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Received: 7 January 2023

Revised: 19 March 2023

Accepted: 21 March 2023

Published: 5 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

Cannabinoids and Multiple Sclerosis: A Critical Analysis of
Therapeutic Potentials and Safety Concerns
Roua A. Nouh 1, Ahmed Kamal 2 and Anwar Abdelnaser 3,*

1 Department of Chemistry, School of Sciences and Engineering, The American University in Cairo,
New Cairo 11835, Egypt

2 Biochemistry Department, Faculty of Science, Suez University, P.O. Box 43518, Suez 43533, Egypt
3 Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University

in Cairo, P.O. Box 74, New Cairo 11835, Egypt
* Correspondence: anwar.abdelnaser@aucegypt.edu; Tel.: +20-226-15-2905

Abstract: Multiple sclerosis (MS) is a complicated condition in which the immune system attacks
myelinated axons in the central nervous system (CNS), destroying both myelin and axons to varying
degrees. Several environmental, genetic, and epigenetic factors influence the risk of developing
the disease and how well it responds to treatment. Cannabinoids have recently sparked renewed
interest in their therapeutic applications, with growing evidence for their role in symptom control
in MS. Cannabinoids exert their roles through the endogenous cannabinoid (ECB) system, with
some reports shedding light on the molecular biology of this system and lending credence to some
anecdotal medical claims. The double nature of cannabinoids, which cause both positive and negative
effects, comes from their actions on the same receptor. Several mechanisms have been adopted to
evade this effect. However, there are still numerous limitations to using cannabinoids to treat MS
patients. In this review, we will explore and discuss the molecular effect of cannabinoids on the ECB
system, the various factors that affect the response to cannabinoids in the body, including the role
of gene polymorphism and its relation to dosage, assessing the positive over the adverse effects of
cannabinoids in MS, and finally, exploring the possible functional mechanism of cannabinoids in MS
and the current and future progress of cannabinoid therapeutics.

Keywords: multiple sclerosis; central nervous system; autoimmune disease; cannabinoids;
tetrahydrocannabinol; cannabis; endocannabinoid system; acetylcholine; experimental autoimmune
encephalomyelitis

1. Introduction

Multiple sclerosis (MS) is a neurodegenerative condition that can cause paralysis,
demyelination, and harm to neuronal axons [1]. Inflammation and myelin sheath degenera-
tion are the hallmarks of MS that lead to lesions, which have been found in the white matter
of the brain stem, optic nerve, and spinal cord [2]. The myelin sheath is destroyed via
the immune system, which begins to perceive its constituent parts as foreign components.
Infiltration of the immune cells is thought to cause plaque formation, which initiates disease
symptoms through releasing cytokines and inflammatory mediators that cause inflamma-
tion, myelin damage, oligodendrocyte loss, neuronal function loss, and eventually axonal
degeneration [3,4]. MS’s signs and symptoms depend on where the lesions are in the brain
or spinal cord [5]. MS has three stages: pre-clinical, relapsing/remitting, and progressive
clinical. Depending on the severity of the disease, the symptoms can differ from person to
person. They can result in short-term, long-term, or even permanent losses due to disrupted
signal transmission. The complete remission and the treatment of progressive forms of
MS remain controversial and a medical challenge, even though numerous medications
have been developed for the disease [6]. The drugs used to manage MS are classified into
two main groups: disease-modifying agents and symptomatic treatment [7]. Symptomatic
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treatment aims to decrease the symptoms, but it is limited by its toxicity [8]. Recently, the
therapeutic uses of cannabinoids as a symptomatic treatment has been gaining popularity,
with many trials and patients, who believe that it may help with the management and
control of symptoms in MS. Despite the overwhelming evidence supporting the use of
cannabinoids in the treatment of MS, there is still a lack of knowledge regarding the precise
effects of cannabinoids due to patient variability. In this review, we will explore and discuss
the molecular effect of cannabinoids on the ECB system, the various factors that affect the
response to cannabinoids in the body, including the role of gene polymorphism and its
relation to dosage, assessing the positive over the adverse effects of cannabinoids in MS,
and finally, exploring the possible functional mechanism of cannabinoids in MS and the
current and future progress of cannabinoid therapeutics.

2. Cannabinoids and the Endocannabinoid System

Cannabis sativa is the main species of the complex plant known as Cannabis, a member
of the Cannabacea family [9]. The Cannabis sativa plant, known as hemp, has been known
as a psychoactive substance for over 4000 years due to its hallucinogenic characteristics.
Cannabis is also known as marijuana, among other local names [10].

More than sixty physiologically active chemical substances, known as cannabinoids,
can be created either naturally (phytocannabinoids), by animals (endocannabinoids), or
artificially (synthetic cannabinoids) [11]. The cannabis plant contains more than 100 phyto-
cannabinoids, including the 2 most significant ones, which are ∆9-tetrahydrocannabinol
(THC) and cannabidiol (CBD). ∆9-THC, commonly referred to as THC unless stated other-
wise, is believed to be the main psychoactive compound found in cannabis [12]. Unlike the
phytocannabinoids found in cannabis, all endocannabinoids are derived from Arachidonic
acid and, therefore, have different chemical structures. At present, there are five known
endocannabinoids, including N-Arachidonoyl Ethanolamide (also called Anandamide),
2-Arachidonoyl Glycerol, 2-Arachidonoyl Glyceryl Ether (Noladin ether), O-Arachidonoyl
Ethanolamine (Virodhamine), and N-Arachidonoyl Dopamine (NADA). Among these
endocannabinoids, Anandamide and 2-Arachidonoyl glycerol are considered the most
significant [13]. The Chinese pharmacopeia has referred to cannabinoids as a therapeutic
agent since 400 AD [14]. Since 2015, there has been an upsurge in cannabinoid products
and delivery systems, and an increase in the number of nations legalizing cannabinoids,
possibly due to greater public awareness of the drug’s potential for medical use [15].

The endocannabinoid (ECB) system is a highly intricate signaling system composed of
neuronal connections, endocannabinoid neurotransmitters, and G-protein-coupled recep-
tors cannabinoid-1 (CB1) and cannabinoid-2 (CB2). The binding of cannabinoids, whether
endogenous or exogenous, to these receptors, produces a range of physiological effects [16].
The ECB receptors are dispersed centrally and peripherally, as shown in Figure 1 [17].
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expressed mainly by immune cells, and among their roles is the regulation of cytokine 
production and immune cell movement both inside and outside of the central nervous 
system. Additionally, recent research has shown that some neurons and blood arteries in 
the brain have CB2 receptors [18,19]. The ECB system mediates neuroprotective actions 
via glutamatergic neurons, while inflammatory responses are regulated via GABAergic 
neurons and astrocytes. Many neuronal disorders, including age-related 
neurodegeneration, are linked to changes and dysfunction of the ECB system [19]. Age-
related cognitive decline is associated with decreased CB1 receptor expression in the 
hippocampus, and CB1 receptor deletion from GABAergic hippocampal neurons results 
in neuronal death and elevated inflammation [20]. Moreover, changes in CB1 receptor 
signaling that are unique to glutamatergic neurons may impact age-related cognitive 
decline and decreased synaptic integrity and plasticity. Cannabinoids that signal through 
the CB1 receptor cause synaptic plasticity, cell migration, and neuronal growth, whereas 
cannabinoids that signal through the CB2 receptor are associated with mechanisms that 

Figure 1. Illustration of the endocannabinoid system and distribution of CB1 receptors. CB1:
cannabinoid-1 receptor, CB2: cannabinoid-2 receptor, THC: tetrahydrocannabinol, CBD: cannabinoid.

3. Molecular Effect of Cannabinoids on the Central Nervous System

The impact of cannabinoids on the molecular level in the brain is one of the crucial
elements that need to be thoroughly explained.

3.1. Role of CB1 and CB2 Receptors

CB1 receptors, which are primarily present in nerve terminals, are responsible for
the inhibition of the release of neurotransmitters. On the other hand, CB2 receptors are
expressed mainly by immune cells, and among their roles is the regulation of cytokine
production and immune cell movement both inside and outside of the central nervous
system. Additionally, recent research has shown that some neurons and blood arteries in
the brain have CB2 receptors [18,19]. The ECB system mediates neuroprotective actions
via glutamatergic neurons, while inflammatory responses are regulated via GABAergic
neurons and astrocytes. Many neuronal disorders, including age-related neurodegenera-
tion, are linked to changes and dysfunction of the ECB system [19]. Age-related cognitive
decline is associated with decreased CB1 receptor expression in the hippocampus, and CB1
receptor deletion from GABAergic hippocampal neurons results in neuronal death and
elevated inflammation [20]. Moreover, changes in CB1 receptor signaling that are unique to
glutamatergic neurons may impact age-related cognitive decline and decreased synaptic
integrity and plasticity. Cannabinoids that signal through the CB1 receptor cause synaptic
plasticity, cell migration, and neuronal growth, whereas cannabinoids that signal through
the CB2 receptor are associated with mechanisms that stop, slow down, and repair damage
caused by inflammation, as illustrated in Figure 2 [21].
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Figure 2. The physiological function of the CB2 receptor during leukocyte transmigration and
inflammation, the transport of immune cells across the BBB is restricted by CB2 receptors. CB2:
cannabinoid-2 receptor, NK: natural killer cells, B cells: B lymphocytes cells.

3.2. Molecular Effect of Cannabinoids and ECB System in the Hippocampus

Higher-order brain activities rely on coordinating various delicately balanced systems
like an orchestra, which executes the rhythms that shape our cognitive processes, affect
our behavior, and create our memory. The hippocampus has drawn more attention than
any other brain region. Consequently, it is an essential component of mnemonic systems in
various species, including humans. Additionally, several studies have suggested that the
hippocampus is a center for conscious and unconscious experience [22,23]. It is essential to
explore the molecular mechanisms controlling hippocampus circuitries to understand the
comprehend neural processes. Molecular effectors are seen as CNS modulators indicating
that their actions impact cognition and behavior. The hippocampus plays a role in cognitive
functions such as memory, learning, and sensory integration [24,25].

Additionally, it contains a lot of CB1 receptors, which are crucial for controlling
pathophysiological processes [25,26]. The CB1 receptors are found mainly in the hippocam-
pus’ GABAergic neurons and are also present in glutamatergic neurons, astrocytes, and
subcellular compartments [27,28]. Cannabinoid signaling regulates the release of choliner-
gic and dopaminergic neurotransmitters in addition to the typical excitatory/inhibitory
transmission regulation by CB1 receptors [29,30]. Acetylcholine (ACh) and GABA are
released at mixed GABAergic synapses established explicitly by the cholinergic terminals
in the hippocampus [31]. In this situation, regulating dopaminergic and cholinergic trans-
mission in the hippocampus under CB1 receptor-dependent may control cognitive and
affective processes.

Interestingly, cannabinoid antagonist use has been linked to improved cognitive abil-
ities. This can be explained by increased acetylcholine levels brought on by cholinergic
disinhibition in the hippocampus. In ACh neurotransmission, ∆9-tetrahydrocannabinol
(∆9-THC) exhibits a biphasic, dose-dependent impact. Because ACh levels are governed
by dopamine receptor activation, only high dosages of THC can reduce their levels. As a
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result, while septal D1 receptor signaling increases ACh efflux, hippocampal D2 receptor
activation induces ACh suppression triggered by large dosages of THC [32]. Dopaminergic
terminal activity in the ventral tegmental region is increased when endogenous or exoge-
nous cannabinoids activate the intrahippocampal CB1 receptor. These systems must be
appropriately controlled for the hippocampus to function at its peak, particularly during
stressful situations when alterations in neurotransmitter levels may cause maladaptive
changes connected to neuropsychiatric disorders [33]. This molecular mechanism empha-
sizes the critical role of the endocannabinoid system in the progression or management of
neurodegenerative disease, implying the possibility of developing treatments that can cure
MS as well as many other neurodegenerative disorders.

3.3. Effect of Cannabinoids on Mitochondria and Metabolic Pathway

The brain accounts for only 2% of total body weight in mammals but utilizes up to 20%
of the body’s energy production [34,35]. Mitochondria are crucial elements of eukaryotic
cell functions [34,36,37]. The role of neuronal energetics in brain physiology and pathology
is the subject of extensive research. The molecular mechanisms linking mitochondrial
activity to brain functions remain unclear. CB1 receptors have recently been discovered
in the mitochondria of hippocampus astroglia cells [27], although it is still unclear how
they might affect astrocytic activity and possibly modify brain networks. The activation
of the mitochondrial CB1 receptor (mtCB1) has been linked to alterations in bioenergetics
and mitochondrial respiration that influence hippocampus synaptic transmission and,
in turn, memory consolidation [38,39]. By turning on a subgroup of mitochondrial G
proteins called Gi proteins, the mtCB1 receptor slows down mitochondrial respiration.
Proteins involved in oxidative phosphorylation are not phosphorylated as much as before
as a result of this activation, which also decreases protein kinase A (PKA) activity in
the mitochondria. Since synaptic transmission requires a significant amount of energy,
any disruptions in mitochondrial respiration directly impact synaptic activity. Long-term
memory is also disturbed when the mtCB1 receptor is activated because it decreases ATP
and prevents excitatory synaptic transmission in the CA1-CA3 circuit [39]. A recent study
connected the disturbance of glucose metabolism and lactate generation to the activation
of astroglia mtCB1 receptors [28]. THC administration results in decreased mitochondrial
protein phosphorylation, which changes reactive oxygen species (ROS) levels, causing the
transcription factor hypoxia-inducible factor 1 to be downregulated (HIF-1). Since the HIF-1
pathway promotes glycolysis, inhibiting it has a detrimental impact on glucose metabolism
and lactate generation.

4. Pharmacokinetics and Pharmacodynamics Characteristics of Cannabinoids

Cannabinoids have been proven to have anti-inflammatory, antiviral, and anticancer
characteristics, according to studies on the pharmacodynamics of cannabinoids [40]. Rec-
ognizing the pharmacokinetics and pharmacodynamics characteristics of cannabinoids is
crucial to understanding the effects of drugs on the body. Most of the pharmacodynamics
and pharmacokinetic data were obtained through studies on cannabinoid users or healthy
volunteers. Several factors impact the pharmacokinetics of cannabinoids, such as prior
cannabinoid usage, pharmacogenetics, body size, disease status, food, and microbiome.
The dosage form of cannabinoids and the route of administration impact the pharma-
cokinetics parameters of cannabinoids, as shown in Table 1 [41]. The biodistribution of
cannabinoids can be affected by their lipophilicity, where THC has a high distribution
volume (5.7–10 L/kg) due to its high lipophilicity. The distribution of CBD is also affected
by its lipophilicity and has a high volume of distribution, and it can rapidly penetrate the
brain, adipose tissue, and other organs [42]. Another factor that may increase the volume of
distribution is the chronic regular administration of cannabinoids which precipitates tissue
accumulation over time [42,43]. The liver predominantly metabolizes cannabinoids. A
tiny amount of extra-hepatic metabolism exists in tissues such as the brain, intestines, and
lungs [44]. The cytochrome P450 (CYP 450) enzymes, specifically CYP2C9, CYP2C19, and
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CYP3A4, metabolize THC in the liver. Decarboxylation, epoxidation, and oxidation are all
steps in THC metabolism that occur before conjugation. The two primary THC metabolites
are ∆11-hydroxy-THC (∆11-OH-THC) and ∆11-carboxy-THC (∆11- COOH-THC), which are
produced when THC is hydroxylated and oxidized, respectively. Tissues that express CYP
450 participate in the extra-hepatic metabolism of THC [45].

Additionally, CBD is metabolized in the liver via the CYP 450 isoenzymes CYP2C19
and CYP3A4, where it is then subjected to different metabolic processes before being
excreted [46]. The route of elimination is also a pharmacokinetic characteristic in which
THC and CBD metabolites are eliminated through the urine, feces, and, to a lesser extent,
bile. The elimination rate is influenced by several variables, including the type of dosage
form and the patient’s characteristics [40]. Until now, no clear guideline involves specific
instruction about the required dose of cannabinoids. Consequently, there is a need to
conduct studies on the kinetics of the drug with different patient populations and diseases,
specifically the MS population.

Table 1. Effect of various dosage forms on pharmacokinetics parameters (PKM) of cannabinoids.

Dosage Form
PKM

Absorption Bioavailability Peak Plasma
Concentration

Duration of
Action

Advantages Disadvantages

Inhalation High absorption
= 10–60%

THC = 2–65%,
CBD = 6–31%

Peak plasma
concentrations of
THC and CBD are

reached quickly,
within 3–10 min.

1–4 h

Suitable
bioavailability

and rapid onset
of action.

Variability
between patients

based on lung
function.

Oral Low absorption
= 2–14%

THC = 5–10%,
CBD = 6–20%

Due to the effect
of 1st pass

metabolism.

Achieve peak
concentration (60–120

min).
6 h

It provides a
sufficient

duration of
action.

Delayed onset of
action.

Topical Irregular
absorption

Skin barriers
hinder

bioavailability
due to the

lipophilic nature
of the drug.

Steady-state
condition is achieved

within = 17 h.

THC = 14 h, CBD
= 72 h

Reduction in the
side effects

associated with
systemic

administration
of the drugs.

Poor
bioavailability

due to skin
barrier.

Systemic intravenous High absorption
rate

High
bioavailability

like inhaled
dosage form.

Within 10 min. 4 h
Rapid action and

high
bioavailability.

Require an
aqueous vehicle

due to poor
water solubility.

Ref. [15,43,44] [15,47,48] [15,49] [49,50] [50,51] [15,52]

5. Pharmacogenetics and Cannabinoids

Gene polymorphisms implicated in drug action, metabolism, and transport in the
body may be the reason for response variation in MS patients responding to cannabinoid
therapy. The most recent data on gene polymorphisms influencing cannabinoids transport,
activity, and metabolism will be discussed here. The genetic alteration that can affect the
response to cannabinoid therapy can be divided into variations of genes that code for
cannabinoid receptors or those that code for metabolizing enzymes.

5.1. Variation of Genes That Code for Cannabinoid Receptors

The majority of studies on the effects of cannabinoids have focused only on a particular
class of receptors that cannabinoids act on. There are more than one or two cannabinoid
receptors with specific effects on the body’s function that require additional research,
especially in the population of MS. The ECB system has various types of receptors, which
may impact the activity of ligands in many physiological processes, and scientists have
demonstrated in recent years that this mechanism is far more complex [53]. Variations in
the expression of these receptors will affect cannabinoids and their effects on the body, as
shown in Table 2.
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Table 2. Genetic variation and their relation to cannabinoids response.

Protein Gene Function Variation Effect Ref.

CB1 CNR1 Receptor 63-9597T > C Cannabinoids addiction [54]

CB2 CNR2 Receptor 946C > T
The effect and the main

function of the CB2
receptor are altered

[54]

FAAH protein
Fatty Acid Amide

Hydrolase
FAAH

Biotransformation 385C > A It is associated with
drug abuse [55]

Catechol-O-
methyltransferase

enzyme
COMT

The regulation and
inactivation of
catecholamine

neurotransmitters
in the brain

472A > G

Modest controllable
effect of cannabinoids

consumption on
executive functions

[56]

GABA GABRA2 Receptor 231A > G No significant effect on
the drug dependence [57]

Mu opioid receptor OPRM1 Receptor 118A > G No significant effect [58]

ErbB3, ErbB4 NRG1

Promotes the
growth,

differentiation, and
survival of a wide
range of cell types

122-16329C > T
Associated with

cannabinoids
dependence

[59]

5.1.1. Polymorphism of Cannabinoid Receptors CB1 and CB2

The discovery and cloning of the first and second cannabinoid receptors (CB1 and
CB2) in 1990 and 1993 significantly raised our knowledge about cannabinoids. The CNR1
gene, which codes for the CB1 receptor, is found on human chromosome 6q14–15 and has
four exons, the biggest of which is most frequently expressed in brain tissue [60]. The
CB1 receptor is characterized by evolutionary conservatism. The CB receptor’s activation
increases hunger and has sedative, analgesic, and antiemetic properties [61]. Contradictory
findings were found in research linking the CNR1 gene’s single nucleotide polymorphism
(SNP) with marijuana addiction, which also included the trinucleotide repeat locus (AAT)
and the insertion-deletion (-3180T) polymorphism [54]. In 206 non-Hispanic Caucasians
(92 subjects and 114 controls), Comings et al. found a link between (AAT) >5 repeats and
drug dependency [62]. However, most trinucleotide repeat (AAT)n studies had contradic-
tory findings [63,64]. Moreover, the Hartman Group found that in case-control samples,
the CNR1 gene variant rs1049353 was associated with symptoms of cannabinoid depen-
dency [65]. CNR2, which codes for CB2, is the second gene chosen. There are not many
descriptions in the literature of studies on the CNR2 gene and addiction. Mutant CB2
receptors were then transfected into HEK293 cells, according to Carrasquer et al. This study
showed that the CB2 polymorphic receptors might bind cannabinoid ligands at locations
63 and 316 and mediate signal transmission, which may help explain the etiology of some
disorders [66].

5.1.2. Transient Receptor Potential Cation Channel Subfamily V Member 1 (TRPV1)

The transient receptor potential cation channel subfamily V member 1, also known
as TRPV-1, is a ligand-gated, non-selective ion channel discovered as another receptor
target for cannabinoids. TRPV-1 has been shown to express itself in a wide range of
cells, including those of the immune system, the central and peripheral nervous systems,
endothelium and epithelial cells, keratinocytes, and smooth muscle cells [11]. On primary
afferent nerve cells, there is a more significant co-localization of cannabinoid receptors and
TRPV-1. It has been demonstrated that the endocannabinoid AEA acts as an endo vanilloid
by stimulating the TRPV-1 receptor, which mediates downstream signaling [67].

Until now, no association studies have shown a connection between the presence of
TRPV1 gene polymorphism and marijuana addiction. Two well-known receptors, CB1
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and CB2, are the focus of most studies on the functioning of the ECB system. CBD’s two
enantiomeric variants have little or no affinity for the CB1 and CB2 receptors. Therefore, it
is conceivable that the effectiveness of CBD is linked to its ability to reduce the activity of
FAAH and increase anandamide levels (AEA). This would suggest that elevated MDR1
mRNA expression following CBD exposure depends on AEA’s simultaneous activation of
CB2 and TRPV1 [53].

5.2. Variation in Genes That Code for Metabolizing Enzymes

The metabolism of cannabinoids is enzyme-dependent [68]. Oxidation, decarboxyla-
tion, and conjugation with glucuronic acid are the primary mechanisms used in metaboliz-
ing ∆9-THC. There is no doubt that environmental factors such as drug availability and
social conditioning impact cannabinoid usage, but more research is required to understand
the genetic effect on cannabinoids fully. The CYP gene family consists of 58 pseudo-
genes and 57 putatively functional genes in humans. Alterations in or inactivation of
enzyme activity can result from CYP gene polymorphism and mutation. Cytochrome P450
(CYP, EC1.14.14.1) superfamily enzymes, specifically CYP3A4, are considered a significant
metabolic pathway for THC, CBD, and CYP2C9 encoded by CYP2C9 and CYP3A4 genes are
predicted to play an essential role in the primary metabolism of THC. The highly polymor-
phic CYP2D6 gene, a member of the CYP superfamily, has been implicated in discovering a
phase I enzyme with over 91 distinct alleles [69]. The most prevalent CYP2D6 variants are
*3, *4, and *5, with phenotypes indicative of poor metabolizers and decreased or absent
enzyme activity. There is a wide range of CYP2D6 activity in people with genetic polymor-
phisms in the CYP2D6 gene. Moreover, xenobiotics and endobiotics are glucuronidated by
a superfamily of enzymes known as UDP-Glucuronosyltransferases (UGTs).

The UDP-glucuronosyltransferases (UGTs) superfamily of enzymes is a key player in
detoxifying and eliminating both endogenous and exogenous substances, such as cannabi-
noids and their metabolite, through the process of glucuronidation. Of all phase II drug
metabolites, 35% or less are glucuronides [70]. The UGT families consist of UGT1, UGT2,
UGT3, and UGT8 [71]. Additionally, recent research has shown new polymorphisms
connected to the various enzyme alleles, as illustrated in Table 3. In addition to the disease-
modifying therapies that treat critical MS, dose requirements for several commonly used
drugs with a narrow therapeutic range may differ by more than 20-fold depending on
genotype or enzyme expression status [72].

Table 3. Various alleles and their relation to the metabolizing enzyme activity.

Gene Allele Nucleotide Change Effect Ref.

CYP2D6 CYP2D6*3 A2549del It will produce a protein with little or no function, which
means increased activity of cannabinoids in the body. [73]

CYP2D6 CYP2D6*4 G1846A The activity of the enzyme is reduced, causing drug
accumulation in the body. [73]

CYP2C9 CYP2C9*2 c.430C > T The activity of the enzyme is reduced, causing drug
accumulation in the body. [74]

CYP2C9 CYP2C9*3 c.1075A The activity of the enzyme is reduced, causing drug
accumulation in the body. [74]

CYP3A4 CYP3A4*2 664 T-C The activity of the enzyme is reduced, causing an increase in
the drug’s half-life time. [74]

CYP3A4 CYP3A4*11 1088 C-T The activity of the enzyme is reduced, causing an increase in
the drug’s half-life time. [75]

CYP3A4 CYP3A4*12 1117 C-T The activity of the enzyme is reduced, causing an increase in
the drug’s half-life time. [76]

CYP3A4 CYP3A4*17 566 T-C Decrease in the enzyme activity, which increases the half-life
of the drug. [69]

UGT1A UGT1A9*3a 98T-C Reduction or inactivation of the enzyme. [77]
UGT1A UGT1A9*4 726 T-G Reduction or inactivation of the enzyme. [78]
UGT1A UGT1A9* 5 766 G-A Reduction or inactivation of the enzyme. [79]
UGT1A UGT1A1*3 1124 C-T It will lead to the inactivation of the enzyme. [80]
UGT1A UGT1A1*10 1021C-T Dimension in the enzyme activity. [81]
UGT1A UGT1A1*13 508-510del Inactivation of the enzyme. [82]
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6. Adverse Effects of Cannabinoids

Cannabinoids are often dismissed by the general public as a safe substance, oblivious
to any potential long-term health issues [83–85]. Comparing cannabinoid users with non-
users in the general population reveals that cannabinoids negatively impact cognition [86].
There is growing evidence that acute cannabinoid use is linked to other neurocognitive
decision-making deficits, including processing speed, sustained attention, verbal fluency,
and executive functioning [87–94]. Chronic cannabinoid usage by teenagers and young
adults over time affects cognitive abilities in several domains, including learning, mem-
ory, attention, decision-making, executive functioning, and psychomotor speed [85,95–98].
However, one systematic review investigated the adverse effects of cannabinoids in pro-
gressive MS patients who never used cannabinoids. The results indicated potential im-
provements in cognition with medicinal cannabinoids for MS patients. However, this
effect is only for short-time use. It contradicts the findings that chronic use of whole-plant
cannabinoids resulted in impairments in memory, attention, and executive and visuospatial
function [99]. More research is required for the detailed investigation of the adverse effects
of cannabinoid use both in the short and the long term.

A recent review on the adverse effects of cannabinoids has discussed not only the
implications of cannabinoids on mental functions, psychiatric conditions, and cognitive and
CNS alterations but also their effects on the respiratory system, the immune system, the re-
productive system, and the cardiovascular system [100]. Therefore, the use of cannabinoids
in the medical field must be conducted with great caution to benefit from their potential
benefits while avoiding the possible risks.

7. Cannabinoids and the Management of Multiple Sclerosis

Earlier studies using an in vitro model of MS, the Experimental Autoimmune En-
cephalomyelitis (EAE) model, have shown that cannabinoids are highly effective in treating
MS [101]. The cannabinoid receptor agonists Tetrahydrocannabinol, ∆8- and ∆9-THC ap-
pear to lessen the symptoms of EAE and significantly reduce the immune response in
animals. Several studies have shown that clinical signs of EAE, such as tail flaccidity and
generalized atonia, were delayed in onset and diminished in severity after these phar-
macological treatments [102,103]. Additionally, one of those studies found that ∆9-THC
reduced the histological evidence of EAE inflammation in the spinal cord of rats and guinea
pigs [102]. Interestingly, dexanabinol, one of the synthetic cannabinoid ligands that lack
the potential to act through CB1 or CB2 receptors, has also been shown to lessen EAE
symptoms in rats [104].

Numerous clinical studies indicate that the pain and spasticity caused by MS and
spinal cord injuries may be effectively reduced via cannabinoids, whose potential to reduce
the signs and symptoms of MS and spinal cord damage is consistent with some of the
drug’s conventional medical uses. Clinical investigations have shown that cannabinoid
receptor agonists help lessen some of the MS-specific signs and symptoms, and these
clinical trials are depicted in great detail in Table 4.

The promising effects of cannabinoids in managing various effects of MS are some-
thing that all of the research from 1996 to 2020 has in common. For example, neuropathic
pain, one of the significant MS symptoms, has been demonstrated to be reduced by using
cannabinoids. Several clinical studies involving various cannabinoids and dosage forms
produced promising outcomes for the prevention and/or treatment of neuropathic pain.
However, some clinical trials used personal anecdotes gleaned through distributing ques-
tionnaires to MS patients using cannabinoids for self-medication. The first survey used
responses from 57 male and 55 female patients [105]. The results pointed out that more
than 90% of these individuals who were experiencing MS symptoms, such as spasticity
at the start of sleep, muscle discomfort, pain in the legs at night, tremor in the arms or
head, and depression, have reported relief after using cannabinoids. Despite these findings,
there is conflicting evidence about the effectiveness of cannabinoids in treating MS and
spinal cord damage. It is currently unknown if cannabinoid receptor agonists prevent
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MS from progressing in patients with this condition or if they only lower the intensity of
specific signs and symptoms. There is still some debate in the literature about the relative
importance of CB1 and CB2 receptor activation and the causes of variations in response to
cannabinoids. Many factors, such as dosage form, genetic makeup, or the molecular effects
of cannabinoids at different doses, contribute to patient response variation.

Table 4. Various clinical trials on the use of cannabinoids with MS patients.

Drug (Active
Constituent) Dosage Form Experimental Design Outcomes Ref.

THC (5–10 mg) Oral Double-blind study Decrease muscle spasms and enhance the
walking ability of the patient. [106]

Nabilone
(1 mg), a synthetic THC

mimic
Oral Open-Label study Dimension in the pain with MS patients. [107]

THC (10 mg oral or 15 mg
rectal) Oral/rectal Open-Label study

Enhancement of walking ability, passive
mobility, and dimension in the pain with

young MS patients.
[108]

THC (7.5 mg) Oral Placebo-controlled,
double-blind study Improved muscle spasm perception. [109]

Sativex, a THC-CBD
combination

(2.7 mg: 2.5 mg)
Oromucosal Controlled double-blind,

randomized study

It has an analgesic effect in addition to
enhancing of quality of life of the patient

(e.g., sleep improvement).
[110]

Tobacco and cannabis
resin-containing smoking Inhalation Placebo-controlled trial Decrease in the Nystagmus amplitude

and enhancement of visual ability. [111]

Dronabinol
(>25 mg), a synthetic THC

mimic
Oral Randomized, double-blind

controlled study Significant analgesic effect. [8]

THC (5–15 mg) Oral The single-blind study was a
placebo-controlled trial

Enhancement of the patient’s ability in
handwriting and a significant decrease in

spasticity and tremors.
[112]

THC (5–10 mg) Oral Double-blind study Improvement in tremors and ataxia with
MS patient. [113]

Nabilone (1 mg), a
synthetic THC mimic Oral Double-blind controlled trials Reduction in muscle spasms

and tremors. [114]

THC (10–15 mg oral or
2.5–5 mg rectal) Oral/rectal Open-Label study Analgesic effect with MS patient. [108]

Sativex, a THC-CBD
combination

(2.7 mg: 2.5 mg)
Oromucosal Double-blind controlled trials Improvement in muscle spasms in

MS patients. [115]

THC (1 mg) Oral Open-Label study Have an analgesic effect on patients. [107]
Sativex, a THC-CBD

combination
(2.7 mg: 2.5 mg)

Oromucosal Double-blind controlled
randomized trial

Improving the resistant MS spasticity
more effectively and clinically. [116]

Sativex, a THC-CBD
combination

(2.7 mg: 2.5 mg)
Oromucosal Observational, prospective

controlled trial
Improvement in the symptoms of MS in

resistant patients. [117]

Sativex, a THC-CBD
combination

(2.7 mg: 2.5 mg)
Oromucosal Double-blind controlled trial Improvement in the clinical states of

MS patients. [118]

Sativex, a THC-CBD
combination

(2.7 mg: 2.5 mg)
Oromucosal Randomized controlled study Decrees the neuropathic pain associated

with MS patients. [119]

Sativex, a THC-CBD
combination

(2.7 mg: 2.5 mg)
Oromucosal Open-Label study

This study has proven the
immunomodulatory effect of

cannabinoids by detecting the gene
expression of immune-related pathways.

[120]

Sativex, a THC-CBD
combination

(2.7 mg: 2.5 mg)
Oromucosal Randomized controlled trial A significant reduction in the pain

associated with MS. [121]

Sativex, a THC-CBD
combination

(2.7 mg: 2.5 mg)
Oromucosal Controlled retrospective study It demonstrates an efficient and safe

reduction in muscle spasms. [122]

8. Functions of Cannabinoids in MS

Animal models have been used to investigate the possible function of cannabinoids in
preventing the progression of MS and providing neuroprotection. One of the most accepted
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mechanisms of action is immunosuppression. This effect was revealed in an in vivo study
using an EAE model of mice and a daily dose of CBD, which showed dimensions in
the T cell infiltration and neuroinflammation in the brain and spinal cord’s white matter
pathways [123]. Another similar study used CBD alone or in combination with THC. In
both techniques, there was a reduction in the proliferation and number of T cells, which
impacted and reduced the degree of demyelination of neurons [124].

In vitro studies also supported the immunosuppression mechanism as the most dom-
inant pathway of protection in MS. Two earlier studies used THC on either animal or
human cell cultures, and the results showed inhibition or reduction of T cells’ prolifera-
tion [125,126]. A recent study has also demonstrated that THC decreases the number of
natural killer cells (NK) [127]. Recent studies extended to the use of CBD in cell cultures.
A study by Yang et al. investigated the use of CBD on T cells and showed that the proin-
flammatory phenotype of T cells was reversed [128]. It is also noteworthy that the effect of
cannabinoids is not exclusive to T cells, as demonstrated by a study by Kozela et al., which
showed that the use of CBD negatively impacted both T cells and B cells [129].

9. The Growing Field of Cannabinoid Therapeutics

Several clinical studies have been conducted on human individuals (Table 4). The
results showed great promise for using cannabinoids in MS. Commercial cannabinoid
formulations have advanced in recent years, but their use is still limited. The combined
effects of THC and CBD can be observed in Sativex, one example of a commercial cannabi-
noid formulation. Many clinical trials have been conducted to evaluate the efficacy of
Sativex as a supplemental therapy for patients with MS who have moderate to severe
spasticity [116,130]. Nabiximols, a combination of CBD and ∆9-THC formulation, have also
been used to manage spasticity associated with MS [131]. Neuropathic pain, a common
symptom of MS that affects between 17% and 70% of patients, was also shown in a study
to be reduced by Sativex. Additionally, Sativex is well tolerated by MS patients and has a
low incidence of side effects [132].

Although the number of cannabinoids in formulations approved for the treatment of
MS is still limited, several cannabinoids are used to treat a variety of other diseases and
conditions, such as Nabilone for the management of Parkinson’s disease [133], Dronabinol,
which is used to decrease anorexia, disturbed behavior [134], and nighttime agitation [135]
in Alzheimer’s disease, and Cesamet for the treatment of chemotherapy-induced nausea in
cancer patients [136]. All these indicate that the field of cannabinoid therapeutics is still in
its infancy, but it will witness remarkable progress in the future.

10. Future Research on Cannabinoids

It has been discovered that cannabinoids may bind to a variety of locations, including
the transient receptor potential vanilloid subtype 1 (TRPV1), the G-protein-coupled receptor
55 (GPR55), and the cannabinoid CB1 and CB2 receptors [100]. Despite the accepted
scientific fact that cannabinoids act through interactions with the receptors of the ECB
system, which are CB1 and CB2 [16], the idea that a drug may interact with several proteins
to exert its biological function has slowly gained acceptance. Therefore, a recent review by
Zhu et al. discussed the recent updates on natural products and the different approaches for
target identification via binding affinity experiments for target recognition and validation
and the biological function verification of the significance of this binding. This review
also pointed out single-cell multi-omics and pathway enrichment analysis for identifying
gene regulatory networks and the full impact of drug interactions on system biology [137].
Future research on cannabinoids using this approach will enable us to understand further
the potential benefits and safety risks of cannabinoids for several diseases and conditions.

11. Concluding Remarks and Perspectives

Multiple sclerosis (MS) is a neurodegenerative condition in which inflammation and
myelin degeneration lead to lesions, which have been found in the white matter of the brain
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stem, optic nerve, and spinal cord [2]. MS’s signs and symptoms depend on where the
lesions are in the brain or spinal cord [5]. Symptomatic treatment aims to decrease the symp-
toms, but it is limited by its toxicity [8]. More than sixty physiologically active chemical
substances, known as cannabinoids, can be created either naturally (phytocannabinoids), by
animals (endocannabinoids), or artificially (synthetic cannabinoids) [11]. The therapeutic
use of cannabinoids as a symptomatic treatment for MS has recently grown in popularity,
where they exert their function through the endocannabinoid (ECB) system, which is a
complex signaling system that includes the G-protein-coupled receptors cannabinoid-1
(CB1) and cannabinoid-2 (CB2) [16].

Cannabinoids have been proven to have anti-inflammatory, antiviral, and anticancer
characteristics, according to studies on the pharmacodynamics of cannabinoids [40]. How-
ever, the effects and responses of cannabinoids can vary among individuals due to genetic
variations in cannabinoid receptors or metabolizing enzymes, as shown by different studies
in Table 2. Therefore, cannabinoid treatment should be tailored to an individual’s genomic
state rather than used indiscriminately. The potential benefits of cannabinoids must also be
balanced with the associated risks, including adverse effects on mental, cognitive, and phys-
ical functions and the respiratory, immune, reproductive, and cardiovascular systems [100].
Therefore, the medical use of cannabinoids must be approached with caution.

Since the 1990s, the therapeutic use of cannabinoids in MS has been studied through
in vitro experiments, in vivo pre-clinical studies on animals, clinical trials on human
subjects, and patient questionnaires assessing symptom relief after self-medication with
cannabinoids. All these studies showed the potential therapeutic benefits of cannabinoids
in MS. Some of them advanced to produce commercial therapeutic formulations of cannabi-
noids such as Sativex, which is used as a supplemental therapy for patients with MS who
have moderate to severe spasticity [116,130], and Nabiximols, which has also been used
for the management of spasticity associated with MS [131]. However, despite extensive
previous research, further studies are needed on cannabinoids to enhance their safety and
efficacy in treating MS and other diseases.
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