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Abstract: Drug discovery is an expensive, long, and complex process, usually with a high degree of
uncertainty. In order to improve the efficiency of drug development, effective methods are demanded
to screen lead molecules and eliminate toxic compounds in the preclinical pipeline. Drug metabolism
is crucial in determining the efficacy and potential side effects, mainly in the liver. Recently, the
liver-on-a-chip (LoC) platform based on microfluidic technology has attracted widespread attention.
LoC systems can be applied to predict drug metabolism and hepatotoxicity or to investigate PK/PD
(pharmacokinetics/pharmacodynamics) performance when combined with other artificial organ-on-
chips. This review discusses the liver physiological microenvironment simulated by LoC, especially
the cell compositions and roles. We summarize the current methods of constructing LoC and the
pharmacological and toxicological application of LoC in preclinical research. In conclusion, we also
discussed the limitations of LoC in drug discovery and proposed a direction for improvement, which
may provide an agenda for further research.
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1. Introduction

Drug development is a long, costly, and highly uncertain process that usually takes
10–15 years [1]. After the preclinical trial, 90% of the approved drugs may still fail during
human clinical trials or FDA approval [2,3]. It is also worth noting that these data do
not include therapeutic candidates in the preclinical stage; otherwise, the drug discovery
failure rate will be even higher. Statistics show that the average development cost of a
new drug is around two billion dollars [4]. Most drug failures in clinical trials because
the existing models in preclinical development are not appropriate for predicting new
compound toxicity or metabolism [5]. The commonly used preclinical models include
in vitro cell culture and animal models. Animal models, such as the mice models, are
not necessarily effective in predicting human efficacy and toxicity due to nonnegligible
interspecies differences in drug targets and metabolism pathways [6–10]. Furthermore,
the cost and ethical concerns also require attention. Therefore, in vitro cell culture systems
have been widely used as substitutes for animal models [10–12]. However, in vitro cell
models also have limitations, such as the lack of an extracellular matrix and the inability to
pursue pathophysiological studies. For example, primary human hepatocytes (PHHs), the
gold standard of toxicity testing, will rapidly depolarize in vitro, and the drug clearance
rate will also be significantly reduced unless they are cultured in a particular environment,
such as collagen sandwich culture [13]. Engineers are using engineering tools to control the
cellular microenvironment, such as semiconductor industrial tools, miniaturization tools,
and integration with organs on chips, to improve the stability of PHHs’ functions [14].

One of the primary areas of unfavorable medication effects is the liver, which also
performs a significant role in drug metabolism. Thus, the liver can play a major part in
assessing drug efficiency and safety in the preclinical stage. Consequently, establishing an
in vitro liver model reproducing the liver microenvironment is conducive to understanding
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the preclinical research of drug development. The recently developed liver-on-a-chip (LoC)
technology is innovative in managing the liver microenvironment in vitro, which allows
the dynamic flow of cell medium over the cell environment with good robustness and
reproducibility. The LoC system can also be integrated into the laboratory as preclini-
cal tests to predict in vitro human experiments [15]. Multiple liver chip platforms have
been designed to model drug metabolism [16–19], hepatotoxicity [7,20–22], drug–drug
interactions [16,23], cancer [24], and inflammation [18]. The LoC system can also explore
how the internal structure of the liver, such as the hepatic vascular system, is affected by
oxygen and nutrient gradients, thereby simulating chronic liver disease in vitro [25,26]
and searching for candidate drugs for the disease. This review introduces the liver’s
physiological microenvironment, focusing on its cell composition and special functions.
Then it summarizes the current LoC construction methods using microfluidic technology,
including static platform, 3D printing, and perfusion. We then introduce the application
of LoC in preclinical development involving pharmacology, toxicology, and drug–drug
interactions. Finally, we point out the limitations of the LoC platform and then attempt to
suggest future improvements.

2. Liver-on-a-Chip
2.1. Physiological Microenvironment of the Liver

As the largest internal organ, the liver plays a crucial role in regulating the homeostasis
of the internal environment, the anabolism of various substances, and the detoxification of
endogenous and exogenous substances, especially in drug metabolism [27,28]. The hepatic
artery and hepatic vein provide a double blood supply for rich hepatic sinusoids and
delicate hepatic lobule structure. Liver parenchymal cells (hepatocytes), non-parenchymal
cells (Kupffer cells, hepatic stellate cells, macrophages, and sinusoid endothelial cells), the
extracellular matrix, and the nervous system constitute the complex liver microenvironment.
Distinct types of cells form complicated transmission networks and metabolic environments
through autocrine and paracrine signal transduction [29,30].

Drug metabolism can be divided into oxidation, reduction, hydrolysis, and conju-
gation. Phase I metabolism includes oxidation, reduction, and hydrolysis, while phase
II metabolism includes conjugation. Hepatocytes are rich in various enzymes required
for phase I and phase II drug metabolism. Among them, cytochrome P450 (CYP450) en-
zymes are terminal oxygenases involved in nearly all phase I drug metabolism steps in
the liver. CYP450 enzymes have apparent species differences, leading to many differences
in metabolic pathways and metabolites of drugs between animals and humans. Poly-
morphisms are a critical feature of CYP450 and the fundamental reason for individual
differences in drug response. In addition, CYP450 can be induced and inhibited; that is
to say, drugs or other exogenous chemicals will alter the number and activity of CYP450,
which may result in metabolic drug interactions.

Hepatocytes, known as parenchymal cells, account for about 60% of liver cells [31].
Hepatocytes are responsible for the liver’s metabolic activity with rich mitochondria,
endoplasmic reticulum, ribosomes, and many enzymes, including CYP450 [32,33]. The
normal hepatocytes have polarization: the cell membrane of hepatocytes is divided into the
basolateral domains facing the liver sinus and the apical domains facing the bile duct [13].

On the micro-scale, the liver is a reticular structure with hepatic lobules as the func-
tional liver unit. Lobules take the hepatic vein as the center and distribute layers of liver
plates around. The liver sinusoid is the lacuna between adjacent liver plates with strong
permeability. Blood is supplied to each lobule from hepatic arterioles and portal veins
(Figure 1C). Hepatocytes, which are deeply embedded in the endothelium, constitute the
parenchyma of the liver. The medication molecules in blood can rapidly diffuse with the aid
of sinusoidal endothelial cells, completing the material exchange with hepatocytes [34,35].
Hepatic stellate cells are located in the space of Disse between endothelium and hepato-
cytes. The Kupffer cells, which facilitate antigen detection and intercellular communication,
line the inside of the sinusoid. At last, the sinusoid’s interior is lined with Kupffer cells,
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facilitating intercellular communication and antigen detection (Figure 1A). Different levels
of hepatotoxicity are affected by liver zoning. Low oxygen content will increase CYP
activity, leading to increased hepatotoxicity, while locations with low CYP activity will
cause less cell harm (Figure 1D).
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Figure 1. (A) Cell distribution structure in a liver lobule. Double blood supply of hepatic arteriole
and portal vein enters the liver’s portal triad region and the central vein. (B) Three-dimensional liver
tissue diagram in LoC. The fluid flows through the pores on the scaffold, providing the biochemical
environment and mechanical stimulation. (C) Microstructure of liver. The liver lobule is hexagonal,
with a 1 mm diameter and a 2 mm thickness, functionally divided into three regions. (D) Example of
zonal heterogeneity of hepatotoxicity. The yellow arrow shows the flow direction. (A,B) reproduced
with permission of [34], Copyright © 2017. Published by Elsevier. (C,D) reproduced with permission
of [29], Copyright © 2019. Published by MDPI.

2.2. Liver-on-a-Chip Technology

As mentioned above, drug development requires in vitro liver models to investigate
drug metabolism and other aspects. Typical models include 2D planar primary hepato-
cytes [36,37], 3D printed liver tissue [38–41], hepatocyte organoids [42], and liver-on-a-
chip [43–46].

Traditional 2D culture of hepatocytes is easy to handle with low cost and plays an
essential role in drug research, development, and cell biology. However, liver functions
cannot be wholly reproduced because most hepatocytes will soon lose internal biochemical
clues and cell–cell communication, leading to phenotypic changes. The rapid development
of 3D printing liver tissue and constructing liver organoid technologies provides a viable
strategy for in vitro liver models; however, they are also limited by insufficient accuracy or
lack of spatial structure.

With the ability to precisely control the culture environment at the micro-scale,
microfluidics-based cell culture technologies have recently captured the most attention.
It is assayed robust and replicates the hepatic microenvironment. Moreover, with the
recent rise of nanomedicine in the application of vaccines, the LoC system can conduct
abundant and accurate research on the toxicity of nanomedicines [47], making up for the
lack of nanotoxicity assessment. In addition, the hepatocytes cultivated in these devices
under flowing circumstances allow for more frequent nutrition and waste exchange than in
traditional methods. In contrast, LoC manufacturing calls for more complex operations.
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2.2.1. Cell Sourcing

The reliability of the simulation effect of liver models is significantly affected by the
source of the cells. Primary human hepatocytes (PHHs), primary animal cells, stem cell-
derived hepatocytes, and immortalized liver cell lines are the main cell types used for liver
tissue reconstruction in vitro.

PHHs with good reproducibility in vitro maintained the metabolic function of the liver,
mainly retained the enzyme level consistent with that in vivo, becoming the “gold standard”
for drug tests and widely used in drug metabolism and toxicology research [48–50]. In
addition, PHHs with population heterogeneity are essential to reflect in drug testing [51].
However, culturing PHHs on a medium presents a slice of problems, such as the rapid loss
of functionality and polarity in vitro [31,52–54]. Therefore, researchers have tried changing
the culture materials, co-culturing, 3D culturing, and other methods but failed to establish
a simple, efficient, and stable culture system of PHHs in vitro. Moreover, PHHs have
constraints such as high costs resulting from donor shortage and variability.

Animal-based testing has built an essential bridge between in vitro drug research and
clinical trials, which is critical in drug safety research. In addition, since research animals
are easily accessible commercially, they can be employed as sources of fresh primary
cells without the limitation of donor shortage [55,56]. However, they have significant
interspecies differences in drug targets, the magnitude of hepatic first-pass metabolism,
and other aspects. Especially the distinct variations in CYP450 induction by medications
between humans and animals (rats, dogs) have been well established, obstructing their
wide application [57].

Immortalized liver cell lines, which can be manipulated with unlimited proliferation
by inhibiting cellular senescence [58,59], are widely used in drug toxicology research
in vitro. Standard liver cell lines are derived from hepatocellular carcinoma (HCC) [60,61],
such as Huh7, HepG2, and HepaRG. HepG2 cells have been used in toxicology and
pharmacology since the 1970s. They have diverse differentiation functions and stable
phenotypes, but the CYP450 expression level is not as high as that of HepaRG cells when
HepaRG cells differentiate into hepatocytes [62,63]. However, compared with PHHs, the
cell lines generally have lower activities of CYP450 and detection accuracy in drug toxicity.

Hepatocytes derived from stem cells have emerged as a new source of liver cells in
recent years [64]. Regarding function, stem cells have the potential for self-renewal and
multiple types of differentiation. They are the most primitive cells in the cell line, which
can differentiate into cells of a particular tissue type in vivo [65]. Common stem cell lines
include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which can
differentiate into various liver cells [66,67] and hematopoietic stem cells [68,69] with stable
metabolic function and specific gene expression ability. The iPSCs have resembled sensitiv-
ity as PHHs in detecting the degree of drug-induced liver injury [70]. The culture medium
is supplemented with growth factors or other substances to carry out this differentiation.
Differentiated cells can retain the donor’s genotype to study personal effects, so there is
no need to biopsy the target organ itself. Accordingly, the manipulation of stem cells is
remarkably more complex than that of liver cell lines. When compared to the organoids
developed by PHHs, hepatocytes generated from iPSCs consistently secrete less albumin,
have much lower CYP450 activity, and express immature markers.

Overall, the physiological culture conditions of the liver models are strongly influenced
by the source and kind of cells employed, such as the characteristics of primary hepatocytes,
HepG2, and HepaRG cell lines mentioned above. In addition, many cells require sensitive
environments, so rational in vitro liver model systems must provide these specialized
environments in culture. Therefore, currently, the researchers turn to microfluidics to
effectively control the culture microenvironment.

2.2.2. Microfluidic Strategies for Liver-on-a-Chip

Microfluidics is a downsizing of biological separation and analysis techniques with a
high surface-to-volume ratio, automation, and integration [71,72]. The cells in conventional
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culture methods are in a semi-static environment, and the chemicals added in the labora-
tory can only affect the cells through diffusion, which is much of a difference compared
with the cells exposed to complex chemical and physical stimuli in vivo. Researchers
used microfluidic devices to provide oxygen, shear stress, and other conditions for cell
culture in vitro, pursuing better simulation of the physiological functions of tissue and
organs [73]. This technology became an interdisciplinary field of research in the 1990s,
combining micro-device technologies, chemical sensor technology, and analytical chemistry.
These chips recreate three essential characteristics of tissues or organs: (i) biochemical
microenvironment, which includes chemokine, growth factor, and nutrient gradients;
(ii) 3D microarchitecture or the spatial distribution of various cell types; and (iii) mechani-
cal microenvironment, which includes mechanical compression, cyclic strain, and shear
stress [5,74–77] (Figure 1B).

The initial static culture platforms inspired perfused devices to culture primary hepa-
tocytes in vitro. In the first LoC reported in 2007 [78], microfluidic technology was used to
simulate the endothelial barrier in the hepatic sinuses to protect liver cells from damage
due to high shear stress (Figure 2B). This method allowed both human and rat primary
hepatocytes to maintain more than 90% cellular viability after seven days. In 2008, Khetani
et al. [11] designed a platform that showed the importance of co-culture and spatial struc-
turing. Experiments used a 24-well polydimethylsiloxane (PDMS) elastic mold to provide
a culture environment, where primary hepatocytes were selectively adhered to matrix
protein-coated regions and surrounded by mouse 3T3-J2 fibroblasts (Figure 2A). Gravity is
the primary source of propulsion for this basic perfusion platform, which is easy to use
and eliminates the need for external power supplies. This is a widely adopted platform in
the drug metabolism area of drug discovery, whereas the shear stress and nutrient supply
cannot be constantly controlled. The pumped flow can achieve this control and improve the
consistency of supply. Pump-driven 2D platforms can replicate zonation features thanks to
the chips’ intricacies [79]. The gradient generator has a typical Christmas-tree structure, cre-
ating a concentration gradient between the two extremities at the entrance and connecting
to the cell culture chamber (Figure 2C). Cell culture chambers were made as an elongated
hexagon shape to simulate the hepatic lobular architecture. This perfusion device provided
an acceptable low-shear-stress environment for hepatocytes to achieve more stable function
in vitro. These similar membrane-based 2D platforms are widely used in hepatotoxicity
assessment [80] and disease modeling [81]. Compared with the 2D platform, the cells in
the 3D culture system can be closely connected without affecting drug diffusion, such as
the 3D spherical cell culture. The long-term stability of the human liver spheroids system
makes it an effective tool for predicting the hepatic clearance of drugs in vivo. A single
spheroid can only contain a few cells, and the direct pooling of spheroids will lead to
the fusion of spheroids, causing central necrosis or deposition of the bottom and loss of
three-dimensional structure. The microporous array processed by the low-adhesion layer
was used to improve the pooling of multiple spheroids [82,83], and successfully generated
up to 100 spheroids (Figure 2D). Nevertheless, such spheroids cannot be compared to the
organoids produced by differentiated stem cells in terms of physiological correlation. In
addition to the technologies described above, 3D bioprinting, layer-by-layer deposition,
cell microarrays, and many other strategies can be used to construct liver chips.

These rich designs and formats all have their strengths and weaknesses. In the
experimental design for drug development, the focus should be on selecting the critical
parameters needed, simplifying other aspects of the need. It is essential to seek clues from
the in vivo liver environment and to be good at incorporating different types of platforms
to achieve better results.
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Figure 2. Different microfluidic models are used to construct liver-on-a-chip. (A) A 24-well PDMS
mold with through holes at the bottom. Hepatocytes (labeled green) selectively adhered to the
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attachment plate, transferred them to a 96-well plate or liver chip and compared their performance.
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(B) reproduced with permission of [78], Copyright © 2007. Published by Wiley Periodicals, Inc.
(C) reproduced with permission of [79], Copyright © 2018. Published by Nature Publishing Group.
(D) reproduced with permission of [80], Copyright © 2022 Published by Elsevier.

3. Application in Preclinical Studies of Drug Discovery

Preclinical research of drug development refers to the safety and effectiveness testing
of new active substances before human trials. The goal is to identify and exclude inef-
fective, toxic, or unqualified candidate drugs at each stage. In preclinical research, the
significance of the LoC platform is to reduce or replace conventional mammalian mod-
els and conduct PK/PD prediction and toxicological safety research closer to the natural
human environment.

3.1. Pharmacokinetics and Pharmacodynamics

Currently, single-organ and multi-organ liver models are employed in drug metabolism
research. The single LoC model focuses on the drug ADME (absorption, distribution,
metabolism, and excretion) in the only liver. The multi-organ model examines how drugs
react when different organs in the body interact with the liver, including how much of a
drug is present in various organs and how metabolites affect other organs. The basis for
the drug ADME is to improve the survival time and functional activity of cells in the LoC
system. The widely accepted markers are albumin synthesis and urea secretion [84]. It
has been proven that the activity of hepatocytes in vitro can be significantly improved in
co-culture conditions. Almost all liver physiological systems in vitro used for drug research
have chosen the co-culture mode, regardless of 2D or 3D, and will change co-cultured cells
based on research purposes, such as immune-related cells or inflammatory-related cells [85].
After ensuring the cell activity, the LoC system needs to meet the drug metabolism function,



Pharmaceutics 2023, 15, 1300 7 of 18

which is the expression induction ability of drug metabolism enzymes (such as CYP) [86].
The prolonged survival time of cells within the system is conducive to the induction and
long-term dependent inhibition of drug-related enzymes, thereby more realistically reduc-
ing the reaction process of drugs in the human body. Using typical substrates of various
drug-metabolizing enzymes as probes to study metabolic processes is very common and
easy to operate. Compared to animal models, the LoC system can monitor metabolic
processes in real-time and transparently and flexibly adjust the physiological conditions
of the system. Finally, the drug clearance process simulation compares the amount and
distribution of metabolites in the LoC system with human urine. The LoC system ana-
lyzes the clearance efficiency and accumulated toxicity of metabolites of candidate drugs
to determine important targets such as drug bioavailability, in vivo half-life, and dosing
interval. With complete and stable functions, the LoC system can play a role in predicting
the metabolic process of clinical drugs and the acceptable dose of drugs to the human body.

The metabolism of drugs will be affected by inflammation. Severe inflammation will
cause liver damage and even endanger life. Sarkar et al. [18] designed a 3D perfusion liver
model with co-cultured hepatocytes and Kupffer cells, which can release inflammatory
factors, to examine the anti-inflammatory effect of glucocorticoids on the liver. Compared
with a traditional 2D single culture, both 3D perfusion and co-culture models of hepatocytes
and non-parenchymal cells were conducive to long-term stable liver function in vitro.
After the inflammation was induced by lipopolysaccharide in the culture environment,
oxycortisone in the model showed first-order kinetic characteristics of metabolism. Its
clearance value and metabolites are generally related to human data, demonstrating the
effectiveness of this 3D perfusion platform in screening anti-inflammatory compounds.
Long et al. [16] carried out a similar study with the same 3D perfusable human liver
co-culture platform (Figure 3A,B). This culture mode prolonged the time for hepatocytes
to maintain functional activity in vitro so that the inhibition of chronic inflammatory
factor chronic interleukin 6 (IL-6) on the activity of metabolic enzyme cytochrome P450
3A4 isoform (CYP3A4) could be detected, which occurred within two weeks. Under the
influence of inflammatory factors and therapeutic antibodies, changes in CYP3A4 activity
were observed in vitro, which was revealed through the metabolism of small molecule
drugs. The long-term stability of this model realized its prediction function of drug–drug
interaction, which is of great significance in the preclinical drug development stage.

In addition to predicting drug metabolism at the individual level, variability in the
population can also be considered. Tsamandouras et al. [19] applied the LoC platform in
quantitative pharmacological research and analyzed hepatocytes from different donors.
A three-dimensional perfusion human liver micro-physiological system can prolong the
survival of cells, and alleviate the rapid loss of metabolic function, providing suitable
conditions for studying low-clearance compounds in drug metabolism. The author used
this model to explore the metabolic efficiency of six compounds. After statistical pro-
cessing of the data obtained from the LoC platform, it was applied to the modeling and
simulation framework to transfer the results of population variability in vitro to in vivo.
Using modeling and simulation for more accurate data evaluation is effective. Docci, Luca
et al. [87] evaluated metabolic enzyme activity using 15 drugs on the LoC system. The
experiment used mathematical modeling to improve parameters, achieve accurate predic-
tion of media sampling and evaporation in the environment with uneven media flow and
concentration, and optimize the simulation process of in vitro metabolism extrapolation to
in vivo metabolism. The prediction results of this in vitro-in vivo translation were closely
consistent with the data observed in clinical practice, which proves that the use of the LoC
platform is of great significance in quantitative metabolism studies of drug development.
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Figure 3. Example of 3D perfusion platforms. (A) Twelve fluid-isolated bioreactors with connected
cell culture plate (yellow) and pneumatic plate (gray). (B) Cross section diagram of the bioreactor, the
membrane separates the upper cell culture plate from the lower pneumatic plate, and the micropump
provides power for medium circulation in the channel. (C) OrganoPlate LiverTox model. The
iHeps differentiated in 2D culture are harvested and seeded in OrganoPlate 2-lane through a liquid
processor. Perfusion and organ channels were separated by phase guidance (PhG). (A,B) reproduced
with permission of [16], Copyright © 2016. Published by The American Society for Pharmacology and
Experimental Therapeutics. (C) reproduced with permission of [20], Copyright © 2021. Published
by Elsevier.

3.2. Evaluation of Drug Efficiency and Safety

The failure of possible therapeutic candidates has been chiefly attributed to the toxicity
of drugs and unidentified safety issues. Efficient identification of hepatotoxic compounds
during preclinical drug development has important significance for drug development
and prevention of liver injury. Prior to the invention of the LoC, primary isolated hepato-
cytes and immortalized cell lines were used in preclinical drug hepatotoxicity testing [84].
Common flaws in these models include rapid activity decline and decreased expression of
genes and function specific to the liver [88]. Toh et al. [21] tried to combine microfluidics
with hepatocytes culture in 2009. The researchers successfully cultured primary hepato-
cytes in multiple microfluidic channels and maintained their differentiation function to
enable multiplexed drug toxicity testing in vitro. This study emphasized the important
potential value of the microfluidic hepatocyte model for future drug toxicity testing, and
scholars then continued their study on this basis. Bircsak et al. [20] integrated a similar 3D
perfusion co-culture platform with the automatic liquid processing system to achieve high-
throughput screening of drug hepatotoxicity. Researchers selected induced pluripotent
stem cells derived hepatocytes (iHep) as a substitute for PHHs, and then used perfusion
technology and co-culture of three kinds of liver cells to restore the liver microenvironment
(Figure 3C), resulting in a long-term culture of 2–5 weeks. In each 2-lane chip, endothelial
cells and differentiated THP-1 Kupffer cells were seeded into the perfusion channel, and
parenchymal organ cells were seeded into the organ channel. iHeps were separated from
the simulated vascular channel through a layer of endothelial cells and Kupffer cells to
approach the hepatic sinuses in vascular. Albumin, urea, iHep nuclear size, and iHep
viability were analyzed as indicators of hepatotoxicity. The automatic liquid processing
system was used to complete automatic cell seeding, drug delivery, and culture medium
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collection on the platform, exhibiting stable and reliable automation performance. Selecting
iHeps as a cell source was a coordination of high-throughput screening. In the future, a
small number of candidate drug ingredients can be tested against a panel of models derived
from dozens to hundreds of individuals.

The investigation of drug-induced liver injury (DILI) is one of the noteworthy focuses
of drug development. Xiao, Rong Rong et al. [22] chose to focus on PHHs, the gold standard
of drug testing, to improve and stabilize cell functions and metabolic enzyme activity by
using cell-extracellular matrix (ECM) interaction. They built a collagen-based 3D PHH
model on the integrated biomimetic array chip (iBAC) and compared its sensitivity of
hepatotoxicity prediction with a 2D conventional culture plate. The geometry of iBAC was
designed in a commercial 96-well format, making it highly compatible with commercial
high-throughput devices. In comparison to 3D liver spheroids, this single-cell culture
method had a more straightforward operation, lower cost, and offers excellent predictive
sensitivity in drug hepatotoxicity testing. In large-scale screening tests for hepatotoxic
drugs, the 3D PHH model has a high sensitivity to 122 drugs with known clinical toxicity.
However, some immune-related drugs have not yet passed the test for hepatotoxicity. This
aspect can be further studied through subsequent co-culture of Kupffer cells with PHHs.
This model is valuable for further improvement, for example, to explore the variability of
different PHH donors and become a standard evaluation tool for drug development in
the future.

Another significance of LoC is to reduce the use of animal models and drug screening
failures caused by physiological differences between species. Jang et al. [7] performed their
studies on the human relevance of animal (rats, dogs) hepatotoxicity with 3D microfluidic
liver chips. Hepatocytes and three other types of non-parenchymal cells were co-cultured in
the extracellular matrix, and the culture period was sustained for 14 days. The CYP activity
of the three chips was equal to that of freshly isolated primary hepatocytes or even exceeded
that (when using a CYP substrate mixture), leading to effective hepatotoxic phenotype
identification. This work demonstrated the value of the LoC platform in investigating the
interspecific difference of hepatotoxicity, a clinical transformation of drug toxicity observed
in animal studies, and its potential application in detecting the mechanism of drug-induced
liver injury.

3.3. Multi-Organ Chips Systems

Integrating the liver with other organs of humans to form body-on-a-chip can better
imitate the real physiological organ networks in vivo and incorporate the organs’ inter-
action factors into the research of drug ADME. Common combinations include the liver,
kidney, intestine, heart, and other organs on a chip [89].

Given the significance of absorption and barrier functions of the small intestine in drug
flow in vivo, Kimura et al. [90] integrated the small intestine and liver on a microfluidic
perfusion chip to predict pharmacokinetics. Due to insufficient oxygen or nutrients, co-
culturing cells from different organs were challenging in conventional research. Researchers
made microfluidic chips with high oxygen permeability materials (polydimethylsiloxane)
and embedded micropumps to simulate physiological circulation to achieve the co-culture
of Caco-2 cells (small intestine), HepG2 cells (liver) and A549 cells (lung cancer) for more
than three days. The model strictly reproduced physiological parameters such as organ
volume ratio, blood circulation structure, and hepatic venous and arterial blood flow ratio.
This work is the first trial to reproduce both blood circulation and organ volume relation
in vitro.

The kidney is the main organ for eliminating drugs. The metabolism of drugs in
the kidney promotes the development of drug-targeting tissue distribution systems, and
drug-targeting tissue distribution can avoid some side effects of drugs. Liu et al. [23]
published the first report on the pharmacokinetics of carbohydrate drugs (ginsenoside
compound K, CK) using microfluidic multi-organ chips. Researchers separated the small
intestine, liver, and kidney from the complex human organs to prevent the affection of
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complex metabolism in the human body. The several layers of chips are ordered according
to drug absorption and metabolism in vivo (Figure 4A,B). HepG2 and HUVEC co-culture
increased the metabolic capacity of HepG2, and dynamic perfusion culture enhanced the
activity of Caco-2 cells and their tolerance to CK. Organ chips can not only simulate the
physiological microenvironment but also restore the biological phenomena of organs, which
is conducive to explaining the reasons behind biological phenomena. Both intestinal and
vascular administration were conducted in this experiment. By observing the status of
CK as the substrate for protein transporters, the differences in the uptake of CK caused by
different administration methods in the intestine were explored. Moreover, the difference
in uptake caused by different administration methods in the blood vessel indicates that
the permeability of CK is different inside and outside the blood vessel. The results of
absorption, metabolism, and toxicity tests of this system were consistent with those of
existing traditional platforms, demonstrating its potential application in carbohydrate
drug research.
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Another crucial topic that needs to be investigated in drug metabolism studies is drug–
drug interactions (DDIs), which occur when the ADME properties of one pharmacological
are affected by the concurrent administration of another drug component. In clinical
practice, tumor patients are prone to DDI due to their frequent medication use and narrow
treatment index of anticancer drugs. Therefore, Lohasz et al. [92] selected human liver
and tumor microtissues as the culture in a multiple-organ system for simultaneous drug
detection. Researchers constructed a gravity-driven microfluidic platform to maintain
or even increase the activity of CYP subtypes. The hepatocytes used were derived from
10 different donors to form human liver microstructures to limit variability between donors.
Two anticancer prodrugs with similar structures, cyclophosphamide (CP) and ifosfamide
(IFF), were selected for the experiment and used in combination with ritonavir (RTV),
which has an inhibitory effect on CYP subtypes. The metabolites in the model indicated
that co-administration of IFF and RTV may result in the conversion of a significant portion
of IFF into neurotoxic/nephrotoxic metabolites. The combination of IFF and CP has the
probability of causing severe side effects in cancer patients. This DDI detection results in the
chip being consistent with known phenomena. This excellent capture and quantification
ability for the DDI phenomenon is believed to significantly improve the early drug testing
process in the preclinical stage.

In addition to detecting the DDI phenomenon directly, we also seek to comprehend the
pharmacokinetics of DDI in detail, developing more practical methods for DDI prediction.
Kenta et al. [91] combined the PK/PD mathematical model with a multiple-organ-on-chip
system (MOoC) to evaluate the value of organ chips in the risk assessment of concomitant
drugs (Figure 4C,D). Researchers used the result parameters of liver metabolism of a
single drug in MOoC to construct PK/PD model and then carried out a concomitant
administration experiment in MOoC. The experimental results were highly consistent
with the simulation results of the PK/PD model, which proved the effectiveness of this
combination in predicting DDI. Table 1 summarizes some applications of LoC in drug
metabolism, drug toxicity test, drug interaction, and other studies.

Table 1. Summary of the application of LoC in drug development.

Application Characteristic Cell Types Drugs Involved Analysis Ref.

Drug metabolism 3D perfusion,
co-culture

hepatocytes,
Kupffer cells hydrocortisone

the anti-inflammatory effect
of glucocorticoids on

liver cultures
[18]

Drug metabolism 3D perfusion,
co-culture PHHs, Kupffer cells tocilizumab

dual regulation of
inflammatory factors and

therapeutic antibodies
[16]

Drug metabolism
3D perfusion,

co-culture,
liver–small intestine

Caco-2, HepG2, A549

epirubicin (EPI),
irinotecan (CPT-11),

and
cyclophosphamide

(CPA)

reproduce both blood
circulation and organs

volume relation in vitro
[90]

Drug metabolism

3D perfusion,
co-culture,
liver–small

intestine–kidney

Caco-2, HepG2,
HUVEC, HK-2

ginsenosides
compound K (CK)

the pharmacological
investigation of

carbohydrate drugs
[23]

Population
variability of liver
drug metabolism

3D perfusion PHHs from five
different donors

phenacetin,
diclofenac, lidocaine,

ibuprofen,
propranolol, and

prednisolone

in vitro assessment of
population variability in

drug metabolism
[19]

Drug toxicity 3D microfluidics hepatocytes (rats)

acetaminophen,
diclofenac, quinidine,

rifampin and
ketoconazole

multiplexed testing [21]

Drug toxicity 3D perfusion,
co-culture

iPSC-derived
hepatocytes,

endothelial cells,
Kupffer-like

immune cells

troglitazone, a library
of 159 compounds high throughput screening [20]
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Table 1. Cont.

Application Characteristic Cell Types Drugs Involved Analysis Ref.

Drug toxicity

collagen-based 3D
model, integrated
biomimetic array

chip,
cell–extracellular
matrix interaction

PHHs
122 clinical drugs

evaluated for
liver toxicity

large-scale
hepatotoxicity screening [22]

Drug toxicity
3D microfluidics,

co-culture,
cell–extracellular
matrix interaction

hepatocytes,
sinusoidal

endothelial cells,
Kupffer cells, hepatic
stellate cells (humans,

rats, and dogs)

bosentan, analgesic
acetaminophen

(APAP), methotrexate
(MTX), fialuridine
(FIAU), a Janssen

proprietary
compound (JNJ-2)

human and cross-species
drug toxicities [7]

Drug-drug
interactions

gravity-driven
microfluidic,

liver–intestines
PHHs, HCT116 cyclophosphamide,

ifosfamide, ritonavir

quantization of the impact of
other drugs on the efficacy of

anticancer drugs
[92]

Drug-drug
interactions

3D microfluidics,
liver-lung HepG2, A549 simvastatin,

ritonavir, CPT-11

quantization of the impact of
other drugs on the

metabolism of
anticancer drugs

[91]

4. Conclusions and Future Perspective

The advances described above demonstrate that drug discovery using microfluidic
platforms can be more productive than traditional methods. Both single liver-on-a-chip
and multi-organs-on-chip models have numerous advantages for the drug metabolism
simulation and toxicity test stage of preclinical studies. Compared with 2D culture and
static culture, a dynamic 3D culture platform with microfluidic significantly extends the
duration of cellular activity in vitro, providing a solid foundation for drug testing. Adding
related chemicals increases the activities and drug sensitivity of cells or tissues, sometimes
even outperforming newly obtained hepatocytes. The LoC platform is more effective than
most in vitro physiological systems at simulating the natural liver environment, leading to
an accurate recreation of the results of many previous drug tests [93–95].

In contrast to organoids, microfluidic systems will not change shape over time and
have strong repeatability and controllability, making them ideal for large-scale preclinical
drug screening and testing [96]. In addition to independent research, liver chips provide
more precise physiological parameters for existing mathematical models. They can also be
integrated with laboratory automation equipment, making continuous progress toward
high throughput screening.

At present, however, liver chips cannot replace animal models completely. Researchers
often use organ chips to reproduce key drug-related events when they observe them in
animals. The controllability and reproducibility of liver chips are very useful for study-
ing the details of candidate drug compounds and long-term repeated treatment issues.
Although animal models must deal with the cost problem, the complex components and
manufacturing technology required by liver chips cannot avoid the cost issue. Complexity
limits the large-scale manufacturing of liver chips, increases the cost of operation training,
and limits the development of high-throughput automation. Meanwhile, there are also
crucial problems in the physiological simulation of liver microarray, such as the cell source
being closely related to the physiological relevance of the physiological model. PHHs are
still the best choice at present. The microfluidic technology can prolong their active time
in vitro, but the donor supplies are limited. The current trend is to replace PHHs with
inexpensive, highly differentiating iPSCs [97–101]. The differentiation characteristics of
iPSCs can also provide convenience in personalized drug research. However, using iPSCs
also poses challenges. The process of cell differentiation is complex, not only with many
influencing factors but also taking a long time, and the complexity of the operation needs
to be reduced. In addition, cells derived from iPSCs are not entirely consistent with native
liver cells, and their structure and function are immature [102]. Although it is a good idea
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to use relatively simple models to study complex phenomena and problems, there is still
much room for improving the physiological relevance of models [103].

In addition, this new technology with complex functions is difficult to match the
commonly used microscope imaging methods. Manual positioning and manipulation of
organ chips for image acquisition are variable and time-consuming, and the amount of data
is limited [104]. Nevertheless, this method is often used for expensive and professional
equipment, such as two-photon microscopy [105]. Semi-automatic and automatic imaging
and quantification software can improve the quantity and quality of data. However, it is
also necessary to overcome the problem that the current automatic imaging technology
does not match the uniqueness of the liver chip platform. In 2019, a study described the
automatic imaging program of the liver-on-a-chip [106], and some other scholars tried to
use 3D printing technology to design and create a chip stent for this organ chip later [107].
However, many current imaging methods are still incompatible with organ chips, such as
holographic optical fluid microscopy, which provides low resolution and does not meet the
micro resolution required by organ chip platforms [108].

In the long run, compatibility with laboratories and automatic high-throughput screen-
ing are the constant goals of LoC technology in drug development. Currently, the max-
imum number of organ chips in an MPS device is only 96. The throughput of this scale
will inevitably pose obstacles to high-throughput screening when subsequent research is
accelerated [109]. Miniaturization and automation of organ chips are ongoing goals. In the
future, 96-, 384-well, or more porous microtiter plates should be further developed to be
compatible with existing pharmaceutical laboratory automation equipment. At the same
time, we can further explore the manufacturing process, cell source, culture conditions,
and other factors to reduce the production cost and operational complexity. For example,
PDMS, widely used in manufacturing microfluidic chips, has problems to solve. The high
hydrophobicity of PDMS makes it difficult for cells to adsorb without modification, and
it also allows drug molecules to gather and be absorbed in unpredictable ways. Deguchi,
Sayaka et al. [110] evaluated the absorption of 12 hydrophobic small molecule compounds
on PDMS plates. The continued search for alternative materials with oxygen permeability,
optical transparency, and non-absorbability is also one of the future research directions in
this field. We should also actively integrate microfluidic technology with research methods
in other fields to broaden its scope of application, such as mathematical model analysis. The
imaging technology of LoC is also worthy of continuous attention. Traditional fluorescence
imaging methods are mainly used to confirm the cell activity in the chips. Imaging methods
can be mended by improving the resolution, reducing the cost, or facilitating transportation.
It should also be noted that liver chips may show significant differences and inconsistencies
between manufacturing batches, laboratories, or even manufacturers in the same group.
Especially for multi-organ chips, different organ models in vitro have different cultivation
and manufacturing technologies. A standardized system must combine them well to reduce
adverse factors in preclinical drug testing. Therefore, the commercialization of chips also
deserves attention. As a result, companies produce more reliable and consistent equipment,
which will significantly increase the availability of laboratories and industries worldwide.
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