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Abstract: Nanomedicine is a broad field that focuses on the development of nanocarriers to deliver
specific drugs to targeted sites. A synthetic polypeptide is a kind of biomaterial composed of
repeating amino acid units that are linked by peptide bonds. The multiplied amphiphilicity segment
of the polypeptide could assemble to form polypeptide vesicles (PVs) under suitable conditions.
Different from polypeptide vesicles, outer membrane vesicles (OMVs) are spherical buds of the
outer membrane filled with periplasmic content, which commonly originate from Gram-negative
bacteria. Owing to their biodegradability and excellent biocompatibility, both PVs and OMVs have
been utilized as carriers in delivering drugs. In this review, we discuss the recent drug delivery
research based on PVs and OMVs. These related topics are presented: (1) a brief introduction to
the production methods for PVs and OMVs; (2) a thorough explanation of PV- and OMV-related
applications in drug delivery including the vesicle design and biological assessment; (3) finally, we
conclude with a discussion on perspectives and future challenges related to the drug delivery systems
of PVs and OMVs.
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1. Introduction

Pharmacologically active agents (also known as therapeutics or drugs) are used in
medicine to control or stop the progression of disease [1,2]. Improved delivery methods and
a better understanding of how drug administration affects safety and efficacy have been
thoroughly discussed [3,4]. Drug delivery systems (DDSs) are technological systems that
comprehensively regulate the distribution of drugs in the organism in terms of space, time,
and dose [5–10]. The goal is to deliver the right amount of drug to the right place at the
right time, thus increasing the efficiency of drug utilization, improving efficacy, reducing
costs, and reducing toxic side effects [11,12]. To date, DDS usage has seen widespread
integration in synthetic chemistry, materials science, biology, and medical sciences and
is becoming increasingly prevalent in clinical practice. However, drug delivery targeting
is not easily controlled because the release rate, the targeted sites, and the stability of
the carrier and drug are inconsistent in different environments. Understanding the drug
delivery characteristics of specific vesicles is a significant basis for their future application.

Polypeptides are crucial, artificially prepared biomaterials [13,14]. Their outstand-
ing biocompatibility, appropriate biodegradability, and biological chain design abilities
allow polypeptides to be employed in a variety of applications, such as drug delivery,
antibacterial applications, and gene delivery [14,15]. In addition, unique secondary struc-
tures of polypeptides, such as α-helices and β-sheets, endow them with interesting self-
assembly behavior and biological properties. Generally, three approaches can be applied
to the synthesis of polypeptide materials, including solid-phase synthesis, α-amino acid
N-carboxyanhydride (NCA) polymerization, and microbial fermentation [16]. Among
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these, the ring-opening polymerization (ROP) of NCAs represents a facile route to obtain
high-molecular-weight polymers with the desired functionality. Due to the variety of ROP
chemical and synthetic strategies, a polypeptide not only can be conjugated with multiple
polypeptide segments, but it can also be blocked with non-peptidic materials. The peptides
mentioned in this review are mainly synthetic polypeptides, which are biomaterials com-
posed of repeating amino acid units linked by peptide bonds. In particular, amphiphilic
polypeptides, which are composed of hydrophobic and hydrophilic chains, can easily
self-assemble into micelles under suitable conditions. The vesicle is the most interesting
assembled morphology of micelles. Further, the designed pH-responsive residues could be
used as candidates to load hydrophilic cargos and be released upon appropriate stimulation.
A subtle tactic to reduce unintended toxicity and increase effectiveness is the design of
smart chemistry methods for programmed release in DDSs. Polymers with a variety of
specific functionalities that react to internal or external stimuli and cause payloads to be
released at the target site are needed. As a result, controlled release using vesicles, which is
otherwise challenging to achieve in delivery systems based on other biopolymers, can be
made possible by tuning the built-in molecular structures of polypeptide segments.

Different from artificially assembled polypeptide vesicles, vesicles derived from the
outer membrane of Gram-negative bacteria are called OMVs [17–20]. OMVs are widely
produced, vary in size and composition, and contain soluble periplasmic content. Given
the diversity of OMV-producing pathways, species-dependent differences in the enve-
lope architecture, and environmental influences on envelope composition, it is difficult
to identify a single molecular or genetic basis for OMV production. OMVs were first
reported more than 50 years ago in research on bacterial growth and were described to
be able to release vesicles with diameters of 20 to 300 nm [21]. Since the outer membrane
of the original bacteria was studied, several bacteria have been reported to be capable
of producing OMVs, such as Pseudomonas aeruginosa, Helicobacter pylori, Escherichia coli,
Shigella sp., Borrelia burgdorferi, Vibrio sp., Neisseria sp., etc. [22–26]. As they are derived from
the membrane, OMVs mainly contain phospholipids, lipopolysaccharides, outer membrane
proteins, and periplasm, along with different cytoplasmic components. These vesicles have
been connected to several physiological activities because of their composition, including
protein transport, nutrition acquisition, cell-to-cell communication, antibacterial activity,
toxin delivery, and host immune response regulation. In addition, differently from the clear
ROP polymerization and self-assembly mechanism, the mechanism of OMVs remains a
mystery. Recently, owing to some gene and biochemistry studies, some clues about this
complex process have been reported. In recent years, it has been found that OMVs could
be used in antigens for vaccines, drug delivery, bioimaging, nanogenerators, and new
adjuvants. Studies have also revealed that OMVs have great potential in the transport of
small-molecule drugs. Further, it has been demonstrated how to electroporate medications
into the OMV lumen. Finally, passive diffusion can be employed for tiny molecules that
are generally hydrophobic and positively charged, so that they can easily interact with
lipophilic membranes (Table 1).

Table 1. Comparison of characteristics of PVs and OMVs.

Classification PVs OMVs Reference

Origin Synthetic polymers Gram-negative bacteria [13,17]
Production Solution self-assembly Biogenesis [15,21]

Size Several nanometers~micrometers 20~300 nm [14,27]

Biomedical
applications

Antibacterial Bacterial vaccines

[14,28]
Mineralization Adjuvants
Drug delivery Cancer immunotherapy

Imaging and sensing Drug delivery
Therapeutic Anti-bacteria adhesion
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In this review, first, we highlight recent achievements in research on artificial PVs and
natural OMVs (Figure 1). The production methods of PVs and OMVs are summarized.
Then, the comparison of the fabrication of PV- and OMV-based DDSs and especially their
biological evaluation are extensively discussed. In the end, the current challenges regarding
PVs and OMVs are also presented.
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2. Production and Characterization of PVs and OMVs
2.1. Production of PVs

In polypeptide clinical transformation, the precise control of chemical structures and
the polydispersity index (PDI) is very important for polymer vesicle formation. In recent
decades, continued efforts have been made to produce polypeptides with controlled molec-
ular weight, narrow PDI, peptide segments, and physical–chemical biological effects [13,29].
However, solid-phase peptide synthesis and microbial fermentation have been character-
ized by low yield, high costs, and limited achievable chain length. Herein, we mainly focus
on the polymerization method for obtaining polypeptides via the ROP of α-amino acid
NCAs and the vesicles subsequently assembled in solution.

In 1921, Curtius, Wessel, and their coworkers used NCAs to produce polypeptides
using ROP methods [30]. The “normal amine mechanism” (NAM) (Figure 2a) and the
“active monomer mechanism” (AMM) (Figure 2b) are the two typical routes via which
nucleophiles or bases initiate the ROP of NCAs [31]. The NAM not only includes primary
and secondary amines but also alcohols and thiols as initiators. Initiation often occurs due
to the nucleophilic attack of the carbonyl group of the NCA ring. The intermediate product,
carbamic acid, is subsequently formed due to proton transfer and ring opening. Further,
the decarboxylation of carbamic acid eliminates CO2 and promotes the propagation of the
polymer chain. It has been reported that the NAM can control the molecular weight of
polypeptides and the adjustable end groups well. However, due to the side reaction that
often occurs along with this process, cyclic polymers and terminated active end groups
derived from the impurities in the reactions (water, reaction solvent, or contaminants in
NCAs) can be found in the resulting polymers. On the other hand, the AMM mainly
involves tertiary amines and alkoxides. It might occur that the resultant NCA anions
catch the proton from the nitrogen group of NCAs (3-N). NCA anions can initiate further
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reactions with other NCAs, as propagation could further involve the attacking of the 5-CO
group of other NCAs. In this case, polymerization is untraceable, generating ill-defined
polypeptides [32]. It is worth pointing out that these two mechanisms often co-exist in one
polymerization process, so the precise control of the reaction conditions is the main issue
that needs addressing.
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Figure 2. Schematic illustration of polypeptide formation mechanism, (a) normal amine mechanism
and (b) active monomer mechanism. Reprinted with permission from Ref. [32]. Copyright: 1997,
John Wiley & Sons, Inc.

By considering this reported mechanism, various polymerization methods with dif-
ferent initiators, catalysts, and pre-designed NCAs have been reported for polypeptide
design over the years. Living polymer methods can greatly enhance the speed of NCA
polymerization, and the reaction time can even be minimized to a few minutes. Moreover,
“Click chemistry” can be used for the post-conjugation of various groups on the polypep-
tide chain, thus giving the resulting polypeptide unique stimulus responsiveness. In this
method, firstly, various initiators can be used, such as metal-based complexes, amine salts,
silane derivatives, etc. Even without any initiators, photo-based chemistry can lead to
a polypeptide with tunable molecular weight. Secondly, the catalyst has an important
role in controlling the ROP of NCAs. Metallic catalysts and organic catalysts are the two
main types of catalysts for controlling the speed of reaction by shortening the propagation
time. Metal-based catalysts often result in metal residues on the resulting polypeptide. As
organic catalysts do not have this problem, leaving no traces of metal, they offer the most
freedom to control the fabrication of polymers that are suitable for various applications,
especially in the biomedical area. Additionally, the conditions of high vacuum, low reac-
tion temperatures, N2 flow, and UV can all be applied to polypeptide synthesis and have
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the ability to accelerate the reaction speed and reduce the side reaction. These improved
polymerization technologies are significant, as they give researchers the chance to obtain
polypeptide-based polymers with different topologies and interesting structures. Not only
can linear, hinged, cyclic, and branched polypeptides be quickly obtained, but also random,
alternating, block, and grafted copolypeptides can be obtained by applying sophisticated
chemical synthesis skills. These copolymerized polypeptides with different topologies also
greatly improve vesicle formation.

PVs are hollow spheres in shape with a bilayer wall of polymers. Commonly, they
are formed through the self-assembly of amphiphilic polymers (Figure 3). These vesicles
have various advantages over common polymer micelles: (1) the inner aqueous cavity can
be loaded with hydrophilic cargo; (2) hydrophobic cargo can be loaded on the membrane
of the vesicles; and (3) vesicles can easily disassemble to achieve suitable drug release
properties. Thus, stimulus responsiveness is very important in PV formation; for instance,
PV nano-assemblies can disassemble or reassemble under the simulation of pH, ROS,
enzymes, or infrared light. Thus, in drug delivery, nano-assemblies can easily carry the
drug compound to suitable sites and release it with the disassembly of the vesicles.
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Figure 3. Schematic illustration of polypeptide vesicle formation. (A) a-helical polypeptide segments
and (B) PVs from two polymers containing charged polypeptide segments with opposite charges.
Reprinted with permission from Ref. [14]. Copyright: 2017, The Royal Society of Chemistry.

2.1.1. Anisotropic Packing of α-Helical, Hydrophobic Polypeptides

The α-helical conformation can be observed in a variety of polypeptides with rigid
rods, such as polyleucine and polyphenylalanine. This is attributed to the hydrophobic
polypeptide segment, even at a high hydrophilic-to-hydrophobic ratio. Moreover, research
also shows that randomly coiled copolymers can only form micelles, even with finely
controlled components. The hydrophobic block becomes the essential component for as-
sembling hydrophobic polypeptides (Figure 3A). For example, as early as 2005, Timothy J.
Deming already reported on the charged polypeptides of poly(l-lysine)-b-poly(l-leucine)
block copolypeptides, which could be assembled into vesicular assemblies [33]. After-
wards, cationic polypeptides and anionic polypeptides were both reported to be able to
form vesicles under suitable conditions [34–36]. Polypeptides with carbohydrate moieties
can be covalently linked to the side chains of amino acids and form glycopeptides, with
this segment as the hydrophilic chain, and polypeptide vesicles can also be formed. An-
dreas Heise et al. showed that poly(γ-benzyl-l-glutamate) (PBLG)-b-poly (galactosylated
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propargylglycine) can also form stable vesicles, in which hydrophobic PBLG plays a de-
cisive role [37]. Since hydrophobic polypeptide segments are limited, the hydrophilic
chain can be varied. Not only peptide materials but also biodegradable polymers, such as
polyethylene glycol (PEG) and hyaluronan (HYA), have been reported in research studies
on vesicle preparation.

2.1.2. Oppositely Charged Polymers

Amphiphilic polypeptides can be used to form vesicles using the traditional self-
assembly methods introduced by Eisenberg [38] (Figure 3B). First, a solvent dissolves the
amphiphilic polypeptides; after that, a solvent specific to one segment is added to the
system to induce the formation of vesicles. On the other hand, Kataoka’s group further
showed that oppositely charged polypeptides can be assembled into vesicles in aqueous
solution. Even without any trace of organic solvent, water can induce vesicle formation.

2.1.3. Others

Recently, reports have also shown that poly(ε-caprolactone)-block-poly(lysine-stat-
phenylalanine) [PCL-b-P(Lys-stat-Phe)] and poly(ε-caprolactone)-block-poly(tryptophan)-
block-poly(lysine-stat-phenylalanine) might also be able to assemble into vesicles, where
PCLs are the resulting hydrophobic membranes [39,40]. Specifically, these are dual corona
vesicles, which are induced using solvent-switch methods. In addition, poly (L-glutamic
acid) have good solubility at neutral pH; in fact, it was reported that poly (trimethylene
carbonate)-b-poly(l-glutamic acid) materials could also assemble into vesicles with altered
sizes of 60 nm and 130 nm at pH values of 7.4 and 10.5, respectively [41].

2.2. Production of OMVs

Cells create and release membrane-bound material, which is sometimes referred to
as membrane vesicles, microvesicles, exosomes, tolerasomes, agrosomes, and virus-like
particles, in all domains of life (Figure 4). The first time OMVs were observed dates
to the 1960s, when Chatterjee and Das studied the cell-wall structures of Vibrio cholera
(V. cholera) in vitro. Moreover, K. W. Knox et al. firstly found changes in the lysine-limited
culture of Escherichia coli, characterized by cell growth with surrounding “globules” and
“hollow spheres” [42]. Recently, the biosynthesis field has achieved great advances, and the
physiological roles of OMVs have also been found. Moreover, related reports have shown
that released vesicles contain lipids, proteins, DNA, RNA, and lipopolysaccharides [43]. In
general, OMVs are vesicle structures ranging from about 20 to 300 nm and are produced by
almost all Gram-negative bacteria, though a similar phenomenon has also been detected
in Gram-positive bacteria. The production of OMVs is still unclear, and why all bacterial
cargo can be detected in OMVs remains unknown. However, a growing body of biological
evidence is being collected to explain these complex processes. The ability of OMVs to
transport a significant amount of the biological materials present in the parent bacterium
to distant sites in the host, thus facilitating bacterial communication, the transmission of
virulence factors, and the maintenance of bacterial communities, is ultimately due to their
capacity to carry cargo [44]. To date, although the mechanism of OMV production remains
unclear, three models of OMV biogenesis have been proposed.
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2.2.1. Reduced Lipoprotein Linkages

Hypervesiculation is often observed in the case of reduced crosslinking between the
outer membrane and the underlying peptidoglycan layer. The reduced number of linkages
can lead to the bulging of the outer membrane, thus resulting in the production of vesicles.
Dick Hoekstra already showed that vesicles may be easily formed in areas with a low
number of outer membrane–murein linkages [45]. Similar results can also be found in the
reports by Meta J. Kuehn and Maria Kaparakis-Liaskos [46,47]. Both Acinetobacter baumannii
and Escherichia coli have similar OMV production tendencies with reduced crosslinking.

2.2.2. Peptidoglycan Residues

According to this hypothesis, there are locations where the concentration of pep-
tidoglycans is greater during the production of the peptidoglycan layer, which causes
protrusions in the outer membrane, signaling the start of vesicle formation. OMVs are
released when peptidoglycan residue accumulation causes the outer membrane to bulge
even more. For example, Meta J. Kuehn et al. reported that periplasmic peptidoglycan
components could increase OMV biogenesis [48].

2.2.3. Electrically Charged Lipopolysaccharides (LPSs)

Electrically charged LPSs are the subject of the third and final OMV production
model. Positively charged LPSs and neutrally charged LPSs are the two forms of LPSs that
Pseudomonas aeruginosa produce. OMVs are predominantly made of negatively charged
LPSs when produced by Pseudomonas aeruginosa under oxidative stress. Due to the repelling
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effect of the negatively charged outer membrane, an increase in negatively charged LPSs
within the cell envelope might facilitate the release of OMVs [49].

2.2.4. Other Mechanisms

OMV biogenesis appears to be a diverse multi-factorial process stimulated or regulated
by a variety of pathways/mechanisms that may function simultaneously. For example, the
environment has been found to have an important role in OMV production. Kuehn et al.
reported that OMV production is a stress-responsive process and that temperature could
have an effect on Serratia marcescens and E.coli [48,50]. Wael Elhenawy et al. reported
in the Salmonella enterica serovar Typhimurium model that a lipid is necessary for OMV
biogenesis [51], that is, deacylation happens within a multifactorial procedure, including
planned modification of the outer membrane. Lynne Turnbull et al. used super-resolution
microscopy to observe the OMV production process in Pseudomonas aeruginosa biofilms [52].
The release of cytosolic material in Pseudomonas aeruginosa biofilms was found to result
from the explosive cell lysis of a subpopulation of cells. Explosive cell lysis also generates
broken membrane fragments that form OMVs quickly. Sandro Roier et al. showed that
VacJ/Yrb ABC (ATP-binding cassette) is also involved in OMV formation [53]. VacJ/Yrb
ABC is a phospholipid transporter. The accumulation of phospholipids in the outer leaflet
of the outer membrane causes this general mechanism of OMV generation.

3. Drug Delivery Performance of PVs and OMVs

Recently, it has been found that both PVs and OMVs can be employed in a variety
of bio-applications, such as drug delivery [15,29,54–56], vaccination [57–59], cancer ther-
apy [60–62], bioimaging [63,64], biosensing [65,66], and antibacterial applications [39,66–72].
PVs are generally obtained with amphiphilic block copolymers; thus, hydrophobic mem-
branes can very easily carry hydrophobic drugs. In addition, delivering biomolecules from
the parent bacterium to specific distant sites is one of the important functions of OMVs in
nature. Further, the stimulus-responsive ability of PVs and OMVs offers the best way to
release the loaded drug. Under specific stimuli, such as physical (heat or light), chemical
(pH and reducing agents), and biomarker (e.g., ATP or RNA) agents, PVs and OMVs can
also respond in a certain way to achieve targeted drug release. Both PVs and OMVs have
natural advantages in terms of drug delivery (Table 2).

Table 2. Comparison of drug loading and releasing by PVs and OMVs.

DDS PVs References OMVs References

Drug
loading

Hydrophobic interaction [73,74] Electroporation [55]
Electrostatic interactions [75] Passive diffusion [76]

Metal coordination [77] Biogenesis [78,79]

Drug
releasing

Change peptide assembly
behavior [80,81] Degradation of OMVs [55]

Change drug–polypeptide
interaction

[82]
Coating on polymer [83]

Bioengineering [84]

3.1. Advantages of PVs and OMVs in DDSs

Due to multiple advantages, both PVs and OMVs can be used as platforms in DDSs [15].
The first advantage is the suitable size. PVs can be assembled in vesicles of suitable size
by changing the nanoprecipitation conditions. The solvent and injection rate are the
main impact factors when water is added to the polymer solvent. Furthermore, pH,
polymer concentration, and temperature are important factors in the design of the size
of vesicles. Moreover, the size can be altered from several nanometers to micrometers.
OMVs commonly have sizes of 50 nm~250 nm. The size of both PVs and OMVs can allow
them to pass through the tumor cell membrane owing to the enhanced permeability and
retention effect [27]. Secondly, they are biocompatible and biodegradable. Due to the fact
that they are derived from natural compounds, both PVs and OMVs are biocompatible
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and enzyme biodegradable. For example, Sofroniew and Deming showed that amphiphilic
polypeptides can be used for the sustainable release of cargo; these polypeptides were
detected to have no detectable toxicity to normal cells and could be fully degraded over
several weeks [85,86]. OMVs have also been shown to be environmentally inert and
biodegradable. Using electron microscopy to analyze OMV morphology, Schulz et al. also
discovered that OMVs are biocompatible with differentiated macrophages and epithelial
cells [87]. Thirdly, both PVs and OMVs can easily be loaded with the drug compound and
protect it [88,89]. Fourthly, both PVs and OMVs can easily deliver drugs to target sites.
For example, folic acid can be conjugated with a polypeptide chain and be used as the
targeted group [9,90–92]. By genetically modifying the parent bacterium, targeting ligands
can be added to OMVs. Targeting ligands make it easier for medications to build up at the
desired sites. Lastly, PVs can be designed and conjugated with fluorescence groups, such as
pyrene or NIR-II, which makes superior fluorescence imaging possible [93,94]. OMVs are
produced from bacteria and contain a variety of pathogen-associated molecular patterns;
because neutrophils and macrophages can recognize and internalize them, OMVs can also
be employed to deliver specific cargoes to these cells [95,96].

Additionally, they each have their own advantages. For example, the chemical syn-
thetic approaches designed so far allow polypeptide-based vesicles to be more easily
designed. The stimulus properties of PVs can be engineered with various responsive
groups. poly(N-isopropylacrylamide) (PNIPAM) has been found to undergo thermally
responsive transformation in water at 32 ◦C [97]. After conjugating with PNIPAM, PVs
become sensitive to temperature, thus achieving selective release. Furthermore, amino
acids can be altered depending on the tumor environment. By selecting poly(L-histidine),
pH-responsive vehicles were designed based on the closed pKa ≈ 6.0 of the tumor environ-
ment [98,99]. In addition, polypeptides can be obtained in just a few minutes depending
on the development of the catalysts. Thus, PVs have a bright future in mass production.
OMVs trigger an immunological response that is advantageous for the treatment of tumors.
This, however, also presents disadvantages, as the immunological response might harm
the host if proper measures are not taken to control it.

3.2. Techniques for Drug Loading in PVs and OMVs
3.2.1. Drug Loading in PVs

In PV drug loading, drugs can be divided into hydrophobic drugs, hydrophilic drugs,
and metal-based drugs [100,101]. Hydrophobic interaction is the main approach for loading
hydrophobic drugs. For example, Sebastien Lecommandoux et al. reported that PEO-b-
PBLG diblock and PBLG-b-PEO-b-PBLG triblock copolymers could be loaded with the
hydrophobic drug doxorubicin (DOX) [73]. DOX could encapsulate as much as 18 wt.%.
Kim et al. showed that poly(ethylene glycol) methyl ether acrylate-block-poly(l-lysine)-
block-poly(l-histidine) [p(PEGA)30-b-p(Lys)25-b-p(His)n] can be used for the design of and
assembly into the vesicles [74] (Figure 5a). These vesicles, with suitable sizes of 200~372 nm
and hydrophobic chains of p(His), were used as a loading site for DOX. The content of
DOX was as high as 21 ± 2% and the loading efficiency was 68%.

Besides hydrophobic drugs, hydrophilic drugs can be loaded into PVs through electro-
static interactions, and metallic coordination can easily encapsulate metal-based drugs. For
instance, Chen’s group developed PEG-b-poly(l-glutamic acid) (PEG-b-PLG) through the
ROP of NCAs using PEG-NH2 as the initiator [75]. Having a portable amino group in the
sugar moiety, DOX·HCl is a positively charged and amphiphilic drug. The carboxylate of
the glutamic acid units is then electrostatically loaded with DOX-HCl, creating mPEG-b-
PLG-DOX·HCl through intermolecular hydrophobic stacking. Kazunori Kataoka’s group
prepared oxaliplatin and (1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded PEG-b-
PLG copolymers [77] (Figure 5b). This stable polymer metal complex could be formed to
induce drug-loaded PVs.
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3.2.2. Drug Loading in OMVs

The in vitro and in vivo loading methods are the two main techniques for drug loading
in OMVs. The lipid bilayer of OMVs endows them with the potential to be loaded with
both hydrophobic and hydrophilic drugs. For example, Sangyong Jon et al. showed that
electroporation can be used for loading siRNA into AffiHER2OMVs [55] (Figure 6a). This
method was well tolerated by OMVs as evidenced by the integrity of OMVs following
siRNA loading and the preserved circular shape. Li Ye’s group also showed that DOX could
be loaded into OMVs via passive diffusion [76] (Figure 6b). OMVs from Klebsiella pneumonia
were loaded with DOX via passive diffusion in 12 h. DOX fluorescence was observed, which
might have concentrated in the nucleus due to the preferential DNA-binding property
of DOX. Besides these approaches, incubation, ultrasonication, and extrusion have been
reported to be effective methods for in vitro drug loading.
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The uniqueness of drug loading in OMVs is that the drug loading process can also be
designed during their biogenesis. With such a bioengineering process, it is possible to load
cancer treatment drugs. During the generation of OMVs, the incorporation of the drug
compound within their parental bacterium is possible. Terry J. Beveridge’s group reported
on the treatment of Pseudomonas aeruginosa PAO1 with gentamicin; the released OMVs were
found to have the gentamicin [102]. Moreover, gentamicin effects that could arrest cancer
cell growth were observed. Ana L. Carvalho et al. showed that OMVs could produce
keratinocyte growth factor-2 (KGF-2), a human therapeutic protein, in a stable form [78].
It decreased disease severity when given orally and encouraged intestinal epithelium
repair and recovery in animals given colitis-inducing dextran sodium sulfate. Vasilis
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Ntziachristos’ group also showed that the engineered E. coli could express rate-limiting
enzymes in melanin biosynthesis [79]. Thus, the resulting OMVs could kill melanin in vivo.
These reports suggest that OMVs could induce cytokine-mediated antitumor activity.
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3.3. Targeted Drug Delivery via PVs and OMVs
3.3.1. Targeted Drug Delivery via PVs

After loading the drug compound, its programmed delivery and release at the targeted
site are significant. In PVs, changes in the polypeptide assembly behavior and drug–
polypeptide interactions are the two main approaches to releasing the drug compound.
Since PVs can be easily destroyed due to changes in pH, light, glucose, and reactive oxygen
species (ROS) [104] and due to the acidic environment of the tumor, pH responsiveness
is the most common stimulus used to release the drug compound. For instance, the
sensitivity of poly(L-histidine) could allow the released DOX load to kill cancers [105].
Ding et al. reported that the micelle-to-vesicle transition could be observed on a cholesterol-
decorated polypeptide [80]. Due to ROS changes, the conformation of the polypeptide could
change from β-sheet to α-helix and further induce on-demand drug release at the targeted
sites. The advantage of synthesized polypeptides is that the various environmentally
sensitive nonpeptide groups can be conjugated on light polymer chains. Light- and glucose-
responsive groups such as phenylboronic acid, spiropyran, and coumarin can change
the assembly behavior upon environmental changes such as UV irradiation and insulin
delivery systems. For instance, Dong’s group showed that it is possible to first design
S-(o-nitrobenzyl)-l-cysteine and then block it with PEG via ROP [81]. The o-nitrobenzyl
groups can be leveled off with UV irradiation. Moreover, the release of the drug compound
can be controlled using the irradiation time.

Another important approach is destroying the interactions between the drug com-
pound and the polypeptides. As mentioned above, the drug compound can be covalently
or non-covalently conjugated with the polypeptides. Metal complexation and covalently
linked drugs bearing polypeptides are mainly used in this release method. Kazunori
Kataoka et al. designed hydrazide groups as the linkages between polypeptide chains
and the drug DOX [82]. The hydrazide group can be disrupted as the pH changes and
further release free DOX. Greg G. Qiao’s group showed that ligand exchange could be
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used for metal-based drug delivery [103] (Figure 7a). Cisplatin complexed with PEG-B-
PLG could be released in the presence of chloride ions. However, it was found that the
metal–ligand exchange could only lead to a relatively slow release of the drug compound.
This release rate was enhanced when mimicking the endosomal/lysosomal environment
(pH 5.2/35 mM [Cl−]).
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3.3.2. Targeted Drug Delivery via OMVs

Compared with the scalable and chemically designable PVs, the use of OMVs in
targeted drug delivery has only been sporadically reported in recent years and is still an
emerging area requiring urgent research [28]. Sangyong Jon’s study is recognized as the
first report on using OMVs for targeted drug delivery [55]. After the electroporation of the
siRNA drug compound (~15%) into OMVs, the anticancer activity of the drug-containing
OMVs was found to be able to inhibit cancer cell proliferation. The detailed mechanism
was observed with a confocal microscope as follows: the acidic environment could enhance
the degradation of OMVs, and free siRNA was gradually detected along with dead cancer
cells. Further, an in vivo study also suggested that the EPR effect is the drug force necessary
for targeted drug delivery. Recently, Ping et al. showed that Salmonella-based OMVs could
be even coated on polymer F127 nanoparticles [83] (Figure 7b). In this case, the drug
compound was loaded on polymer micelles, whereas the OMVs only triggered the host
immune response to cancer immunotherapy. This OMV-coated type of DDS provides a new
combined system for potential targeted drug delivery. In addition, some recently emerged
research also showed that bioengineered OMVs could induce specific CD8 T cell response,
and this cell could control tumor growth via viral replication [84]. These recent findings
open further possibilities for OMV drug delivery studies.
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4. Conclusions and Outlook

This review mainly describes PVs and OMVs in drug delivery applications. PVs are
obtained with the artificial synthesis of polypeptides, where the NMM and AMM are the
two major mechanisms for polypeptide synthesis via the ROP of NCAs. Polymer vesicles
are then obtained via self-assembly. The anisotropic packing of α-helical, hydrophobic
polypeptides and the use of oppositely charged polymers are methods for the preparation
of PVs. Compared with PVs, OMV biogenesis remains a mystery; however, three mod-
els, i.e., reduced lipoprotein linkages, peptidoglycan residues, and electrically charged
lipopolysaccharides, are recognized as the major influencing factors. In addition, other
factors, such as the environment and lipids, are important for OMV biogenesis in certain
bacteria. Finally, the similarities and differences between these two vesicle types in drug de-
livery applications are elaborately compared. Specifically, we compare their applications in
DDSs in the following aspects: general advantages, drug loading techniques, and targeted
drug delivery performance. Based on state-of-the-art PVs and OMVs, we believe that future
research should address the following issues to advance toward further DDS applications:

(1) Mass production of OMVs and PVs: Currently, the production of OMVs and PVs is
still in the laboratory research stage. Although, recently, the production efficiency of
polypeptide materials has been rapidly improved, technical solutions for assembling
vesicles still lack specific standards, and large-scale production of PVs is not yet
possible. OMV sizes are difficult to regulate, and there is significant variance among
batches. In addition, low particle programmability is caused by our lack of knowledge
regarding the precise OMV assembly mechanism. Enhancing safety and reducing
costs are also still problems that need to be addressed.

(2) Universality of drug loading and delivery targeting: The drug loading mechanism in
the process of production and post-treatment is inefficient and is in urgent need of
optimization. Given the relevance of various cancer types and given that there are
various PV and OMV types, consistent tumor cell targeting standards still need to
be achieved and further improved. Individual PVs and OMVs may be effective for
certain cancers.

(3) Other specific issues: The immunotoxicity of OMVs is a problem that cannot be
ignored in DDSs. Moreover, the artificial production of OMVs also deserves more
in-depth study on its potential. In PVs, the deprotection process in the production of
specific polypeptides (such as polyhistidine, polylysine, and polycysteine) is tedious.
Finally, programmed drug release and the benefits of the unique secondary structure
of PVs are also worthy of more in-depth research.
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