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Personalized/precision medicine (PM) originates from the application of molecular
pharmacology in clinical practice, representing a new era in healthcare that aims to identify
and predict optimum treatment outcomes for a patient or a cohort with similar geno-
type/phenotype characteristics. Evidence-based medicine (EBM) integrates accumulated
information from basic in vitro, in vivo, and observational studies as well as clinical trials
and systematic review meta-analysis data for clinical consideration for a population. Hence,
it can be stated that EBM often sees the forest (population averages) for the trees (individual
patients), whereas the utilization of PM may not see the forest for the trees [1]. In either case,
in recent years, the utilization of the digital revolution in pharmaceutical research has led
to the emergence of innovative approaches and disciplines such as pharmacometrics and
quantitative systems pharmacology (QSP) that combine experimental and/or clinical data
to predict and/or interpret the pharmacological profiles of molecules of interest considering
complex associations of biological pathways, disease, and physiological characteristics
and their variabilities within patient cohorts [2,3]. These state-of-the-art tools of modelling
and simulation (M&S) in pharmacology try to extrapolate knowledge gained through
experimental and clinical procedures through either top-down or bottom-up approaches of
potential new drug targets or the role of specific biological molecules in disease initiation
and progression. In addition, they contribute to the R&D of novel drug-delivery systems
and greatly assist in drug repurposing. Hence, they provide sophisticated biomedical
tools covering a broad range of studies on the research and development (R&D) of novel,
more efficient, and more effective molecules, with improved safety profiles for a patient
concerning PM principles and greater chances to proceed in clinical trials, enhancing the
knowledge within the EBM hierarchy.

The application of advanced quantitative structure–activity relationship-based (QSAR)
studies can provide insights into potential mechanisms or binding positions in targeted
proteins along with physicochemical requirements for candidate drugs. This can assist in
the discovery of molecules with desired or enhanced modulatory activity against targeted
proteins by a well-organized screening of compound databases such as plants’ secondary
metabolites for pharmacologically active compounds and potential new drug candidates [4].
In addition, through ligand-based methods, classification models and molecular dock-
ing simulations for possible pharmacological properties, sophisticated virtual screening
frameworks assist in drug repurposing studies of already-marketed drugs such as the
example of modulators of transient receptor potential vanilloid-1 (TRPV1) in analgesia, or
for possible effective therapies in diseases with an apparent need for treatment options
(i.e., COVID-19) [5,6]. Expanding the QSAR approaches, the combination of in silico phar-
macology tools with experimental in vitro protocols can provide new insights regarding
drugs actions and potential secondary mechanisms that could be related to adverse drug
reactions (ADRs). This is important for drugs that are considered essential in medicine
where the associated ADR mechanisms are partially explained at a molecular level. For
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example, the combination of in silico tools with in vitro systems allowed the generation of
a potential molecular explanation of how zoledronic acid binds to the inward rectifying
potassium (Kir) channel subunit KIR6.1/6.2 and sulfonylurea receptor subunits (SUR2A/B)
and blocks the ATP-sensitive potassium (KATP) channels reducing native currents in the
fibres and bone cells [7]. These findings can be further exploited to interpret molecular
mechanisms in frequently reported ADRs regarding the occurring arrhythmias or other
effects related to zoledronic acid administration.

Nevertheless, on top of all in silico approaches, one area that in previous years rep-
resented a sea change in pharmacology, transformed R&D forever, and brought in silico
pharmacology into the limelight of modern biomedical research is the pharmacokinetic
(PK) and pharmacodynamic (PD) M&S, such as the physiologically based pharmacokinetic
(PBPK) models and pharmacometrics [8]. These approaches are capable of integrating drug,
disease, and experimental data along with clinical information towards optimum efficacy
and safety profiles of drugs in clinical settings [9]. For instance, the utilization of PK models
can sufficiently predict PK profiles of drugs with narrow therapeutic indexes and/or of
high intra- or inter- subject variability in general or in special population groups. For
example, through pharmacometrics approaches, the PK profile of busulfan administration
in paediatric patients undergoing hematopoietic stem cell transplantation (HSCT) can
be utilized for an optimum dosing regimen [10]. In addition, even for drugs marketed
for a long time (i.e., nebivolol), population–PK model approaches can provide important
information through the M&S of different scenarios such as the impact of age or geno-
type characteristics on optimum dose selection regarding drugs’ efficacy and safety [11].
Regarding PBPK models and population PK simulations, they can deliver essential in-
formation with the generation of in silico clinical trials and provide mechanistic insights,
the characterization of drugs’ variability for different clinical scenarios, or different drug
formulations for clinical applications [12,13]. For example, through PBPK M&S, possible
therapeutic peculiarities related to doxorubicin administration and its metabolites in the
body can be simulated and studied under different scenarios [14]. Moreover, developed
PBPK models for drugs such as ropinirole can be further utilized to predict the exposure of
new prolonged-release formulations for oral administration in various doses considering
in vitro/in vivo extrapolated dissolution data [15]. It is important to point out that in order
to achieve successful application of PBPK M&S, the detailed depiction of the three major
components that contribute to these approaches are necessary: (i) system-specific properties
(organ composition, variability among individuals, body fluid characteristics, etc.), (ii) drug
properties (physicochemical or biochemical properties, etc.), and (iii) trial design (target
population, route of administration, formulation, etc.). Thus, studies that describe essential
parameters such as organ properties are always needed. For example, PBPK models that
consider the bidirectional and site-dependent cerebrospinal fluid (CSF) movement can be
further utilized in the accurate prediction of PK profiles of small molecules after intra-CSF
administration [16].

An additional advantage of the continuously evolving in silico pharmacology frame-
works is that they offer a low-cost, quick, and systematic high-throughput approach to
guide the prioritization of targets and identify critical molecular markers for various dis-
eases, especially those with complex molecular mechanisms, e.g., schizophrenia/bipolar
disorder, rheumatoid arthritis, diabetes mellitus, hypertension, Alzheimer’s disease, cancer,
etc. This fact, combined with the exploitation of algorithms that can “learn” patterns within
a set of classified data and their interconnections to make predictions, suggestions, or
decisions, creates a sea of possibilities for the next era in drug research and modern phar-
macology [17]. For example, bioengineering approaches that utilize learning algorithms
such as machine learning for transcriptomic data can analyse gene–disease associations
to identify potential drug targets, whereas coupling these results with QSAR models can
create a research field for identifying molecules with potential pharmacological activity for
future drug development [18,19].
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Overall, computational pharmacology M&S approaches have advanced well beyond
the state-of-the-art of being simple research tools and not only achieved an active role
in the R&D of novel medicinal products but also received regulatory acceptance [8,20].
It is expected that the further utilization of in silico pharmacology tools integrated with
artificial intelligence algorithms will further remove barriers and obstacles regarding our
understanding of the complex interplay between drugs, targets, and diseases. Therefore, it
is expected that computational or in silico pharmacology within the context of quantitative
systems pharmacology will allow us to further “connect the dots” and reveal the bigger
picture, the “population/forest” that will assist EBM decisions, considering what kind of
“individuals/trees” exist within a patient cohort according to PM principles.

Conflicts of Interest: The author declares no conflict of interest.
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