
H. pilifera Steroidal glycoside [124]

Haseolus vulgaris and
Robiniapseudoacacia Lectins [125]

Pinus koraiensis
(pine nut) Pine nut fatty acids [126]

Ephedra species Ephedrine [127]

Citrus aurantium Synephrine [128]

Hypericum perforatum Total extract [129]

Adipocyte differentiation
inhibitor

Chili pepper (capsicum) Capsaicin [130]

Fish oil Docosahexaenoic acid [131]

Palm oil G-tocotrienol [132]

Camellia sinensis (green tea) (-)-Epigallocatechin gallate [133]

Panax ginseng Ginsenosides [134]

Silybum marianum Silibinin [135]

Garlic Ajoene [136]

Rosmarinus officinalis Carnosic acid [137]

Curcuma longa Curcumin [138]

Humulus lupulus Xanthohumol [139]

Lipid metabolism regulator

Morus albam, Melissa officinalis,
Artemisia capillaries Crude aqueous extract [140]

Curcuma longa L. Curcumin and curcuminoids [141]

Glycyrrhiza glabra L. Liquorice flavonoid [142]

Panax ginseng Crude aqueous extract [143]

Zea mays L. Purple corn colour
(anthocyanins) [144]

Soybean Genistein and L-carnitine
(soy isoflavone) [145]
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Table 3. Cont.

Principle of Action Natural Agent Active Constituent Reference

Energy expenditure stimulant Solanum tuberosum ethanolic extract [146]

Lipid metabolism regulator
and pancreatic lipase inhibitor Coffea canephora

Caffeine and chlorogenic,
neochlorogenic, and
feruloyquinic acids

[147,148]

Appetite suppressant and
adipocyte differentiation

inhibitor
Garcinia cambogia (-)-Hydroxycitric acid (HCA) [149,150]

5. Advanced DDSs for the Treatment of Obesity

Because of their high bioavailability, low dose and side effects, and ease of administra-
tion, DDSs are ideal for the delivery of anti-obesity therapeutics [43]. The high targeting
ability of DDSs appears to offer a high possibility for reducing local subcutaneous AT [151].
Despite significant efforts in recent years, conventional obesity treatment methods are
frequently inadequate for maintaining metabolic balance and preventing potentially fatal
consequences. New techniques for improving their effectiveness and reducing side effects
are, thus, critical for obesity management. Advancements in biomaterials for the delivery of
drugs are allowing substantial progress in therapy, with a variety of polymeric carriers that
release medicines for prolonged periods, as well as further customized targeting of specific
locations or cell types inside the body [152]. Polymer conjugates [153], hydrogels [154],
MNs [78], micro- and NPs [155,156], and liposomes [157] represent a few polymeric carriers.

5.1. Preparation and Characterization of Anti-Obesity DDSs

In order to enhance the specificity of DDSs, different strategies can be employed.
One of these methods involves incorporating molecular recognition elements as targeting
entities. These targeting molecules can attach to receptors or biomarkers that are either
overrepresented or particular to the target cells or tissues, which facilitates drug delivery to
the desired site [158].

Antibodies are frequently utilized as targeting molecules as they can be modified or
chosen to selectively attach to antigens located on the surface of target cells. By conjugating
drugs or drug-loaded nanoparticles to these antibodies, the DDS can deliver the therapeutic
agents to the desired cells, while avoiding healthy cells. This method is commonly known
as antibody–drug conjugate (ADC) therapy [159].

Another targeting molecule that can be used is the peptide. Peptides are short chains of
amino acids that can be designed to recognize and bind to specific receptors or biomarkers.
These peptides can be either natural or synthetic and can be conjugated to drug molecules or
used as carriers for drug-loaded nanoparticles. Peptide-based targeting has been explored
in various disease conditions, including cancer, cardiovascular diseases, and neurological
disorders [160].

In addition to antibodies and peptides, other targeting molecules such as aptamers,
small molecules, and carbohydrates have also been investigated. Aptamers are short,
single-stranded DNA or RNA molecules that can be selected to bind to specific targets with
high affinity and specificity. Small molecules, on the other hand, are low-molecular-weight
compounds that can be designed to bind to specific receptors or enzymes involved in
disease pathways. Carbohydrates, especially glycan-based targeting, have gained attention
due to their ability to recognize specific lectins or receptors on cell surfaces [161].

Furthermore, advancements in nanotechnology have led to the development of tar-
geted DDSs using functionalized nanoparticles. These nanoparticles can be engineered to
carry both targeting molecules and therapeutic agents, enabling specific delivery to the
target cells or tissues. Surface modifications with targeting ligands, such as antibodies or
peptides, allow for enhanced cellular uptake and specific accumulation at the target site.
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The use of molecular recognition elements as targeting molecules in DDSs has the
potential to improve the specificity and efficacy of drug delivery. By selectively delivering
therapeutic agents to the desired cells or tissues, these targeted DDSs can enhance treatment
effectiveness while minimizing off-target effects and reducing systemic toxicity [162].

5.1.1. Polymer Conjugates

Attention to the field of polymer therapeutics has grown significantly over the last
decade, along with advancements in the chemical synthesis and structural features of
polymer–drug conjugates. A wide range of polymers, including N-(2-hydroxypropyl)
methacrylamide (HPMA), poly(glycolic acid), poly(lactide-co-glycolide), and poly(ethylene
glycol) (PEG) have all been utilized successfully in therapeutic applications.

Three distinct constituents have been used for the synthesis of these delivery systems:
a medicinal drug, a targeting moiety, and a solubilizing unit [58–62]. The polymer backbone
has these units covalently integrated into it. The conjugates’ water solubility is improved
by the solubilizing unit. The targeting moiety facilitates more efficient conjugate delivery
to the target cell or tissue.

Three synthetic methods are being used to create polymer–drug conjugates: adding a
therapeutic agent to a synthetic polymeric carrier, adding a therapeutic agent to a monomer
prior to polymerization, and adding a drug either as an initiator or monomer during the
polymerization step [163].

It has been claimed that the issue of uncontrolled conjugation to the polymer backbone
leading to high drug loading and controlled drug loading can be resolved by creating
polymer–drug conjugates by incorporating a drug into a monomer prior to polymerization.
The reaction of polymerization is not hampered by the drug’s conjugation to the monomer,
and steric hindrance during conjugation is likewise resolved [164].

For the synthesis of polymer–drug conjugates, reactions of polymerization such as
reversible addition–fragmentation transfer polymerization (RAFT), ring-opening polymer-
ization (ROP), and ring-opening metathesis polymerization (ROMP) have been utilized,
where the drug is first conjugated to the monomer [165–167]. Illustration of polymer drug
conjugate is shown in Figure 4.

The conjugates made using the technique demonstrated a positive feature, including
triggered drug release appropriate for conjugates packed with numerous medicines. A
biodegradable backbone for polymer–drug conjugates has reportedly been produced by
using ROP [168,169].

Polymer–drug conjugates have a number of benefits, including increased drug bioavail-
ability and biodegradability [170], decreased drug toxicity [171], increased water solubility
and drug stability, improved biocompatibility of the drug and delivery of the drug by
maintaining and controlling the release mechanism of the drug [172], and the capacity
to prevail the resistance of the drug. Moreover, there are a few restrictions on the use of
polymer–drug conjugates in combination therapy, including challenges in determining the
ratios of the integrated low loading capacity of the drugs and therapeutic agents [173].

In order to control appetite, the regulatory protein leptin is produced by adipocytes
and crosses the blood–brain barrier (BBB). Nevertheless, leptin is often resistant to crossing
the BBB because obesity impairs leptin receptor activity within hypothalamus and BBB
transport [174]. Leptin has conjugated with amphiphilic Pluronic triblock copolymers
to overcome this challenge. In order to enhance the pharmacokinetics (PK) of leptin in
the peripheral body and its uptake in the brain, Yi et al. [175] proposed to alter leptin
with Pluronic block copolymers. Pluronic is an amphiphilic triblock copolymer composed
of poly(ethylene oxide)-b-poly(propylene oxide) b-poly(ethylene oxide) (PEO–PPO–PEO,
same as poly(polyethylene glycol) b-poly(propylene glycol)-b-poly(polyethylene glycol),
or PEG–PPG–PEG) [175].
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Leptin has combined with Pluronic P85 at various random lysine amino groups or
specifically at its N-terminal amine to further optimize the chemical formation of conju-
gates [176].

N-terminal conjugates with less obstruction to binding to the leptin receptor and
low dosage were discovered to be transported more effectively to the brain and concen-
trated in the hypothalamus and hippocampus compared to native leptin and haphazard
conjugates [177].

Chronic systemic inflammation has been associated with obesity in visceral adipose
tissue (AT), and is initiated by pro-inflammatory macrophages [178]. However, at high
doses, traditional treatments for inflammation can have severe adverse effects on tissues
that are not the target of the treatment, such as liver cells, muscle cells, and fat cells.
Precise targeting of macrophages within the adipose tissue (AT) surrounding internal
organs (visceral AT) could lead to a substantial decrease in toxicity. Dexamethasone,
a corticosteroid characterized by a half-life ranging from 36 to 72 h, interacts with the
glucocorticoid receptor, leading to the suppression of pro-inflammatory gene transcription
in M1 macrophages [179].

Due to the presence of dextran-binding C-type lectins and scavenger receptors, macrophages
exhibit expression of these receptors, and dexamethasone–dextran compounds have been
designed for selective uptake [180]. According to the findings, a significant proportion
of the administered conjugates, specifically those conjugated with high-molecular-weight
dextran (70 and 500 kDa), persisted in the visceral adipose tissue up to 24 h after the
treatment, with a maximum retention rate of 63%. After esterase hydrolysis, the gradual
release of conjugated dexamethasone resulted in its binding to the glucocorticoid receptor,
where this binding process led to the inhibition of pro-inflammatory gene transcription in
the adipose tissue (AT) of mice with obesity.

Despite the frequent utilization of natural polymers such as gelatine and chitosan
as drug transporters, recent studies have suggested the potential for elevated levels of
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glycerol release from adipocytes treated with natural polymers, indicating a potential for
lipolysis [181]. Because of their limited efficacy in delivery, natural polymers administered
orally pose a notable drawback in the reduction of subcutaneous adipose tissue [182].

5.1.2. Hydrogels

Hydrogels consist of water-soluble polymers that have been crosslinked to form a three-
dimensional structure. Hydrogels possess the potential to function as drug carriers, thereby
enabling spatiotemporal regulation of therapeutic release, and facilitating desirable drug
delivery outcomes. The physicochemical properties of hydrogels are adjustable, and they
can interact with biomolecules to regulate drug release and enhance therapeutic efficacy.
Additionally, hydrogels can protect drugs from degradation and control degradability,
thereby providing a versatile platform for drug delivery. Different-sized hydrogel particles
can now be produced using a variety of manufacturing methods. The manufacturing
parameters, such as flow rate, or the gelation conditions, such as the concentrations of the
polymer and surfactant, can be used to adjust the dimensions of hydrogel [183].

Hydrogel Synthesis Methods

Polymerization and crosslinking are implied by the standard synthesis processes.
These procedures can be carried out simultaneously in a single step or successively in
a few phases [184]. The gelation process includes the polymerization step. The initial
material’s structure and conformation have an impact on how soluble branching polymer
networks develop [185]. Polymer monomers, prepolymers, or hydrophilic polymers are
referred to as the beginning material [186]. In the creation of networks, the monomers and
polyfunctional comonomers serve as crosslinkers. Due to their biocompatibility in aqueous
environments [187], and primarily due to their capacity to load drugs [188], hydrophilic
polymers are frequently employed to create hydrogels for the delivery of drugs. The
structure of a hydrogel is determined by the hydration of the hydrophilic groups and
domains present in the relevant polymers.

Since most bodily tissues are made up primarily of water, a hydrogel’s ability to swell
is important for further usage in medical applications [189]. Different polymers’ swelling
characteristics are beneficial for functionalizing with medicinal medicines. On the other
hand, these systems’ efficacy might depend on their ability to administer these drugs
without causing unwanted side effects.

In hydrogel swelling and degradation, the crosslinker agent is crucial [190]. It affects
the final hydrogel product’s physical attributes [191]. By using crosslinking techniques,
polymer monomers interact covalently or noncovalently to provide elastic properties [192].
This has led to the identification of two distinct categories of hydrogels; chemical gels
are composed of networks formed by covalent bonds, whereas physical gels are created
through noncovalent interactions [193]. On the other hand, there are elements that affect
how hydrogels are assembled [194]. Permanent gels are produced in response to chemical
stimuli, including pH [195], ionic strength [196], and solvent composition [197]. Tempera-
ture [198], the electric field [199], the magnetic field [200], light [201], and pressure [202] are
physical stimuli that control the reversible phase transition, or change from an unswollen
to a swollen state. Enzymes [203], antigens [204], and nucleic acids [205] are examples of
biological stimuli that alter the hydrogels’ physical characteristics, such as solubility [206].
These have an impact on the hydrogels’ solubility and other physical characteristics.

Epigallocatechin gallate (EGCG), the predominant catechin present in green tea, ex-
hibits a half-life duration between 1.9 and 4.6 h, and its effectiveness in inhibiting fat
absorption has shown promising potential for treating obesity [207,208]. However, due to
its low bioavailability, it is not suitable for clinical use. Zhang et al. [77] utilized poly(lactic-
co-glycolic acid) (PLGA) to produce in situ hydrogel implants that contained EGCG. Fur-
thermore, these implants were administered to mice that were induced to become obese
through a high-fat diet (HFD) [209]. Over 30 days, the hydrogel-EGCG implant group
reduced body weight gain by 35.6% compared to the control group. In addition, the
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administration of hydrogel-EGCG implants to mice resulted in decreased levels of total
cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride, while increasing
the levels of high-density lipoprotein (HDL) cholesterol. These observations suggest that
the use of in situ hydrogel implants could be a viable approach for the long-term man-
agement of hyperlipidaemia. The different utilized techniques for the characterization of
hydrogels are listed in Table 4.

Hybrid hydrogels can be synthesized for the purpose of achieving controlled drug
release. Liao et al. [210] loaded the protein hormone leptin into hydrogels composed
of methylcellulose and gold nanoparticles. The proportion of gold NPs controlled the
temperature-dependent degradation of hydrogels. As a result of adjustable light exposure,
hydrogels discharged leptin, which collected in adipose tissue, consequently impeding
adipocyte fat storage. In consideration of the positive results observed in vitro, further in-
vestigation is necessary to determine the feasibility of this hydrogel system’s responsiveness
to stimuli in vivo.

An et al. [211] developed a disposable portable iontophoresis system. For drug deliv-
ery, the collaborative performance of a polypyrrole–polyvinyl alcohol-based conductive
hydrogel system was investigated. The inclusion of electrically mobile drug nanocarri-
ers (DNSs) within the polypyrrole–polyvinyl (PYP) hydrogel accelerates their mobility,
resulting in improved drug delivery efficiency through iontophoresis. Additionally, the
therapeutic potential of this system was evaluated in diet-induced type 2 diabetic and obese
mice through transdermal delivery of ROSI via an electrically removable DNS. The system
was applied using cathodic iontophoresis to the right inguinal region of obese mice. After
four weeks of treatment, a significant reduction in blood glucose levels and a decrease in
body weight by approximately 12% was observed. It was discovered that in the treatment
group, there was a significant reduction in the size of AT. Histological examination revealed
that there was significant browning at the site of administration. Finally, they performed a
skin damage test and discovered that the system elicited neither skin irritation nor skin
tissue inflammation.

Table 4. Techniques utilized for the assessment of hydrogel properties.

Characterization Technique Abbreviation Liposome Characteristics References

Laser scanning confocal
microscopy LSCM Pore dimensions and shape [212]

Scanning electron microscopy SEM
Morphological characterization, pore

formation and pore size, and crosslinking
status

[213]

Infrared spectroscopic
analysis FTIR Chemical composition [214]

XRD Phase behaviour [214]

Differential scanning
calorimetry DSC Thermal characteristics of hydrogels [215]

Thermogravimetric analysis TGA Thermal stability [215]

Atomic force microscopy AFM Topology and roughness [216]

Swelling behaviour

To determine the swell-ability of these
polymeric networks, the hydrogels are

immersed in aqueous media or medium with
a particular pH. These polymers exhibit
swelling-related increases in dimensions

[217]

5.1.3. Microneedles (MNs)

Microneedles (MNs), as a DDS, offer an alternative method of administration through
surface skin, which was attempted in a clinic [218]. An MNs patch is composed of an
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array of tiny needles that range in height from 500 to 1500 µm. The MNs can penetrate the
epidermal barrier to transport therapeutic agents in a minimally invasive way. The needles
are constructed of biodegradable or water-soluble polymers that encase a drug, which is
released at the insertion site as the needles dissolve or degrade. Transdermally delivered
drugs’ local diffusion and accumulation allow for targeted delivery into subcutaneous AT
while minimizing systemic side effects [219]. MN structures are frequently made of metal,
silicon, or non-dissolving polymer and are utilized for poke-and-patch as well as coat-
and-poke devices [218]. MNs are frequently manufactured via reactive ion etching [220].
Photolithographic technologies are commonly used in this process to set the dimensions
of the base and the distance between MNs, as well as plasma chemicals, and they can be
altered to adjust the shape of the MN as it converges into a sharp tip. This technology
provides good control over MN shapes, although it frequently necessitates significant
process adjustment. The technique of reactive ion etching is currently employed to fabricate
MN arrays with ultra-short and sharp tips for delivering vaccines to the skin’s epidermal
layer [221]. The common types of MNs are represented in Figure 5.
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Also, wet etching of silicon was employed with photolithographic processes and
silicon crystal planes defining the MN forms [222]. MNs projecting out of the substrate
plane were commonly produced by silicon etching. Wet etching can also be used to create
metal MNs, where the MNs were created in the plane of a metal sheet. This process results
in the creation of linear or two-dimensional arrays through plane etching, followed by the
bending of MNs at a 90-degree angle out of the plane [221]. MNs coated with medications,
which have undergone clinical trials, are created using wet etching of metal sheets [223].

MNs have also been created using laser-cutting [224]. They are created from metal
sheets in the same manner as wet etching, but the cutting is done with an Nd:YAG laser,
which “draws” the shapes of the MNs without the need for a mask. Electropolishing is
frequently required to remove rough edges from the laser-cut MNs. By “drilling” tapered
holes into polymer sheets, laser ablation has also been utilized to create inverse moulds of
MN arrays [225].

Polymer MNs are often manufactured by casting polymeric liquid solution onto an
inverted mould of the MNs, which is frequently constructed of polydimethyl siloxane, to
create dissolving MNs, hydrogel MNs, and, in certain situations, coated MNs [226]. The
MNs are taken out of the mould when they are dried. Clinical trials have been conducted
on MNs created in this manner for influenza vaccine [227]. Polymer MNs have also been
created using two-photon polymerization [228].

In recent years, additive manufacturing technology utilizing a 3D printer has become
increasingly prominent for the production of MN arrays [229]. This technology operates
by depositing material layer by layer to build the intended structure. In recent times, the
field of biomedical devices has witnessed remarkable progress in 3D printing technology,
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specifically for the generation of engineered tissue implants. Johnson et al. [230] designed
the first MN master utilizing a commercial 3D printer in 2019.

Than et al. [77] created hyaluronic acid (HA)-based fast-dissolving MNs. In two
minutes, the drug can enter the skin. They devised an animal experiment that delivered
CL316243 and T3 to subcutaneous WAT in a short time. The MNs patch was applied
to the groins of diet-induced obese (DIO) mice. Following a five-day treatment, MNs
released CL316243, which was found to significantly induce the browning of white adipose
tissue (WAT) cells and suppress weight gain. T3 reduced weight gain without causing
systemic hyperthyroidism. The dose of the two drugs was lower when compared to the
intraperitoneal injection group and there were almost no side effects noticed. There was no
noticeable skin damage after administration, proving that the MNs patches were safe to
utilize in mice. The food consumption of mice in the treatment group was nearly identical
to that of mice in the control group. The treatment group exhibited a significant reduction
in the weight of epididymal white adipose tissue (epiWAT) and inguinal white adipose
tissue (igWAT) on the patch side. Additionally, there was a decrease in the total weight of
igWAT on the non-patch side, albeit to a lesser extent [231]. These results suggest that the
percutaneous administration of a browning agent can effectively treat regional adiposity
and may also affect other adipose tissues via cutaneous circulation [77].

Research studies have demonstrated that caffeine, which is found naturally in coffee
and tea, possesses properties that can resist obesity. Caffeine, which has been shown
to reduce body weight by stimulating lipolysis, but has a low bioavailability that was
attributed to its polymorphic transition from the anhydrous to hydrous form, was delivered
using HA-based MNs [85]. The utilization of caffeine-loaded dissolvable HA MNs hindered
the growth of crystals and caused a noteworthy increase in lipolysis, causing decreased
levels of triglycerides, total cholesterol, and LDL cholesterol, resulting in a 12.8% weight
loss in HFD-induced obese mice.

An et al. [62] recently reported dissolving MNs (DMNs)-mediated delivery of natural
polymers for the treatment of obesity. Their findings revealed that the use of gelatine MNs,
without incorporating any therapeutic agents, resulted in a 60% reduction of subcutaneous
adipose tissue in rats with obesity induced by a high-fat diet through inducing lipolysis
and inhibiting lipogenesis. This effect could be mediated by glycine, which accounts for
30% of the amino acids in gelatine and has previously been shown to lower adipose tissue
and total body weight [232].

MNs also have the potential to serve as an efficient carrier for the delivery of nanopar-
ticles (NPs) into the skin’s intradermal layer, with microconduits in the epidermis acting
as conduits facilitating the entry of NPs into therapeutic sites. Zhang et al. [78] created a
transcutaneous patch with polymeric MNs to deliver anti-obesity therapeutics locally and
induce AT transformation. To achieve a prolonged release of browning agents CL 316243 or
rosiglitazone, researchers utilized pH-responsive acetal-modified dextran nanoparticles as a
carrier. These drug-loaded nanoparticles were subsequently incorporated into a crosslinked
hyaluronic acid-based MN array, facilitating skin penetration and targeted delivery to the
inguinal adipose tissue while restricting systemic exposure. pH-sensitive NPs gradually
degraded under physiological glucose conditions, releasing the agent into the AT and
promoting browning. Studies conducted on mice with high-fat diet (HFD)-induced obesity
demonstrated that the formation of MNs in vivo enhanced systemic energy expenditure
and increased fatty acid oxidation. Moreover, it also improved insulin sensitivity, and
resulted in a 15% reduction in weight gain.

Zhang et al. [151] developed a percutaneous DMNs patch that delivers caffeine
through the skin and observed its anti-obesity effect in DIO mice. Oral caffeine has limited
availability, and its blood concentration decreases rapidly upon administration. However,
delivering caffeine through the skin is challenging due to crystal growth caused by the
multiform transition from anhydrous to aqueous conditions. To overcome this, the authors
created a caffeine-delivering DMN based on HA that keeps caffeine anhydrous and inhibits
crystal growth. DIO mice were treated with DMN three times a week for six weeks, re-
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sulting in a significant decrease in body weight by approximately 13%. The food intake of
obese mice in each group did not change significantly. Furthermore, serum triglyceride
and total cholesterol levels, as well as other biochemical indicators of obesity, decreased
significantly in DIO mice, confirming the anti-obesity effect of the system [151].

The frequent and long-term administration of anti-obesity drugs is required for man-
aging obesity. Consequently, the development of sustained-release anti-obesity medications
holds great promise. Yang et al. [233] formulated slowly dissolving MNs patches using
PLGA (poly(lactic-co-glycolic acid)) and Cy5 fluorescent molecules. The drug delivery sys-
tem demonstrated a sustained-release effect, as evidenced by the retention of a fluorescence
signal at the injection site for up to five days. The efficacy of the MNs patches was tested
by treating diet-induced obese mice with sustained-release patches containing CL316243,
resulting in a 15% reduction in weight gain compared to non-drug patches. However,
intraperitoneal injections of the same dose of CL316243 did not result in significant weight
reduction. Transdermal delivery of CL316243 using MNs increased body temperature and
UCP1 (uncoupling protein 1) expression in adipose tissue, which confirmed the promotion
of browning. There were no significant differences in food intake or skin abnormalities
between the groups. Additionally, MNs treatment led to a decrease in metabolic syndrome
indicators, such as total cholesterol, free fatty acids, and insulin, as revealed by serum
biochemical indexes in mice [233].

Zhang et al. [78] developed a patch consisting of nanoparticles (NPs) and MNs that
can deliver two browning agents, ROSI or CL 316243, to the groins of mice. They first
tested the patch on lean mice and found that the groups treated with ROSI-NPs-MNs or
CL316243-NPs-MNs had increased numbers of beige adipocytes, upregulated UCP1 gene
expression, and downregulated IL-6 gene expression in their inguinal adipose tissue (AT)
compared to the HA-MNs patch group. They also observed no significant differences in
food intake or oxygen consumption between the groups. Next, they applied the patches to
obese DIO mice and found that the treatment group had a 15% reduction in weight gain
and a 30% reduction in epididymal white adipose tissue (epiWAT).

Yixuan Xie et al. [234] developed a biodegradable MNs patch made of PLGA and
PLA and investigated the effect of CL316243 MNs patches on DIO mice. The treatment
group had a weight loss effect and an increase in brown adipose tissue (BAT) weight, with
a decrease in inguinal white adipose tissue (igWAT) weight, and the expression of UCP1 in
the treatment group was also significantly increased. Notably, the dose in the MNs patch
was one-tenth that of the injection dose, but the therapeutic effect was just as strong.

The transdermal method of insulin delivery for managing diabetes on a daily basis is
less invasive and more patient-friendly compared to the conventional hypodermic injection.
In recent times, MN techniques have surfaced as an alternate approach to administering
drugs through the skin. These tiny needles can easily penetrate the outermost layer of the
skin, the stratum corneum, without causing any pain and can access the epidermal and
dermal layers to release drugs. Novel MNs have been created that can react to changes in
glucose levels in the body to release insulin as and when required.

Martanto et al. [235] showed that insulin can lower blood sugar levels in diabetic rats
by using MNs. They created an array of 105 tiny needles by cutting stainless steel sheets
with a laser, and then inserted them into the skin of the rats. Afterward, they applied an
insulin solution to the skin and left it in place for 4 h. These MNs facilitated the delivery
of insulin through the skin, resulting in a decrease in blood glucose levels of up to 80%
in vivo.

Liu et al. [236] created HA-based MNs using micromoulding techniques and studied
their effectiveness in delivering insulin through the skin. The insulin that was loaded onto
the MNs remained over 90% bioactive, even after being stored for a month at various
temperatures. Additionally, the HA MNs proved to be more resistant to humidity-induced
deformation than sugar glass MNs. In animal studies on diabetic rats, the HA MNs
loaded with insulin demonstrated a hypoglycaemic effect that varied depending on the
dose administered. The temporary microchannel created by the insertion of the MNs
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disappeared within 24 h. In addition, the application of MNs and iontophoresis together
was investigated to expand the variety of drugs that can be delivered through the skin [237].

Chen et al. [238] demonstrated that insulin absorption from nanovesicles was sig-
nificantly higher when driven by iontophoresis through microchannels induced by MNs
compared to passive diffusion. Specifically, they found a 700-fold increase in absorbance
rate. The nanovesicles with a positive charge demonstrated remarkable permeability when
combined with MNs and iontophoresis. As a result, they were able to lower the blood
glucose levels in diabetic rats by 33.3% and 28.3% from the initial levels after 4 and 6 h,
respectively.

A study using a tip-dissolvable MN array containing insulin to treat STZ-induced
type 1 diabetic SD rats showed that the tip-dissolvable MA was found to be an effective
method of delivering insulin in vivo, as it was able to maintain blood glucose levels at a
normal range for an average of 3.4 ± 0.5 h, compared to only 1.6 ± 0.4 h for subcutaneous
injection. Thus, the tip-dissolvable MA could be a viable alternative for transdermal drug
delivery [239].

Furthermore, the effectiveness of MNs for drug delivery has also been studied in
humans. In a study by Gupta et al., the transdermal delivery of insulin using hollow metal
MNs was tested on adults with type 1 diabetes [240].

Additional trials are currently being conducted to assess how safe and effective the
use of MNs is for delivering insulin to humans. An insulin pump was attached to MNs,
and placed on the skin of the abdomen in order to regulate the rate at which insulin is
delivered. The findings indicated that when the MNs were inserted to a depth of 1 mm
into the skin, insulin was absorbed quickly, and blood glucose levels decreased [241].

During MN design, mechanical testing such as axial force, transverse force, base plate
break, and insertion force should be applied to characterize the MN’s mechanical properties
to ensure that it can withstand epidural insertion without failure [230].

Several techniques utilized to assess MNs, such as axial force and transverse and
insertion forces and their descriptions and indications are listed in Table 5.

Table 5. Techniques utilized for the assessment of MNs’ properties.

Characterization
Technique Description Characteristics of MNs Reference

Axial force
apply force to the

needle’s tip in a vertical
direction

determine the failure
force of the needle tip [242]

Transverse force
apply force into the

needle base in parallel
direction

determine the failure
force of the needle base [243]

Insertion test apply the needles into
rat, pig, or human skin

determine the actual force
on skin and check the

ability to release the drug
[85]

5.1.4. Micro- and Nanoparticles

In contrast to commonly used MNs for drug delivery, particulate drug delivery systems
offer several advantages. Particles such as hydrogel implants and MNs enable direct
accumulation at the treatment site, resulting in high local drug concentrations and minimal
systemic toxicity. Additionally, particles can serve as reservoirs for slow drug release,
allowing for a more systematic effect. Moreover, particles can be administered systemically
and be targeted to specific locations through active or passive targeting approaches, making
their use a versatile drug delivery method [244]. The release of active molecules from micro-
and nanoparticles may follow various mechanisms depending on their design, as can be
observed in Figure 6.
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Figure 6. Types of MNs. (A) Solid MNs are employed for skin preparation and use a poke-with-patch
technique. (B) Coated MNs employ a coat-and-poke strategy, with a medication solution coating
applied to the needle’s surface. (C) Dissolving MNs: biodegradable polymers are used to make
dissolving MNs. (D) Hollow MNs: the medication solution is loaded into hollow MNs, which deposit
the drug in the dermis.

A distinction is frequently made between microparticles and NPs, which are particles
with dimensions that are within the ranges of micrometres and nanometres. The dissimilar-
ity in particle size has a significant impact on numerous factors, ranging from in vitro traits
to in vivo applications. Capsaicinoids have been shown to increase energy expenditure
by 50 kcal/day, resulting in clinically significant weight loss in 1–2 years [245]. Capsaicin
was encapsulated into polycaprolactone (PCL) microparticles by Almeida et al. [246]. PCL
microparticles were utilized to achieve a controlled and gradual release of capsaicin, with
no change in its biexponential release kinetics. The optimized particulate formulation
effectively improved capsaicin’s gastric tolerability by preventing inflammation in the
stomach’s submucosal layer and decreased mesenteric and retroperitoneal fat deposits in
obese rats.

Researchers have created microspheres using chitosan, which are loaded with cap-
saicin, and evaluated their impact against obesity. The study was conducted by administer-
ing the microspheres orally to rats with diet-induced obesity [247]. Capsaicin-encapsulated
microspheres outperformed native capsaicin and the commercial agent Orlistat in terms of
controlling body weight, body fat, and serum lipids.

One promising method for achieving site-specificity is a local injection into the target
tissue. Microparticles have also been used for obesity treatment via local injections due
to their favourable properties for avoiding rapid drug diffusion and extending drug local
retention. Lucas et al. [248] created microparticles of human serum albumin–alginate-
encapsulating melanocyte-stimulating hormone (MSH), an anorexigenic neuropeptide with
anti-obesity properties.

It was discovered that the controlled release of melanocyte-stimulating hormone
(MSH) in the hypothalamus can be achieved by administering microparticles through
hypothalamic injections [249]. This technique enables the specific targeting of the par-
aventricular nucleus while preventing the degradation of the peptide. In comparison to
the control and native MSH groups, rats treated with MSH-loaded particles showed a
consistent reduction in body weight gain over an extended period.

PLGA microparticles have been utilized in AT to locally suppress the Notch signalling
pathway [155]. Notch signalling has been shown in the past to promote adipocyte browning
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and improve energy metabolism [250,251]. Although dibenzoazepine (DBZ) is a well-
known inhibitor of Notch signalling, systemic Notch inhibition may cause off-target toxicity
in the gastrointestinal tract [252]. The study examined the impact of DBZ-loaded PLGA
microparticles on the induction of browning in white adipose tissue (WAT) in lean mice.
The results demonstrated that the DBZ released from the microparticles maintained its
bioactivity after being injected locally into the inguinal WAT, and efficiently stimulated the
browning of white adipocytes by inhibiting Notch signalling. Importantly, the localized
release of DBZ in the inguinal WAT reduced the potential adverse effects of systemic
administration. Microparticles offer potential advantages for controlled drug delivery by
allowing for a high concentration of the drug to be administered locally over an extended
period [252].

Microparticles are unlikely to cross most biological membranes because of their larger
size. They can also cause acute and chronic inflammatory responses due to the slow
degradation of particulate materials. Nanoparticles (NPs) address some of the limitations
of microparticles and offer additional benefits, such as a high surface-to-volume ratio,
customizable surface chemistry, and intracellular drug release. These advantages make
them a hopeful delivery system for treating diseases, such as obesity [253].

There are two types of nanotechnology methods for the preparation of the particles:
attrition and precipitation [254,255]. In addition to their beneficial small-size stability,
emulsions are simply and cheaply manufactured. They can also be specially tailored
to deliver larger concentrations of medicinal substances to targeted regions. Emulsions
are, therefore, very good options for therapeutic treatments against specific diseases such
as obesity. Nano-emulsions that are colloidal particles dispersed in oil-in-water (O/W)
or water-in-oil (W/O) dispersions, with emulsifying agents acting as surfactants, which
provide thermodynamic stability [256], utilize lipids that come from one of the components
of cell membranes. They have a tendency to merge with cells without discrimination
during circulation throughout the body [257]. This non-specificity can be avoided by
adding poly(ethylene glycol) (PEG) to their surface, which causes a “stealth” feature with
limited or no uptake by the reticuloendothelial system [258].

Gold NPs (AuNPs) are effective anti-obesity drug carriers due to their ability to
absorb visible and near-infrared (NIR) light, small size, large surface area, and ability to be
functionalized with various molecules, which make them ideal for drug delivery systems.
In the context of obesity treatment, AuNPs can be used to deliver anti-obesity drugs directly
to the target tissues [259]. One approach is to functionalize the surface of AuNPs with
specific ligands that can bind to receptors on adipocytes, the cells responsible for fat storage.
By targeting these receptors, AuNPs can deliver anti-obesity drugs directly to adipose
tissue, allowing for a more targeted and efficient treatment. This approach minimizes
off-target effects and enhances drug efficacy [260].

Additionally, AuNPs have been used in combination with photothermal therapy for
obesity treatment. Photothermal therapy involves using near-infrared light to heat up gold
nanoparticles, which then generate heat and cause localized damage to adipose tissue. This
localized damage can lead to the shrinkage of fat cells and a reduction in body fat [261].

Lee et al. [86] created hyaluronate–hollow gold nanosphere–adipocyte targeting pep-
tide (HA-HAuNS-ATP) conjugates for photothermal lipid decomposition. HA can improve
HAuNS stability and biocompatibility. The photothermal properties of HAuNS are superior.
ATP with specific sequences can improve the system’s targeting of AT. Cytotoxicity tests
showed that the system will not cause significant cell damage. Photoacoustic imaging
(PA imaging) results showed that the conjugation of HA-HAuNS-ATP was found to be
highly effective in penetrating the abdominal skin of mice through the transdermal route.
The researchers utilized conjugates to treat mice that were obese and fed with a high-fat
diet. They then observed the decomposition of fat through photothermal means [262].
The findings demonstrated that when subjected to NIR radiation, the HA-HAuNS-ATP
conjugates were more efficient in breaking down the adipose tissue of obese mice, leading
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to a reduction in fat content of approximately 20%. Furthermore, the conjugates did not
cause any damage to the skin [86].

Despite the potential effectiveness of using AuNPs in treating obesity, it is vital to
recognize that further investigation is required to gain a complete understanding of their
safety and efficacy. Examining the long-term impacts and possible side effects of AuNPs in
humans mandates animal studies and clinical trials. Nevertheless, AuNPs offer a thrilling
prospect in the creation of new and precise therapies for obesity treatment.

5.1.5. Liposomes

Liposomes, which are sphere-shaped vesicles made up of one or more concentric lipid
bilayers, are another drug delivery vehicle [263]. These carriers provide a non-selective
combination or merging with cells while circulating throughout the body and can be
employed to enable contact-based transport through the transfer of lipids between the cell
membrane and the lipid layer of liposomes [264]. Typically, liposome production involves
two primary phases: drying out lipids from an organic solvent and dispersing them in a
water-based solution.

In the thin-layer hydration technique, the mixture of lipids that give the liposomes a
surface charge is typically dissolved in chloroform [265], or it is mixed with a polar solvent,
most frequently methanol [266], in order to create the liposomes. A thin coating of lipids is
then created once the solvents have evaporated. As an alternative, the evaporation process
might take place in an environment of inert gases such as nitrogen or argon [267]. After
that, the film undergoes exposure to water, a buffer (such as a phosphate buffer adjusted to
the appropriate pH), or an aqueous solution that holds the hydrophilic active ingredient,
which will be enclosed inside the liposomes. This process results in the production of a
solution containing MLV liposomes with a broad range of sizes.

Different methods, such as sonication [268] and extrusion [269], are employed to
standardize the size and decrease the diameters of the liposomes. Before the thin film is
created, the remaining lipids are combined with the lipophilic components inserted into
the lipid bilayer. The technique makes it possible for both hydrophilic and hydrophobic
compounds to be trapped at the same time. The lipid-soluble part is dissolved in the lipids,
and when the liquid evaporates, it creates a thin layer of lipids. To add moisture to the
layer, the hydrophilic active ingredient is dissolved in a water-based solution [270].

The thin-film hydration technique has been updated to become reverse-phase evap-
oration (RPE). In this instance, an aqueous phase is combined with lipids that have been
dissolved in an appropriate solvent. Afterward, the unstable organic solvent is evapo-
rated at a temperature higher than its phase transition point. This process is repeated by
adding more water phase and evaporating it again until all the organic solvents have been
eliminated [271]. The subsequent treatment of the unprocessed liposomes acquired by the
reverse-phase evaporation approach is the same as that applied with the TFH method.
The resultant liposome dispersions are next homogenized to dilute them and improve the
uniformity of the heterogeneous vesicles.

The injection of ethanol is another widely used technique to produce tiny liposomes.
In the case of this procedure, pure water, a buffer solution with a specified pH, or a solution
of an active substance that is hydrophilic is prepared [272]. The ethanol solution of lipids
contains a lipophilic medication. For better consistency of the results, the injection of the
ethanol solution can be done either manually using a syringe or automatically with a pump.

During the injection process, the hydrophilic phase is heated to a temperature higher
than its phase transition temperature beforehand. A vacuum rotary evaporator is used to
evaporate the ethanol after the carriers have been acquired [273]. The injection approach
has a variety of benefits, including simplicity, equipment independence, and the avoidance
of poisonous and dangerous solvents like methanol or chloroform. Furthermore, with
proper control of the process variables (such as the lipid phase composition, auxiliary
surfactants, or the addition of cholesterol), it is possible to produce liposomes with such
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a restricted size range without the use of additional homogenization methods, such as
sonication or extrusion [274].

This method’s drawbacks include the requirement to remove the ethanol from the
mixture and the limited encapsulation efficiency when the injection is made into a large
volume of water in the case of excessive lipid dilution [275]. An approach called pre-
concentration is utilized to achieve higher loading rates. In this instance, a tiny portion of
the aqueous phase is injected with ethanol before the remainder is added after the alcohol
has evaporated [274].

In the procedure for the detergent removal method, a suitable organic solvent is
used to dissolve lipids along with a high critical micelle concentration (CMC) surfactant
in a round bottom flask. After mild solvent evaporation, a thin coating is produced at
the flask’s bottom [276]. The lipid film is subsequently hydrated in an aqueous solution
that contains drug molecules to produce a mixed micelles solution [277]. The surfactant
can be eliminated through one of the following techniques: dilution, size-exclusion chro-
matography, adsorption onto hydrophobic beads, dialysis, or any combination of these
techniques [278–281]. After solution concentration, an LUVs liposomes vesicle will be
created [282]. The separation of the majority of hydrophilic medications from the liposomes
during the detergent removal stage is a major flaw in this approach [283].

Liposomal drug delivery through systemic administration can be problematic due
to non-specific uptake by cells and unintentional entrapment in non-targeted organs.
However, the surface of liposomes can be modified with hydrophilic polymers like PEG to
minimize uptake by the reticuloendothelial system, reduce renal clearance, and prolong
circulation time [264]. As a result, the medication can be more effectively maintained within
the body and produce its intended healing effects. Therapeutic delivery system examples
composed of liposomes are shown in Figure 7.
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Several functionalized liposomes have been created with ligands to improve the effec-
tiveness of drug delivery to adipose tissue, and they are considered to be safer and more
specific. Hossen et al. [284,285] altered the surface of liposomes using PEG and a circular
peptide (KGGRAKD), which attaches specifically to the endothelial cell-surface prohibition
in white adipose vessels (Figure 8). The liposomes were taken up by primary endothelial
cells through prohibition-mediated endocytosis and were able to escape endosomes and
lysosomes. When administered intravenously to lean mice, PEGylated targeted liposomes
accumulated more in white adipose vessels than non-PEGylated targeted liposomes. Addi-
tionally, there was a significant reduction in the undesired accumulation of particles in the
liver.
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Furthermore, in obese mice, liposomes that were targeted specifically accumulated
in adipose vessels and clusters of angiogenic adipocytes after systemic administration.
Interestingly, non-targeted liposomes that were PEGylated were also present in these
clusters due to an unexpected passive targeting mechanism, which may have been due
to increased tissue permeability and retention. In subsequent research, anti-obesity drugs
like proapoptotic peptide D(KLAKLAK)2 and cytochrome C, which initiates apoptosis,
were enclosed in prohibition-targeted nanoparticles [286,287]. In obese mice that were
given a high-fat diet, administering targeted nanoparticles through the body significantly
decreased the gain in body weight, levels of leptin in the blood, and deposits of fat in the
liver and muscle. Additionally, there were no signs of liver damage related to the use
of these nanoparticles, indicating that the composition of the liposomes used was both
safe and biocompatible. When evaluating the physiochemical properties of liposomes,
parameters such as average size, size distribution, surface charge, shape, morphology,
lamellarity, encapsulation efficiency, phase behaviour, and in vitro release profile are all
taken into consideration. Most of the available liposomes need to be characterized using
several techniques, listed in Table 6, to figure out their physicochemical, morphological,
and topographical features and determine their possible applications.

Table 6. Techniques utilized for the assessment of liposome properties.

Liposome Characteristics Characterization Technique References

Average particle
Dynamic light scattering (DLS) and microscope technology:

scanning and transmission electron microscopy (SEM/TEM),
cryogenic TEM (Cryo-TEM), and atomic force microscopy (AFM)

[288]

Zeta potential/surface charge Electrophoretic mobility, DLS [289]

Particle shape/morphology TEM, Cryo-TEM, and AFM [290]

Lamellarity Cryo-TEM and 31P-NMR [290]

Phase behaviour X-ray diffraction (XRD), differential scanning calorimetry (DSC),
and thermogravimetric analysis (TGA) [291]

Encapsulation efficiency/drug
release

Centrifugation, dialysis followed
by drug content determination
using chromatographic and/or

spectrophotometric methods

[292]
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5.2. Drug Loading and In Vitro Drug Release Profile from Drug Delivery

To generate a therapeutic effect, conventional drug administration frequently requires
high dosages or repeated administration. This can lead to reduced effectiveness and lower
patient adherence, as well as potentially causing significant side effects and toxicity. Oral
administration, the most common method of drug delivery, is typically limited by inad-
equate targeting and brief circulation periods lasting only around 12 h [293]. Peptide
and protein-based medications often remain active in the bloodstream for a short period,
typically ranging from a few minutes to several hours [294]. To overcome these difficulties,
recent decades of study have concentrated on controlled DDSs that can control how medi-
cations are delivered to cells and tissues throughout time and place. They can, in theory,
leverage therapeutic benefits by increasing efficacy while decreasing toxicity and required
dosage.

5.2.1. Polymer Conjugate

Polymer conjugates refer to a type of drug carrier that links a bioactive drug molecule
and a polymer carrier through a covalent bond. The drug molecule is deliberately designed
to be conjugated to the polymer carrier, and as the polymer carrier degrades over time or in
response to certain triggers, the drug is released. The conjugated drug remains biologically
active and acts as a structural element in the assemblies. Compared to conventional
therapeutics, polymer conjugates have superior performance due to their ability to be
fine-tuned for drug release and the increased stability of the native drugs.

A new approach to enhancing the effectiveness of appetite control and thermogen-
esis induction delivery involves using polymer conjugates that can penetrate biological
membranes.

Typically, a linker helps the medicinal drug integrate into the polymeric backbone [295].
The release of the medication that is linked to another molecule depends on certain con-
ditions, like alterations in pH, the presence of enzymes, or the susceptibility of specific
diseased organs or tissues. In such situations, the linker assumes a crucial role [296].

The duration of action of medications with slow renal clearance and inert metabolism
is prolonged. The conjugation results in a delayed renal excretion, increased blood flow,
and an endocytotic cell uptake [297]. The kind of linkers employed affect how much of the
medication is loaded onto the carrier, how stable the drug is, and how it releases from the
carrier.

Celastrol was combined with carboxymethyl chitosan to form the celastrol conjugate
(Cel-CMCS), which has great solubility in water (33.94 mg/mL), and its anti-obesity activity
was then studied in diet-induced obese mice.

According to the UV spectra results, it was found that Cel-CMCS had a 1.5 wt%
celastrol content. Moreover, the water solubility of Cel-CMCS was significantly higher
than the natural celastrol. In addition, the in vitro stability analysis demonstrated that
Cel-CMCS had controlled release properties for celastrol in both PBS (pH 7.4) and SIF
(simulated intestinal fluid, pH 7.5) [296].

5.2.2. Hydrogel

Hydrogels have the ability to manage the distribution of various therapeutic sub-
stances, such as small drug molecules, large molecular pharmaceuticals, and cells, both
spatially and temporally [298]. They act as a foundation for various physiochemical reac-
tions with enclosed medications, and can regulate drug delivery thanks to their customiz-
able physical characteristics, manageable degradability, and capacity to protect delicate
compounds from deterioration [183].

How the hydrogel releases the drug is often crucial in achieving the desired therapeutic
effects. The appropriate duration of drug availability (short-term or long-term) and the
type of drug release (continuous or pulsatile) depend on the specific use case. Hydrogels
consist of a polymer network that is crosslinked and has spaces between the polymer
chains known as “meshes”. These spaces allow for the transportation of liquids and small
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solutes. The typical size of the mesh in hydrogels varies from 5 to 100 nm, and there are
many techniques available for determining its size. Because it regulates steric interactions
between the medications and the polymer network, the mesh size determines how drugs
diffuse through a hydrogel. When the pores are larger than the drug, diffusion takes over
the drug release mechanism. The network does not significantly affect the diffusion of
small drug molecules, regardless of the mesh size.

Controlling the release of medicinal molecules that were initially enclosed in a hy-
drogel can be achieved by regulating the degradation of the network. As the network of
the hydrogel degrades, its mesh size increases, which enables medications to diffuse out.
This degradation process can occur through hydrolysis [299], or enzyme activity [300], and
typically takes place in the polymer backbone or at the crosslinks.

Hydrogels’ controlled swelling is a second technique for releasing entrapped medicines.
As a hydrogel swells, its mesh size increases. The extent to which a hydrogel swells is
controlled by a delicate balance between the forces that restrict network distortion and the
process of osmosis, which causes the absorption of water [301]. Swelling behaviour can be
affected by a variety of extrinsic factors, including temperature, glucose, pH, ionic strength,
and electric and light fields [183].

One disadvantage of the controlled swelling of systems is that the response time for
macroscopic hydrogels is somewhat slow due to the slow diffusion of water. Another way
to free drug molecules from their confinement is by mechanically distorting the network
structure. This can lead to two effects: the mesh size can expand through alterations in
the network’s topology, and there can be movement of fluids inside the network due to
convective flow [302].

5.2.3. MNs

The design of MN arrays, including their form, size, geometry, manufacturing mate-
rials, and procedures, is crucial in addressing critical issues in medication delivery. The
efficacy of MNA-based drug delivery is impacted by the type of active substance supplied.
There are different strategies involved, such as “poke and patch”, “poke and flow”, “coat
and poke”, and “poke and release” [218].

The “poke and patch” technique involves the use of solid MNs to puncture the skin
and create microchannels that penetrate the deepest layers of the epidermis. By breaking
down the principal barrier to permeability, the stratum corneum, this method dramatically
improves passive diffusion through the skin [303].

One example of this technique is drug-coated MNs, wherein the drug is coated on
solid MNs before being inserted into the skin. Once the coated MNs are introduced into
the skin, the drug is distributed into the systemic circulation. This method is suitable for
transporting complex and large molecules, including deoxyribonucleic acid, medications
such as desmopressin, and parathyroid hormone. After the insertion of MNs into the skin,
this technique enables the drug to diffuse from the coated surface to the deepest epidermal
layer [304]. MNs were utilized through different approaches to deliver active molecules, as
listed in Table 7.

Table 7. Different approaches used in delivery of drugs via MNs.

Delivery Approach Description Type of MNs Reference

Poke and patch Drug releases through micropores generated by MNs Solid MNs [303]

Coat and poke Detachment of coating from the MN Drug-coated MN [304]

Poke and release Drug diffuses and dissolves through the pores Dissolving MN [305]

Poke and flow Drug flows out through the bore Hollow MN [306]

To administer drugs through poke and release, MNs rely on biocompatible polymers
like polyvinyl alcohol, carboxymethyl cellulose, or sugars [177]. These polymers are
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inserted into the skin and gradually dissolve, releasing the drug into the bloodstream in a
controlled manner. The drug is released by either the needle or the coating on the needle
dissolving [305].

In this process, the hollow bore channel in the needle enables the drug to enter the
body through the skin, where it diffuses into the systemic circulation [306].

5.2.4. NPs

Treating obesity through systemic administration is an effective approach. Nanotech-
nology utilizes PEGylation to shield substances from the host’s immune system, which
prolongs their circulation by decreasing renal clearance in the body. This protection enables
the medicine to infiltrate and remain in bodily tissue, enhancing its therapeutic efficacy by
delivering it to the disease site [307].

Mascolo et al. [308] created rosiglitazone-encapsulated PLGA NPs enclosed by a steric-
repellent PVA outer layer. This technique decreases NP aggregation and diminishes protein
modification and opsonization in the blood after intravascular injection. NP treatment for
HFD-fed Ldlr -/- mice resulted in a displayed reduction in inflammatory macrophages in
the WAT and liver without the adverse effects on lipid metabolism or cardiac tissues that
are commonly seen with native rosiglitazone administration [169].

Efficient drug delivery to specific therapeutic targets is always challenging. To achieve
this, NPs can be altered with surface ligands, targeting molecules, or peptides. Because
angiogenic factors stimulate AT crosstalk and angiogenesis stimulation results in the brown-
ing of AT [309,310], vasculature-directed targeting of AT may be a potential therapeutic
intervention for obesity.

Xue et al. [311] encapsulated rosiglitazone or a prostaglandin E2 analogue in PLGA-b-
poly(ethylene glycol) (PEG) NPs and modified the NP surface with adipose vasculature-
targeted peptides iRGD (CRGDK/RGPD/EC) or P3 (CKGGRAKDC), which bind to specific
antigens. When compared to free drugs and non-targeted NPs, more-targeted NPs were
able to localize in the AT, releasing drugs following intravenous injection. In HFD-induced
obese mice, this approach increased the browning of WAT and inhibited body weight gain.

Drug delivery to the mitochondria is generally difficult due to AT mitochondrial
dysfunction, linked to obesity. However, Marrache et al. [312] created mitochondria-
targeting polymeric NPs by combining a targeted PLGA-b-PEG-TPP polymer with either
non-targeted PLGA-b-PEG-OH or PLGA-COOH. Because of their high buffering capacity,
targeted NPs achieved high endolysosomal capability and mitochondrial uptake efficacy.
Moreover, it is possible to adjust the effectiveness of the NPs by modifying their surface
charge and size. In addition, targeted NPs containing the mitochondrial uncoupler 2,4-DNP
were found to inhibit the differentiation of 3T3-L1 preadipocytes at a lower dose compared
to the free drug [169].

Researchers have recently explored the use of local drug delivery for the treatment of
obesity, as it can help maintain drug levels and reduce the required dosage. Jiang et al. [313]
encapsulated DBZ in PLGA NPs and administered them directly into the inguinal WAT
of HFD-induced obese mice. This approach stimulated the browning of white adipocytes,
improved glucose homeostasis, and reduced body weight gain by blocking the Notch
signalling pathway.

Notably, adipocytes showed a preference for endocytosing NPs following local ad-
ministration, which restricted the distribution of the therapeutic agent in the body and
minimized its adverse effects on non-adipocyte cells. As a result of enhanced intracellular
transportation, NPs loaded with DBZ effectively impeded Notch signalling using a dosage
that was fifty times lower than that of intraperitoneal injection and ten times lower than that
of microparticles. NPs delivered different medications by both injection and oral delivery
for the treatment of obesity and its complications, as can be noted from Table 8.

Nanofibers increase the rate of drug diffusion and uniform distribution on the skin’s
surface [314]. Ariamoghaddam et al. [80] created a DDS of polyvinyl alcohol–gelatine
nanofibers with diameters of 200–250 nm, which were used to deliver curcumin to treat
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rats with obesity. Curcumin is a substance derived from common edible fungi that are
traditionally believed to provide various advantages such as weight loss, anti-inflammatory
properties, anti-cancer effects, and more [315]. Browning may be responsible for curcumin’s
anti-obesity effect, according to some studies [79]. After 20 h, the curcumin release rate
increased to more than 50%. One possible explanation for the fast spread of curcumin could
be its combination with gelatine, which enhances its solubility and leads to more effec-
tive utilization. By administering curcumin in this way, whole-body magnetic resonance
imaging has suggested that the overall amount of adipose tissue in rats decreases by 4%
to 7%.

Table 8. Use of NPs in the treatment of obesity and related diseases.

Delivery Method of NPs Materials Disease Reference

Injection

PLGA

Obesity

[313]

Egg yolk phosphatidylcholine (EPC),
cholesterol, and peptide-conjugated

PEG-lipid
[287]

PLGA and PEG [311]

Egg yolk phosphatidylcholine, PEG,
and peptide [285]

MSN and PCL [316]

PLGA and PVA Obesity and inflammation [308]

LITA Obesity and liver lipid
accumulation [317]

YSK05, cholesterol and mPEG-DMG

Type 2 diabetes

[318]

Oligopeptide (ATS-9R) [319]

Zinc oxide [320]

Egg yolk phosphatidylcholine
and cholesterol [286]

Dextran Type 2 diabetes and heart
disease [180]

PLGA Heart disease [321]

CHC Diabetes [322]

Oral
GLP-1 Type 2 diabetes [323]

Chitosan, gamma-PGA Diabetes [324]

5.2.5. Liposomes

Both passive and active methods can be used to load drugs into liposomes. While the
lipid bilayer is forming, passive loading traps hydrophilic medications in the aqueous core
of the liposomes, while hydrophobic pharmaceuticals build up in the tiny hydrophobic
lipid bilayer [325]. Bilayer instability, rapid drug release, and a high drug/lipid ratio are all
problems with passive loading [326].

Therefore, by constructing a drug-in-cyclodextrins-in-liposomes delivery system, re-
searchers were successful in increasing the water solubility of these hydrophobic phar-
maceuticals. This allowed for liposomes to be loaded with an aqueous core. To ensure
excellent encapsulation efficiency of priceless chemotherapeutic drugs, active or remote
loading has been established [327]. It is possible to load preformed liposomes remotely by
creating a pH gradient or ionic differences across the bilayer membranes of the liposomes.
The drug’s aqueous solubility and the existence of an ionizable functional group in the
chemical make up the two key factors that determine the efficacy of intraliposomal remote
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loading. It was created to actively load hydrophobic medicines into liposomes in reaction
to ionic and/or pH gradients across the liposomes’ bilayer [328].

Hydrophobic medications can be made to accumulate inside the core of liposomes
using this process once the vesicles are made. The benefit of this approach is that the drug
loading can be done without regard to the circumstances surrounding liposome production.
The majority of potentially active substances are weak bases that can be loaded in reaction
to pH gradients and contain amine functional groups, which can be primary, secondary,
or tertiary [328]. Drugs that lack an ionizable functional group or are not weak bases
can be transformed into prodrugs that have low basicity or are enclosed within carriers
modified with amino groups like cyclodextrins to enable encapsulation and intraliposomal
retention [329]. A specified molecular weight is removed from the liposomal sample before
it is hermetically sealed inside the dialysis bag. The tubing membrane system is placed
in a buffered saline solution with a pH of 7.4 to replicate natural fluid methods of release.
To simulate an in vivo environment, the entire system is maintained at 37 ◦C while being
constantly stirred. An aliquot of the sample is obtained at predetermined time intervals,
and it is examined using the standard techniques for drug quantification. The number
of samples must remain consistent. Consequently, an equivalent volume of new release
medium is added once more to the system [330,331]. The release profile is generated using
data by plotting the cumulative release percentage against specific time points. This in vitro
release study is commonly relied upon in the development of liposomes for controlled
drug release, serving as an estimation of how they may perform in vivo as a drug delivery
system [332].

5.3. Clinical Study Involving DDSs

Despite the fact that clinical application is the primary goal of this field and despite the
development of a great deal of new knowledge, the number of DDSs that have reached the
clinic is still relatively limited [333] (Table 1). During the translation process, researchers
must overcome several obstacles, such as those connected to manufacture and storage,
regulatory complexity, and cost. The challenges that do not apply to dry biodegradable
polymers such as PLGA microspheres can arise due to the requirements of high water
content in the polymeric MNs. Because some delivery systems are hydrated, terminal
sterilization may be challenging. As a result, sterility must normally be confirmed for all
source materials and production procedures [183]. A list of some clinical studies using
different DDSs for the treatment of some obesity-related diseases is illustrated in Table S1
showing different clinical trials using DDs for the treatment of obesity and related diseases
(ClinicalTrials.gov) (Supplementary File).

6. Conclusions

People are resistant to long-term medicine because they think that they do not require
pharmacological treatment or because the adverse effects of pharmaceuticals are all well
established. Developing anti-obesity drugs with fewer side effects could provide broader
research and application prospects.

Drug delivery techniques are predicted to enhance obesity treatment. However,
there is a pressing need to thoroughly comprehend the benefits and drawbacks of these
formulations, as well as to get beyond the obstacles to clinical translation. In order to
achieve greater scale-up and reproducibility in the industry, it is essential to understand
the fate of the delivery system after delivery and the processes causing their toxicity. Pre-
clinical testing is primarily used to select safe, effective formulations that possess the
required biodistribution and pharmacokinetic properties, as well as to identify therapeutic
potentials and dangers. It is critical to carefully analyse the biodistribution of drug carriers
inside the body following administration and their interactions with target sites prior to
utilization since the off-target toxicity of drug carriers could differ in comparison to the
parent medicine. As a result, drug delivery methods must be researched further to decrease

ClinicalTrials.gov
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medicine dosage, minimize side effects, prevent patient fear of needles, prevent infection,
and maintain regular fat loss while continually discovering new anti-obesity medications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15112635/s1. Table S1. Different clinical trials
using DDs for the treatment of obesity and related diseases (ClinicalTrials.gov). References [334–369]
are cited in Supplementary Materials.
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Abbreviations

Abbreviations Proper Name
DDS Drug delivery system
WHO World Health Organization
BMI Body mass index
CNS Central nervous system
MNs Microneedles
NPs Nanoparticles
FDA US Food and Drug Administration
AT Adipose tissue
WAT White adipose tissue
BAT Brown adipose tissue
UCP1 Uncoupling protein 1
ROSI Rosiglitazone
GLP1 Glucagon-like peptide 1
PPAR Peroxisome proliferator-activated receptor
EGCG (-)-Epigallocatechin-3-gallate
GTE Green tea extract
VAT Visceral adipose tissue
PEG Poly (ethylene glycol)
RAFT Reversible addition–fragmentation transfer polymerization
ROP Ring-opening polymerization
ROMP Ring-opening metathesis polymerization
BBB Blood–brain barrier
PK Pharmacokinetics
PLGA Poly(lactic-co-glycolic acid)
HFD High-fat diet
LDL Low-density lipoprotein
HDL High-density lipoprotein
PYP Polypyrrole
HA Hyaluronic acid
DIO Diet-induced obese
epiWAT Epididymal white adipose tissue
igWAT Inguinal white adipose tissue
DMNs Dissolving microneedles
PCL Polycaprolactone

https://www.mdpi.com/article/10.3390/pharmaceutics15112635/s1
https://www.mdpi.com/article/10.3390/pharmaceutics15112635/s1
ClinicalTrials.gov
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MSH Melanocyte-stimulating hormone
DBZ Dibenzoazepine
AuNPs Gold nanoparticles
NIR Near-infrared
PA imaging Photoacoustic imaging
RPE Reverse-phase evaporation
TFH Thin-film hydration
DLS Dynamic light scattering
SEM Scanning electron microscopy
TEM Transmission electron microscopy
AFM Atomic force microscopy
XRD X-ray diffraction
DSC Differential scanning calorimetry
TGA Thermogravimetric analysis
SIF Simulated intestinal fluid
PBS Phosphate-buffered saline
MNA Microneedle arrays
PVA Polyvinyl alcohol
EPC Egg yolk phosphatidylcholine
LITA Liposome-encapsulated acetate
CHC Carboxymethyl-hexanoyl chitosan
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