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Abstract: Over the past few years, antibiotic resistance has reached global dimensions as a major
threat to public health. Consequently, there is a pressing need to find effective alternative therapies
and therapeutic agents to combat drug-resistant pathogens. Photodynamic therapy (PDT), largely
employed as a clinical treatment for several malignant pathologies, has also gained importance
as a promising antimicrobial approach. Antimicrobial PDT (aPDT) relies on the application of a
photosensitizer able to produce singlet oxygen (1O2) or other cytotoxic reactive oxygen species (ROS)
upon exposure to appropriate light, which leads to cell death after the induced photodamage. Among
different types of 2D nanomaterials with antimicrobial properties, phosphorene, the exfoliated form of
black phosphorus (bP), has the unique property intrinsic photoactivity exploitable for photothermal
therapy (PTT) as well as for PDT against pathogenic bacteria.
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1. Introduction

In 2023, the World Health Organization (WHO), in partnership with the Global AMR
R&D Hub, released a report for G7 Finance and Health Ministers detailing progress on in-
centivizing the development of new antibacterial treatments [1]. The WHO 5-year strategic
plan—the 13th General Programme of Work 2019–2023 (GPW 13) included the emergence
of antimicrobial resistance among the ten main threats to global health, with the deaths
of 4.95 million people in 2019. The discovery and the development of antimicrobial drugs
such as antibiotics probably represents one of the greatest successes of modern medicine.
However, the rapid adaptability of microorganisms, caused mainly by genetic mutations
and a fast reproduction rate, makes these drugs almost ineffective in fighting infections.

Furthermore, the overuse and misuse of antibiotics have accelerated the emergence
and spread of antimicrobial resistance, which will account for an estimated 10 million
deaths by the end of 2050 [2]. The “golden era” of antibiotics is running out, as increasing
reports of multidrug-resistant pathogens send us back to a time when we were unable to
easily treat common infections. New resistance mechanisms are being described constantly,
and new genes and vectors of transmission are discovered regularly [3]. The reduced
permeability of antibiotics, the increased efflux pumps, the modification and protection of
antibiotic targets, and the inactivation of antibiotics by hydrolysis or by the transfer of a
chemical group are the main molecular mechanisms associated with bacterial resistance [4].
In addition, the organization of microorganisms in biofilm (aggregates of microorganisms
in which cells are frequently embedded in a self-produced matrix of extracellular polymeric
substances) provides an increase in the tolerance of microorganisms against conventional
antimicrobial agents [5].

Regarding comprehensive and sustainable actions to tackle antimicrobial resistance
and related specific pathogens, it is crucial to support and promote the research and
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development of new antimicrobial therapies capable of efficiently inactivating pathogens
without the risk of inducing resistance. As a consequence, many research efforts have been
devoted to finding a novel non-antibiotic treatment. Antimicrobial photodynamic therapy
(aPDT) has been suggested as a promising approach to treat microbial infections due to its
spatiotemporal selectivity, non-invasiveness, minimal side effects, and broad antimicrobial
spectrum. APDT utilizes non-harmful molecules, i.e., photosensitizers (PS), which are able
to generate cytotoxic reactive oxygen species (ROS) upon irradiation at specific wavelengths
of harmless visible light [6]. Numerous molecules have been suggested and evaluated as
photoactive antimicrobials, with many of them coming from nature, for example, curcumin,
hypericin, and flavin derivatives. In addition, tetrapyrrole compounds such as porphyrins,
chlorins, bacteriochlorins, and phthalocyanines or synthetic dyes such as phenothiazinium,
squaraine, and BODIPY (boron-dipyrromethene) and transition metal complexes and
nanomaterials have been demonstrated to possess significant photo-killing effects against
several bacterial pathogens [7,8].

Low-dimensional materials (LDMs), ranging from a few to one hundred nanometers
and including carbon, graphene, graphene oxide (GO), black phosphorus (bP), boron
nitride, molybdenum disulfide (MoS2), zinc oxide (ZnO), titanium, and copper oxide,
possess unique physicochemical properties that make them excellent antimicrobial agents
either alone or in combination with other materials.

The antimicrobial mechanisms of LDMs are thought to arise from their size, shape,
chemical functionality, and surface properties that frequently provide a synergistic
effect [9,10]. Among emerging 2D nanomaterials for potential biomedical applications,
phosphorene has a peculiar feature: It possesses an intrinsic photoactivity exploitable
for photothermal and photodynamic antibacterial treatment, i.e., aPTT and aPDT, respec-
tively [11].

Phosphorene is a 2D nanomaterial obtained by exfoliation of bP; however, for the
sake of clearness, the name phosphorene, which is commonly accepted and used by the
scientific community, has no relation to the chemical nature of the material but is instead
purely based on the conceptual similarity to graphene. As clearly stated, phosphorene,
unlike graphene, is sp3-hybridized, and according to the IUPAC nomenclature, it belongs
to the phosphane group; it is also correctly named 2D-phosphane [12]. Furthermore, as
discussed later, obtaining individual flakes of a perfect monolayer bP still poses a synthetic
challenge. Therefore, researchers usually study and apply nanoparticles that have from 2
up to 8–10 layers to their fields of interest, including biomedicine. In this review, we refer
to a monolayer or a few layers of bP as “bP-NPs” (black phosphorus nanoparticles) and to
the native form of bP as “bulk black phosphorus”.

Few-layered bP nanosheets have been shown to be effective photosensitizers exhibit-
ing a broad-spectrum light absorption ranging from the UV light to the near-infrared
region [13], producing singlet oxygen (1O2) with a high quantum yield [14]. In addition to
these favorable properties, bP-NPs are biocompatible and nontoxic materials, which is the
essential criteria for in vivo applications [15,16].

2. Antimicrobial Phototherapy

In antimicrobial phototherapy (APT), the light is used to treat infections caused by
bacteria, viruses, fungi, and other microorganisms. This treatment method harnesses the
properties of light, either alone or in combination with suitable photosensitizing agents, to
induce a phototoxic or photothermal effect on the targeted microbes. APDT, also called
photodynamic inactivation (PDI), and aPTT are antimicrobial approaches that have been
shown to effectively inactivate a wide range of pathogens, including microorganisms
that are highly resistant to conventional drugs and that form biofilms. Both therapeutic
methods exploit the interaction of a photosensitizer with light to produce, in the case of
aPDT, either highly reactive oxygen species in the presence of oxygen or, in the case of aPTT,
heat and local temperature rise. The synergistic use of aPDT and aPTT can enhance the
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overall efficacy of antimicrobial phototherapy, leading to significant reductions in bacterial
pathogens, eradication of infections, and collapse of biofilms.

2.1. Basic Mechanisms

Since many exhaustive reviews have recently described the latest updates on aPDT
or PDI [6–8,17–21], herein, we will only recall some basic concepts that are useful for
understand how aPDT works. The fundamental mechanism of aPDT is based on the
simultaneous presence of three main actors: (1) a photosensitizer (PS), a molecule or a
complex that is physiologically harmless and able to absorb light in spectral regions ranging
from the visible to near-infrared wavelengths; (2) a light source emitted in the spectral
range absorbed by PS; and (3) molecular oxygen, i.e., O2 [22] (Figure 1).
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Figure 1. Scheme of Jablonski diagram illustrating the fundamental photochemical and photophysical
mechanisms of antimicrobial photodynamic therapy (aPDT).

PS in its ground singlet state has two electrons with opposite spins. Following the
absorption of a photon of light with the appropriate quantum energy (wavelength), one
electron moves to a higher-energy orbital. The PS singlet excited state is very unstable and
decays back to the ground state, losing energy either as the emission of light (fluorescence)
or production of heat (internal conversion). It may also undergo a process known as
“intersystem crossing” to form a more stable excited triplet state with parallel spins. The
triplet-state PS molecule can decay back to the ground state by emitting light (phospho-
rescence) even though this is a “forbidden process” according to quantum selection rules.
Therefore, the triplet state, having a lifetime of microseconds, is much more stable than the
singlet state, which only lasts nanoseconds. The longer lifetime of the PS triplet state allows
it to collide and react with molecular oxygen in its triplet ground state, transferring its
energy. This energy transfer leads to the formation of singlet oxygen (1O2) and ground-state
PS, giving rise to a type II photochemical process. Alternatively, a type I reaction occurs
when PS in its excited triplet state undergoes an electron transfer (acquisition or donation
of an electron) to form PS radical ions that, in turn, react with oxygen to eventually form
reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and/or hydroxyl
radicals (Figure 1).

In the case of PTT, the absorbed NIR light (700–1300 nm) is released as heat through
different mechanisms of photothermal conversion depending on the photothermal agent
used. These mechanisms are surface plasmon resonance in metals, electron–hole generation
and relaxation in semiconductors, and HOMO (highest occupied molecular orbital)-LUMO
(lowest unoccupied molecular orbital) excitation and lattice vibration of molecules [23].

Damage to bacterial cells or other microorganisms can be caused by heat and/or 1O2
and other ROS through various mechanisms, such as the oxidation of membrane lipids and
amino acids in proteins, cross-linking of proteins, and oxidative damage to nucleic acids,
resulting in pathogen inactivation.
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2.2. Antimicrobial PDT Activity

To obtain an effective inactivation of more than 5 log10 steps of CFU (colony-forming
units), which is considered a disinfecting action according to infection control guidelines,
it is necessary to fulfill certain requirements. Due to the 1O2 limited diffusion during its
lifetime, exogenous PS should be located very close to the bacterial target to exert a cyto-
toxic effect. As microbial cells have a negative charge that is more pronounced compared to
mammalian cells, cationic PS molecules have been reported to be rapidly uptaken and bind
selectively to bacterial cell walls. It is worth mentioning that aPDT has been shown to be
particularly effective when the target microorganism naturally produces and accumulates
endogenous photosensitizers, mainly porphyrins and flavins, such as in the case of Candida
albicans [24], Pseudomonas aeruginosa [25,26], Helicobacter pylori [27–29], Legionella rubrilu-
cens [30], Neisseria gonorrhoeae [31], Porphyromonas gingivalis [32,33], methicillin-resistant
Staphylococcus aureus [34], and many others.

The differences between the membrane structures of Gram-negative and Gram-positive
bacteria determine how easy and successful photoinactivation will be. In fact, Gram-
negative bacteria have an outer membrane coated with lipopolysaccharides and an inner
cytoplasmic membrane separated by a thin peptidoglycan layer, which is bound to the
outer membrane by lipoproteins. This complex structure limits the drug penetration [35]. A
further efficient defense mechanism enhancing antimicrobial resistance is the formation of
a bacterial biofilm. Biofilms are structured 3D complexes of clustered bacteria adherent to a
surface and embedded in an extracellular polymeric matrix composed by many polymer-
based substrates, such as polysaccharides, proteins, amyloids, lipids, extracellular DNA,
membrane vesicles, and humic-like substances. This structure hinders the penetration of
antimicrobials as well as the action of the host immune system [36].

In summary, it is now well established that an efficient photo-antimicrobial system
should possess the following characteristics [6]:

- Positive charge for high-affinity binding to negatively charged bacterial cell membranes;
- Low molecular weight or a structure that facilitates penetration through the

biofilm matrix;
- High 1O2 quantum yield;
- High photostability;
- No dark toxicity and/or mutagenicity towards host eukaryotic cells in the “therapeu-

tic window” where microorganisms can be killed without damaging the surround-
ing cells.

2.3. Antimicrobial PTT Activity

As previously mentioned, another light-induced therapeutic treatment against bac-
terial infections is called antimicrobial photothermal therapy (aPTT) [37]. It relies on the
heating of microbial pathogens at temperatures above 45 ◦C, at which the viability of most
bacteria is impaired, which is achieved by irradiating a suitable photothermal agent. Pho-
tothermal antimicrobial agents are nanostructures with significant absorption in the visible
and NIR regions that are able to transform the absorbed light into heat. They can be classi-
fied according to their chemical structure into plasmonic metals (such as Au, Cu, Pd, and
Bi), carbon-based materials (such as carbon dots, GO, and graphene nanosheets), polymers
(polydopamine, polyaniline, and polypyrrole), and semiconductors such as bP-NPs. The
first target of the photothermal action has been reported to be the bacterial cell membrane:
The photo-induced heat triggers the destruction of microbial membranes; the generation
of ROS, which causes lipid peroxidation; and the denaturation of proteins, leading to the
destruction of the pathogen [38].

An important side effect encountered during PTT is the heat-induced shock to the
nearby healthy tissues that can be painful for patients. To minimize the use of high
temperatures and optimize the antimicrobial effect, the combination of PTT with PDT has
the potential to be a therapeutic procedure that is synergistic and highly effective.
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Among emerging antimicrobial nanomaterials, bP nanosheets have a unique ability to
absorb light across a broad spectrum ranging from UV to near-infrared light, producing
singlet oxygen with a high quantum yield or heat with remarkable photothermal con-
version efficiency [13]. These peculiar features make bP exploitable for PTT and PDT as
well [16,39,40].

3. Structure and Properties of bP and bP-NPs

At standard temperature and pressure, bP is the most thermodynamically stable phos-
phorus allotrope. It was obtained for the first time by heating white phosphorus under high
pressure (1.2 GPa). Compared to the other two allotropes—the amorphous red phosphorus
and the notoriously unstable white phosphorus—bP has a higher density (2.69 g/cm3

vs. 2.05–2.34 g/cm3 and 1.83 g/cm3, respectively) and better thermal stability and can
withstand temperatures up to 550 ◦C in the air without catching fire spontaneously [41].

bP has historically not attracted much interest from the scientific community until 2014,
when it was shown that from its crystal structure, it is possible to obtain a new 2D material
known as phosphorene, which is formed by a single layer of phosphorus atoms [42,43].
Phosphorene has an orthorhombic crystalline structure that contains eight atoms per unit
cell. Similar to its precursor (bP), each layer is composed of P atoms held together by a
strong covalent bond. However, along the stacking direction, the layers interact through
weak van der Waals forces. A monolayer of bP is composed of P atoms with five valence
electrons with 3s23p3 configuration, each covalently bonded to the other three neighboring
P atoms by their p-orbitals [44,45]. Each P atom is sp3-hybridized and bears a lone pair.
The crystal structure of bP is shown in Figure 2.
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Regarding the single layer, P atoms are not arranged in the same plane: Some are
in the upper sublayer, and the others are in the lower sublayer, together constituting
the unique puckered honeycomb crystal structure. The distance between the upper and
lower sublayers is ~2.1 Å, and the distance between the two layers is about 5 Å [46]. bP
belongs to the orthorhombic system with reduced symmetry, with the main crystallographic
b axis normalized among the layers. In the layer plane, there are two characteristic crystal
orientations, as shown in Figure 2: armchair (AC, parallel to the pucker) and zigzag (ZZ,
perpendicular to the pucker), respectively [47–50].
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This unique in-plane structural anisotropy leads to many intrinsic anisotropic electrical,
optical, thermal, and mechanical properties that distinctly differentiate phosphorene from
isotropic planar 2D materials [51] already performing potential applications in biomedicine.

3.1. Physical, Mechanical, and Chemical Features of bP and Phosphorene (bP-NPs)

bP is a semiconductor with a direct band gap, high carrier mobility, and thermal
stability in vacuum at around 400 ◦C. It exhibits a tunable bandgap that varies with the
number of layers, ranging from 0.3 eV for bulk to 2 eV for the monolayer. This range
covers the spectrum between graphene and transition metal dichalcogenides, rendering
bP-NPs an extremely appealing option as a 2D semiconductor [52–54]. Together with
the bandgap, carrier mobility is layer-dependent, and it has been calculated to achieve
the values of 10,000–26,000 cm2/Vs for the monolayer [55]. The well-known in-plane
anisotropy generates peculiar physical and mechanical responses distinguishing between
AC and ZZ directions.

For example, the prominent directions of electron transport and heat transport are
orthogonal. This means that the electrical conductivity along the AC direction is greater
than that along the ZZ direction, while the thermal conductivity is lesser in the AC direction
than in the ZZ direction [55].

Anisotropy affects even the optical properties, showing the dichroic behavior of bP-
NPs. In optics, dichroic materials absorb light differently based on its polarization. In the
case of bP and bP-NPs, only light with a polarization component along the AC direction is
absorbed for frequencies close to the bandgap energy [56]. Similar results have been recently
experimentally obtained by measuring the photoluminescence behavior of bP-NPs [57].

bP exhibits unique mechanical properties due to its puckered structure. When
stretched along the y-direction, it displays a negative Poisson’s ratio (−0.027) for the z-
direction. This implies that when stretched along one direction, the material expands along
the transverse direction, which is contrary to what happens with most materials, where
stretching along one direction usually results in a reduction of lateral dimension [54,58].
Also, as bP is anisotropic, both theoretical and experimental studies have demonstrated
different values for the Young’s modulus (E) and elongation at break along the ZZ and AC
directions. For the monolayer, EAC is about 25 GPa, and elongation at break is 30%, while
along the ZZ direction, EZZ is around 100 GPa, and elongation at break is 27% [59].

Thanks to their electronic, thermoelectric, mechanical (Table 1), and optical properties,
bP and bP-NPs have attracted the interest of scientists not just to deeply understand their
properties but also to start developing and optimizing industrially scalable devices useful
in electronics, photonics, engineering, and nanomedicine.

Table 1. Properties of bP and bP-NPs.

Properties bP ÷ bP-NPs

Band gap (eV) 0.3 ÷ 2
Band type Direct

Charge mobility (cm2/Vs) 1000 ÷ 600
Seebeck coefficients (µV/K at 300 K) 413/300 ÷ 50

Thermal conductivity (W/mK) ZZ AC
~18 12

Elongation at break (%) 27 30
Young’s modulus (GPa) ~100 ~25

With reference to their actual and effective employment, it is necessary to point out
that due to their peculiar structure, bP and especially bP-NPs are materials that exhibit
high reactivity. This makes bP-NPs remarkably responsive to the surrounding environment
and potentially suitable to be patterned and/or functionalized for specific performant
applications, especially in the optoelectronics fields [46,48,53]. However, phosphorene
reactivity under ambient conditions results in physical and structural changes, leading to
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degradation [60–65]. This behavior can be strictly related to the chemical structure of bP;
indeed, each phosphorus atom is covalently bound to three other atoms, and each atom
also has a dangling lone pair pointing out of the layer’s plane. The presence of these lone
pairs causes bP to have a high affinity for oxygen, which can easily interact with the free
electron doublets, ultimately leading to oxidative degradation of the layer [64].

The primary obstacle to the successful use of phosphorene in optoelectronics is the
poor environmental stability despite intense recent research efforts aimed at its protection
and passivation [59,61,63]. Such instability, as will be discussed later, advantageously
becomes a beneficial feature for biomedical applications [62,64,66].

3.2. Preparation of bP and bP-NPs

Several synthetic procedures have been developed and tested for the preparation
of phosphorene using both bottom-up and top-down approaches. Bottom-up methods
directly synthesize bP-NPs from different molecular precursors through chemical reactions.
Chemical vapor deposition, i.e., direct vapor deposition of red phosphorus or bulk bP
in vacuum or argon, has not produced satisfactory results [50,67,68]. The precursors’
instability and procedural problems constitute a major limitation to the development of
massive production of bP-NPs through bottom-up methods. Top-down methods involve
separating the stacked layers of bulk bP to obtain single- or few-layered nanosheets by
breaking the Van der Waals bonding. For this method, it is essential to begin with high-
purity bulk bP, which can be synthesized using established methodologies. Bridgman first
synthesized black phosphorus by heating white phosphorus at 200 ◦C under high pressure
(1.2–1.3 GPa). In 2007, it was found that it could be prepared from red phosphorus at
low pressure and 873 K by adding small quantities of gold, tin, and tin(IV) iodide [54].
All these processes can produce good-quality bP but are expensive and low-yielding. To
date, the absence of a safe, high-throughput, and scalable route for producing bP remains
one of the main limits to phosphorene uses. However, some companies, such as Smart-
Elements GmbH (https://www.smart-elements.com/, accessed on 11 November 2023),
are able to produce substantial quantities (in the range of hundreds of grams) at affordable
prices, satisfying semi-industrial testing for some niche applications. The company’s
website claims a production based on a modified vapor deposition method developed in
its proprietary laboratories, which virtually eliminates the usual contaminants.

To produce bP-NPs, exfoliation is needed. Based on multilevel quantum chemical
calculations, the exfoliation energy of bP is around 151 meV per atom (larger than that
of graphite, 61 meV), which accounts for the relative difficulty in exfoliating bP. This is
associated with a non-negligible electronic density overlap between the layers; indeed, it
should be pointed out that there is debate regarding whether the interlayer bonding can be
classified as a Van der Waals type. However, there are three main top-down methods:

(1) Mechanical cleavage, also known as the “Scotch-tape” method, involves the sequen-
tial peeling off of layers from bulk bP using adhesive tape. After the process is
complete, the material is transferred to a substrate (Si/SiO2) and cleaned. Although
this technique can produce high-quality phosphorene, the yield is typically low, and
contamination caused by adhesive residue cannot be ignored [43];

(2) In electrochemical exfoliation, consisting of anodic oxidation and cationic intercalation,
a voltage is applied to bulk bP, serving as an electrode in an electrolyte solution,
causing a structural deformation of the layered bP and yielding 2D nanoflakes [50];

(3) Sonication-assisted liquid phase exfoliation is a reliable method for producing high
quantities of bP-NPs. This method consists of three steps: immersion in a solvent,
ultrasonication, and purification [69].

When a solid, layered material is immersed in a liquid, the interfacial tension is signifi-
cantly high so that the material–solvent interactions are not able to outweigh the interlayer
interactions, and spontaneous exfoliation does not occur. It is indeed necessary to apply
external energy to win secondary intra-layer interactions and exfoliate the material. Ultra-
sounds are used to generate microbubbles, the growth and collapse of which are attributed

https://www.smart-elements.com/
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to the cavitation-induced pressure pulses and acoustic waves consisting of alternate regions
of compression and rarefaction [70]. The choice of the solvent is crucial; it should have a
surface tension similar to the surface energy of the 2D material to maximize the exfoliation
rate and inhibit the restacking of nanosheets. In the case of bP, solvents with surface
tensions of 35–40 mJ/m2 are used, such as dimethylformamide (DMF), dimethyl sulfoxide
(DMSO), N-methyl-2-pyrrolidone (NMP), and N-cyclohexyl-2-pyrrolidone (CHP) [50,54].
Although anhydrous organic solvents may produce high-quality flakes, they have high
boiling points, making postprocessing and disposal more difficult, and they are also haz-
ardous to human health and the environment. After the exfoliation process, if successful,
solvent molecules surround the nanoparticles through solvation, which stabilizes them.
These molecules are challenging to remove, and they remain even after subsequent cen-
trifugation and redispersion steps that are essential for a final collection of the products.
Therefore, particularly in biomedical fields, this can cause safety issues. For this reason,
water-based solutions have also been studied as possible sonication mediums. Since water
has a surface tension of about 73 mJ/m2, and bulk bP is insoluble in water, stabilizing
surfactants are needed to produce stable flakes and avoid aggregation. It is also important
to use de-oxygenated water to prevent phosphorene from oxidizing. Some of the studied
surfactants are polyvinyl alcohol [71], polyvinyl pyrrolidone [72], and sodium dodecyl
sulfate. Moreover, the significant issues associated with light sensitivity [14] affect bP
storage and pose stability challenges for practical use along with additional concerns of
spontaneous oxidation and aggregation.

4. Antimicrobial Photoactivity of bP

After its discovery, bP attracted the interest of researchers mainly due to its possible
applications in optoelectronics, photonics, and advanced engineering, and only in the last
few years has it also emerged as a possible new 2D material for biomedical applications.
bP is highly biodegradable, biocompatible, and safe for use. These properties are essential
for the use of bP in medicine [46,48,73–79]. In living organisms, phosphorus is a crucial
element that constitutes approximately 1% of the total body weight. When it degrades,
it transforms into harmless phosphate, which exhibits high biocompatibility and low
cytotoxicity, preventing its in vivo accumulation. As a 2D material, it intrinsically has a
large surface area, making it suitable for the absorption of drug molecules and making it
easier to control the kinetics of release [80]. It also has a high modulus; thus, it can be used
to improve the mechanical strength of biomedical implants.

However, even if bP has been studied and proposed for many biomedical applications,
such as bioimaging, biosensing, and theranostics, maybe one of the most interesting
properties of bP-NPs is the rapid response to external signals such as light and heat, making
it suitable for applications in phototherapy, namely for cancer treatment [81,82]. Recently,
studies on its potential antimicrobial applications, especially against antibiotic-resistant
pathogens, have been gaining growing attention.

4.1. Mechanisms of bP Photoactivity

As previously mentioned, bP has a bandgap dependent on the number of layers, which
varies from 0.3 eV to 2 eV, from bulk to monolayer. The 3O2/1O2 redox potentials fall within
this range [64], and thus, bP-NPs can act as light absorbers, mediating the energy transfer
to oxygen molecules in the surrounding environment. Molecular dynamic simulations
help to predict the mechanism of singlet oxygen (1O2) generation: First, oxygen molecules
interact with P lone pairs, leading to the adsorption of O2, and then, the generation of 1O2
occurs through charge transfer [14]. The so-generated 1O2 is very unstable and reacts with
target systems in the surroundings. Illumination is needed to excite the transition from the
ground state of bP-NPs. The most convenient wavelength range for the photosensitizer
activation is between 600 and 800 nm, which is called the “optimal therapeutic window”,
since it is therapeutically safe and allows for effective tissue penetration of light while still
providing enough energy to allow the transition to the excited singlet state of oxygen [23]
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without compromising biological tissues. Furthermore, bP can act as an excellent NIR
light-responsive photothermal antibacterial agent owing to its strong NIR light-absorption
properties and to its high photothermal conversion efficiency [83]. In this case, the bP-NPs
are generally irradiated by NIR light between 800 and 1000 nm.

4.2. Bare bP-NPs

The antimicrobial activities of exfoliated bP nanosheets have been compared to those
of bulk bP and other 2D materials such as graphene and transition metal dichalcogenides
such as MoS2, showing a better performance in killing both Gram-negative Escherichia coli
and Gram-positive Staphylococcus aureus that cause serious infections. Under 808 nm laser
irradiation, a value of 99.2% in bacterial killing percentage against both E. coli and S. aureus
was reached mainly by means of photothermal inactivation with a negligible cytotoxicity
towards mammal cells even at high bP-NP concentrations [84]. A few nanograms of bP
nanosheets have been shown to be enough for a strong and broad-spectrum antimicrobial
activity toward the bacteria Escherichia coli, Pseudomonas aeruginosa, MRSA, Salmonella
typhimurium, and Bacillus cereus as well as the fungal strains Candida albicans, Candida auris,
and Cryptococcus neoformans, displaying the effectiveness of bP-NPs as an antibacterial
additive in surface coatings, too. The main mechanism of antimicrobial activity is the
production of ROS species, superoxide radicals, and 1O2, which are able to cause cell
oxidation with membrane disruption and the resulting cell lysis [85].

High-resolution microscopy and ATR-FTIR studies have revealed that the physical
interaction of the bP-NPs with the microbial membranes, together with the oxidative stress,
cause important physical and biochemical damages to the phospholipids and to the amide
I and II proteins, whereas this results in slight chemical modifications to polysaccharides
and nucleic acids of Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and
Gram-negative Pseudomonas aeruginosa and to the fungal species Candida albicans [86].
Recently, bP-NPs have been tested against in vitro cultures of S. aureus and P. aeruginosa as
well as an in vivo preclinical model of an acute murine wound infection of S. aureus. For
the first time, it was demonstrated that bP-NPs can have significant in vivo antimicrobial
effects through oxidation in ambient light conditions without the need for NIR light
irradiation (Figure 3). The treatment did not produce any secondary effects, such as tissue
inflammation, toxicity, or necrosis in the mice organs. These results open new scenarios in
clinical wound management [87].
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4.3. bP-NPs-Based Hybrid Materials

bP has also emerged as a suitable nanomaterial that allows for drug delivery and
therapeutics due to its high surface area. As it is negatively charged in water with an interlay
distance of ~5.24 Å, the encapsulation of small and positively charged molecular drugs
within the interlayer spaces is possible mainly through electrostatic interactions. To date,
three major strategies have been explored for developing bP-NPs-based hybrid materials:
electrostatic interaction, covalent bonding, and noncovalent bonding (e.g., hydrophobic
interactions) [83].

Due to the synergistic action of several photoactive and/or antimicrobial materials,
bP-based hybrid nanocomplexes show better antibacterial activity than the lone bP-NPs.

4.3.1. Metals

Silver nanoparticle (AgNP)-doped bP-NPs were developed as an economic and potent
synergistic disinfectant activated by solar radiation for a rapid disinfection/wound healing,
and they have also shown a great potential for environmental remediation applications
through photo-induced disinfection of water and degradation of pollutants. It has been
hypothesized that the AgNPs facilitate the adsorption and activation of O2, thus enhancing
the photogeneration of ROS on bP-NPs–AgNP nanohybrids and strongly increasing the
affinity toward bacteria, leading to a synergistic pathogen inactivation. On the other hand,
the complexation with bP-NPs prevents AgNPs from self-aggregation when in contact
with bacterial membranes and limits excessive consumption of Ag, which may result in
gastrointestinal disorders, spasms, and in some cases also death [88].

bP-NPs modified with titanium aminobenzenesulfonato (Ti-SA4) (an antibacterial
metal complex) have been shown to improve the resistance of bP-NPs to oxidation and
to aid in the interaction with negatively charged bacterial membranes, increasing the
therapeutic effect against the two common pathogens Gram-negative Escherichia coli and
Gram-positive Staphylococcus aureus [89].

The antibacterial and antibiofilm photoactivities of bP–gold nanocomposites (bP–
Au NPs) were investigated against Enterococcus faecalis, an opportunistic pathogen that
is the main cause of nosocomial infections such as endocarditis, urinary tract infection,
bacteremia, peritonitis, and prosthetic joint infection. Under NIR light irradiation at 808
nm, the photothermal effect and oxidative stress caused bacterial eradication by destroying
the microbial cell membrane and inhibiting biofilm formation by up to 58% [90].

Combining the antibacterial features of AuNPs and ZnO with the photoactive prop-
erties of bP-NPs, a new NIR light-responsive synergistic nanoplatform, Au–ZnO–bP, was
prepared and its antibacterial activity against S. aureus species assessed under NIR irra-
diation. It is worth mentioning that the powerful effect of this bP–hybrid nanosystem on
bacterial resistance suppression was observed even after 10 consecutive treatments [91].

4.3.2. Hydrogels

Hydrogels are hydrophilic polymers with three-dimensional networks widely used as
wound dressing. In fact, they offer a humid microenvironment that allows a faster healing
of skin wounds, they absorb tissue exudates, and they protect wounds from infection. A
novel strategy for rapid wound healing was explored by conjugating bP-NPs with chitosan
(CS) hydrogel through electrostatic interaction for application in aPDT. The bP-NPs in this
hydrogel system were shown to rapidly generate 1O2 under visible light, improving the
antibacterial efficacy against both Gram-positive and Gram-negative bacteria. Furthermore,
the designed hydrogel system was found to be able to simultaneously stimulate the forma-
tion of fibrinogen and the cellular proliferation and differentiation needed to promote skin
regeneration and wound healing [92]. Diabetic wound regeneration has been successfully
promoted by PTT and PDT through utilizing a derivative of the metabolite itaconate 4-
octyl itaconate (4OI), which has antioxidant and anti-inflammatory properties, complexed
with bP-NPs and incorporated into a photosensitive, multifunctional gelatin methacry-
lamide hydrogel (4OI-BP@Gel). bP-NPs acting as a carrier were capable of releasing 4OI in
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proximity to endothelial cells, promoting angiogenesis and facilitating skin-injury healing
(Figure 4) [93].
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A similar therapeutic approach was performed utilizing epigallocatechin gallate
(EGCG)-modified bP quantum dots (BPQDs) incorporated into hydrogel under NIR light.
In fact, green tea polyphenols such as EGCG have antioxidant, antibiosis, anticancer, radia-
tion resistance, and immunity enhancement properties that improve wound healing [94].

Recently, a thermosensitive bP hydrogel prepared using chitosan, β-glycerophosphate
disodium salt, and hydroxypropyl cellulose was loaded with silver sulfadiazine, an an-
tibacterial drug used for burn-wound treatment, promoted skin-wound healing. Thanks
to a synergistic phototherapeutic and antibacterial treatment, under NIR irradiation, sil-
ver sulfadiazine was continuously released, promoting collagen deposition, enhancing
neovascularization, and reducing inflammatory markers (Figure 5) [95].



Pharmaceutics 2023, 15, 2748 12 of 18Pharmaceutics 2023, 15, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 5. Schematic illustration of the mechanism of thermosensitive bP hydrogel prepared using 
chitosan (CS), β-glycerophosphate disodium salt (β-GP), and hydroxypropyl cellulose (HPC) 
loaded with silver sulfadiazine (AgSD) for skin-wound healing. Reprinted from [94] under a Crea-
tive Commons Attribution 4.0 International License. 

4.3.3. Antimicrobial Compounds 
A light-responsive antibacterial nanoplatform was developed by incorporating the 

pharmaceutical antimicrobial vancomycin and BPQDs into a thermal-sensitive liposome 
for synergistic photothermal and pharmacological therapy of skin infection under NIR 
light. Due to the photothermal effect of BPQDs, the heat-sensitive liposome is broken fol-
lowing NIR irradiation, and the antibiotic vancomycin is directly released into the infected 
skin abscess, killing bacterial pathogens such as methicillin-resistant Staphylococcus aureus 
(MRSA). Therefore, photo-induced heat generated by BPQDs could effectively eradicate 
bacteria (Figure 6) [96]. 

 
Figure 6. Schematic Illustration of the photon-responsive antibacterial nanoplatform for synergistic 
treatment of a subcutaneous abscess. Reprinted with permission from [96] Copyright © 2018 Amer-
ican Chemical Society. 

bP-NPs loaded with the antimicrobial physcion (Phy), a naturally occurring anthra-
quinone derivative, through hydrophobic interactions have been shown to achieve a good 
stability and low cytotoxicity under physiological conditions. After irradiation at 808 nm, 
the photo-induced heat from bP-NPs caused the release of the physcion so that, thanks to 
the synergistic photothermal and antimicrobial effects, 99.7% of S. aureus as well as 99.9% 
of P. aeruginosa were killed [97]. 

Figure 5. Schematic illustration of the mechanism of thermosensitive bP hydrogel prepared using
chitosan (CS), β-glycerophosphate disodium salt (β-GP), and hydroxypropyl cellulose (HPC) loaded
with silver sulfadiazine (AgSD) for skin-wound healing. Reprinted from [94] under a Creative
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4.3.3. Antimicrobial Compounds

A light-responsive antibacterial nanoplatform was developed by incorporating the
pharmaceutical antimicrobial vancomycin and BPQDs into a thermal-sensitive liposome
for synergistic photothermal and pharmacological therapy of skin infection under NIR
light. Due to the photothermal effect of BPQDs, the heat-sensitive liposome is broken
following NIR irradiation, and the antibiotic vancomycin is directly released into the
infected skin abscess, killing bacterial pathogens such as methicillin-resistant Staphylococcus
aureus (MRSA). Therefore, photo-induced heat generated by BPQDs could effectively
eradicate bacteria (Figure 6) [96].
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bP-NPs loaded with the antimicrobial physcion (Phy), a naturally occurring an-
thraquinone derivative, through hydrophobic interactions have been shown to achieve a
good stability and low cytotoxicity under physiological conditions. After irradiation at
808 nm, the photo-induced heat from bP-NPs caused the release of the physcion so that,
thanks to the synergistic photothermal and antimicrobial effects, 99.7% of S. aureus as well
as 99.9% of P. aeruginosa were killed [97].
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Antimicrobial peptides are an emerging class of pharmaceuticals. Among them, the
naturally cationic polyamide ε-poly-l-lysine (ε-PL), consisting of 25–30 lysine residues, has
been extensively employed as a food preservative and against Gram-positive and Gram-
negative bacteria species, yeasts, and molds. Due to its large positive charge, ε-PL can
strongly interact with and destroy the negatively charged bacterial membranes. Through
electrostatic interactions, ε-PL has been complexed with bP-NPs in order to achieve dual
photo- and antimicrobial activity against multidrug-resistant bacteria [98].

A novel approach to fighting infective diseases is to focus particular attention on
intracellular pathogens. Almost all bacteria are able to hide and survive inside blood-
derived phagocytes, causing the infection to be either latent or recurrent. Silent-infected
macrophages can be a “Trojan horse” and in certain circumstances may elicit pulmonary in-
fections and endocarditis. Consequently, drugs that have the ability to target macrophages
are particularly crucial for a complete bacterial eradication. For this purpose, mannosylated
bP nanosheets (Man-bP NPs) were used as a drug carrier and loaded with the photo-
sensitizer chlorin e6 (Ce6) to obtain the complex Ce6@Man–BPN. The potential loading
mechanism mainly lies in the hydrophobic interaction between them. It was shown to
preferably bind the mannose receptors on the surface of infected macrophages and release
bP-NPs and Ce6 inside the cells; both the nanoparticles and drug can be photoactivated for
killing bacteria by means of synergic PTT and PDT, with negligible toxicity to mammalian
cells (Figure 7) [99].
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5. Conclusions and Future Perspectives

In this review, we explored the structural and physicochemical properties as well as
the potential and versatility of the use of bP-NPs both alone and conjugated with other
drugs, photosensitizers, or metals in antimicrobial phototherapy and attempted to provide
an overview of the variety of studies carried out so far.

The advancements in biomedical research and the development of nanotechnology
can have great potential for fighting multi-drug-resistant microbial pathogens. Among 2D
nanomaterials, bP-NP has shown promising properties for various applications, including
antimicrobial phototherapy. It has a high specific surface area, which can enhance its
interactions with microbial pathogens. The puckered structure of bP-NPs along with their
peculiar anisotropy contribute to unique electronic, mechanical, and photoactivity proper-
ties that are potentially exploitable in an antimicrobial system. The thickness-dependent
band gap (0.3–2 eV) allows it to absorb a wide range of wavelengths from ultraviolet to
NIR. Due to its broad absorption band and unique electronic structure, bP-NP possesses an
intrinsic photoactivity that makes it an effective phototherapeutic agent in PTT and PDT
against pathogenic bacteria. Furthermore, bP nanomaterials have excellent biocompati-
bility and biodegradability in vivo, minimizing potential adverse effects on living tissues
and facilitating their use in antibacterial activity as well as other biomedical applications.
Phosphorene-based nanomaterials can be engineered for targeted drug delivery. This is
particularly relevant in antimicrobial phototherapy, where the precise delivery of therapeu-
tic agents to the infection site is crucial for maximizing treatment efficacy and minimizing
side effects.

Along with their many discussed advantages in antimicrobial applications, there
are still several challenges facing bP-NPs that need to be addressed, such as the need
for efficient and low-cost synthesis strategies to facilitate large-scale production, stabil-
ity optimization for ensuring efficacy in biomedical applications, and systematic studies
correlating structural characteristics with the antimicrobial properties. In fact, although
numerous current studies and insights on the structure, chemical, and physical character-
istics of bare bP-NPs are present, the research on applications of bP-NPs-based hybrids
in aPDT and aPTT often lacks clear reports on the structure/chemical composition of the
investigated hybrid systems and on the mechanisms involved in the photoactivation phe-
nomena. The modification and embedding of bP-NPs in different substrates, such as other
photosensitizers, drugs, and protective agents, to create hybrid systems can complicate the
identification and rationalization of individual components’ contributions to photoactiva-
tion processes. In addition, PDT and PTT are often used in combination with each other,
simultaneously causing ROS formation and temperature rise. Therefore, finding the correct
structure/property correlation that allows for a detailed analysis of the photophysical
phenomena that create the antimicrobial effects remains challenging.

The future perspectives for phosphorene in antimicrobial phototherapy are promis-
ing, and ongoing research suggests that phosphorene-based materials hold potential for
further advancements in the field. Continued efforts to explore scalable and cost-effective
production techniques are crucial for making phosphorene more accessible for medical ap-
plications. Investigating and developing hybrid materials that combine phosphorene with
other nanomaterials, drugs, or photosensitizers can lead to synergistic effects, providing a
comprehensive approach to combatting microbial infections. Fine-tuning certain properties
of phosphorene, such as its band gap, surface functionalization, and size, may improve the
targeted delivery and enhance therapeutic effects. A better understanding of the pharma-
cokinetics, biodistribution, and long-term biocompatibility of phosphorene-based materials
could pave the way for clinical trials and eventual translation into practical medical treat-
ments. In addition, investigating the synergistic effects of phosphorene nanomaterials by
combining photothermal and photodynamic approaches could lead to more effective and
versatile APT strategies.
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