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Abstract: Advances in machine learning (ML) and the availability of protein sequences via high-
throughput sequencing techniques have transformed the ability to design novel diagnostic and
therapeutic proteins. ML allows protein engineers to capture complex trends hidden within protein
sequences that would otherwise be difficult to identify in the context of the immense and rugged
protein fitness landscape. Despite this potential, there persists a need for guidance during the training
and evaluation of ML methods over sequencing data. Two key challenges for training discriminative
models and evaluating their performance include handling severely imbalanced datasets (e.g., few
high-fitness proteins among an abundance of non-functional proteins) and selecting appropriate
protein sequence representations (numerical encodings). Here, we present a framework for applying
ML over assay-labeled datasets to elucidate the capacity of sampling techniques and protein encoding
methods to improve binding affinity and thermal stability prediction tasks. For protein sequence
representations, we incorporate two widely used methods (One-Hot encoding and physiochemical
encoding) and two language-based methods (next-token prediction, UniRep; masked-token predic-
tion, ESM). Elaboration on performance is provided over protein fitness, protein size, and sampling
techniques. In addition, an ensemble of protein representation methods is generated to discover the
contribution of distinct representations and improve the final prediction score. We then implement
multiple criteria decision analysis (MCDA; TOPSIS with entropy weighting), using multiple metrics
well-suited for imbalanced data, to ensure statistical rigor in ranking our methods. Within the context
of these datasets, the synthetic minority oversampling technique (SMOTE) outperformed under-
sampling while encoding sequences with One-Hot, UniRep, and ESM representations. Moreover,
ensemble learning increased the predictive performance of the affinity-based dataset by 4% compared
to the best single-encoding candidate (F1-score = 97%), while ESM alone was rigorous enough in
stability prediction (F1-score = 92%).

Keywords: machine learning; protein fitness prediction; embeddings; sequence representation;
imbalanced assay-labeled datasets; sampling methods; ensemble learning; MCDA; TOPSIS

1. Introduction

Proteins are biological machines involved in almost all biological processes [1–4].
These molecules are made of amino acids that fold into 3-dimensional structures and per-
form life-sustaining biological functions [5]. Protein engineering practices aim to modify
proteins to redirect what has already evolved in nature and address the industrial and med-
ical needs of modern society [6,7]. This has been a challenging task due to the astronomical
number of possible mutations and the complex sequence–function relationship of the pro-
teins (i.e., fitness landscape) [8]. Protein fitness—a measure for how well a protein performs
a task of interest—is influenced by a variety of factors, including its structure, stability,
and interactions with other molecules. In protein engineering campaigns, where protein
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function is modified by experimental approaches rather than natural selection, proteins
with high fitness are those that perform well within relevant experimental assays, whereas
proteins with low fitness result in reduced activity, altered specificity, or decreased stability.
To overcome the challenge of finding high-fitness proteins among mostly non-functional
mutants, various experimental and computational techniques were developed. Recently,
machine learning (ML) has shown promise as a tool to supplement already established tech-
niques, such as rational design and directed evolution [9–12]. Unlike directed evolution, ML
models can learn from non-functional mutants instead of simply discarding them during
enrichment for functional clones. ML-assisted protein engineering, therefore, has potential
as a time-efficient and cost-effective approach to searching for desired protein functionality.
This provides a unique opportunity to create smart protein libraries, elevate and accelerate
directed evolution and rational design strategies, and finally, enhance the probability of
finding unexplored high-fitness variants in the protein fitness landscape [13–15]. Machine
learning methods have attained a high success rate in predicting essential protein properties
(i.e., protein fitness) including secondary structure, solubility, binding affinity, flexibility,
and specificity [16–20]. Despite these recent milestones, in order to obtain generalizability
and robustness in ML models, further explorations in different protein fitness prediction
tasks and training details are required.

Dealing with protein fitness landscape challenges will require us to view proteins from
a new perspective that supplements our biochemical knowledge with lessons from written
languages. Recent advances in ML and artificial intelligence have applied natural language
processing (NLP) methods to identify context-specific patterns from written or spoken
text. NLP tasks learn how words function grammatically (syntax) and how they deliver
meaning within themselves and in surrounding words (semantics) [21,22]. This has given
rise to virtual assistants with voice recognition and sentiment analysis of text from diverse
languages [23,24]. Similarly, protein engineering can leverage these NLP tools—treating
a string of amino acids as if they were letters on a page—to understand the language
of proteins, providing a promising route to capture nuances (e.g., epistatic relationships,
functional motifs) in complex sequence–function mappings [25,26]. The rapid expansion
of publicly available protein sequence data (e.g., Uniprot [27], SRA [28]) further supports
the use of big data and language models in the domain of protein engineering [29]. Self-
supervised language models learn the context of the provided text by reconstructing the
masked tokens/linguistic units of the text string using the unmasked parts. For the context
of protein engineering, pre-trained protein language models—carrying valuable informa-
tion about the epistasis/interaction of amino acids—can be applied to downstream tasks
by extracting the optimized weight functions as a fixed-size vector (embedding) [25,30,31].
Among early embedding developments, Alley et al. introduced UniRep [32], a deep learn-
ing model that was trained on 24 million unique protein sequences to perform the next
amino acid prediction tasks for extracting information about the global fitness landscape of
proteins. Rives et al. trained ESM, a language model for masked amino acid prediction
tasks, on over 250 million protein sequences [33]. The learned representations—including
UniRep [32], ESM [33], TAPE [34], and ProteinBERT [35]—have generated promising results
in diverse areas such as predicting protein fitness, protein localization, protein–protein
interaction, and disease risk of mutations in terms of improved prediction scores, increased
generalizability, and mediated data requirements [36–40]. Using embeddings for sequence
representations (transfer learning) enables knowledge transfer between protein domains
and future prediction tasks by further optimizing the already-learned weights. For example,
Min et al. obtained a 20% increase in the F1-score (the harmonic mean of precision and
recall) for a heat shock protein identification task when training their NLP-based model,
DeepHSP [41], on top of pre-trained representations.

In this study, we perform protein sequence fitness prediction with ML techniques to
demonstrate how model performance varies given the choice of protein representation,
protein size, and the biological attribute (e.g., binding affinity and thermal stability) to
be predicted. This work provides actionable insights for effectively building discrimina-
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tive models and improving their prediction scores via sampling techniques and ensemble
learning. As efficient use of embedding methods on experimental datasets is in its infancy,
rigorous studies are needed to gain new insights into the performance of the pre-trained
models given various training conditions and distinct biological function predictions. Im-
portantly, embedding methods have been trained over millions of protein sequences in
public databases and have produced high performance in certain fitness tasks (e.g., stability
prediction), while they may not do as well in all fitness prediction tasks. To this end, we
used two large datasets that were representative of common protein engineering tasks.
First, we leveraged a highly imbalanced dataset (93% non-functional; Table 1), consisting of
our previously described affinity-evolved affibody sequences [42] to explore NLP-driven
practices. We then expanded our analysis to include thousands of protein sequences labeled
with their experimentally measured stabilities (melting temperatures, Tm) obtained from
the Novozymes Enzyme Stability Prediction (NESP) dataset [43]. Thus, with our two
datasets having unique attributes, we were well positioned to address multiple questions:
(i) How do different representation methods perform in predicting distinct fitness attributes
such as stability or affinity? (ii) How do sampling methods perform in the imbalanced
protein datasets? (iii) Is ensemble learning over different protein representations help-
ful in boosting the performance of discriminative models? (iv) How do we rank model
performances while using multiple conflicting metrics in ML prediction tasks? By ad-
dressing these challenges, we also gain direct insights for model interpretation and reveal
the features that are most important for discriminating between fit and non-fit sequences
(Figures S1, S3, and S4). We discovered that oversampling (especially SMOTE) generally
outperformed the undersampling techniques In addition, ensemble over representations
greatly improved the predictive performance in the affibody data both using single and
multiple performance metrics via multiple criteria decision analysis (MCDA) [44]. For
protein representations (e.g., single encoders), UniRep and One-Hot outperformed other
methods in the affibody (affinity) dataset while ESM achieved the best score in stabil-
ity prediction in NESP. Finally, it was observed that the performance of various protein
representation methods is strongly impacted by protein sequence length.

2. Materials and Methods
2.1. Obtaining Experimentally Labeled Sequence Data

Two different datasets with varying data characteristics were explored. The first is our
experimental data of affibody sequences that previously were iteratively evolved for bind-
ing affinity and specificity against a panel of diverse targets [42]. The second collection of
labeled protein sequences was obtained from the recently released Kaggle dataset wherein
numerous proteins (n= 18,190) of various lengths are labeled according to their thermal
stability (Tm). This dataset, NESP, was filtered to only include sequences characterized
at pH = 7. For the affibody dataset, raw sequence data were cleaned by removing any
sequences that contained stop codons or invalid characters. Afterwards, the frequency
of each unique sequence in the experimental steps was tabulated. Infrequent sequences
appearing fewer than ten and four times (within magnetic activated cell sorting (MACS)
and fluorescent activated cell sorting (FACS), respectively) were treated as background and
removed from the analysis. Note that the more stringent frequency removal for MACS
was mainly due to the experiment type and higher probability to introduce noise in the
dataset. After removing the background, sequences from MACS and FACS were combined
to form the final high-fitness population of binders. The non-binding population included
the initial affibody sequence pool, which did not appear in the enriched population of the
binder sequences. The initial affibody sequences that were within one hamming distance
(i.e., a single amino acid mutation) of any enriched sequence were removed as well to
account for potential errors encountered during deep sequencing. All affibody sequences
were exactly 58 amino acids in length with mutations present at up to 17 of these positions.
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2.2. Obtaining the Sequence Representations

We obtained four different numerical representations for our sequence data: One-Hot
and physiochemical encoding, UniRep, and ESM embeddings. One-Hot encoding refers
to building a matrix (amino acids × protein length) and filling it with one when there is a
specific amino acid in the given position, filling the rest with zeros. For physiochemical
encoding, we used the modlamp [45] package in python, which is used for extracting
the physical features from protein sequences. There were two types of physical features
represented in the modlamp package (global and peptide descriptors). All the global (e.g.,
sequence length, molecular weight, aliphatic index, etc.) and local physiochemical features
based on the Eisenberg scale were extracted for this analysis (twenty in total).

Embedding refers to continuous representation of the protein sequence in a fixed-size
vector, and it should contain meaningful information about proteins [46]. For example,
in the embedding visualization of amino acids in low dimensions for both UniRep and
ESM, similar amino acids (in terms of size, charge, hydrophobicity, etc.) were close to each
other. For UniRep representation, we used the 1900 dimension and mean representation
over layers. We used Jax_UniRep for obtaining the UniRep embeddings, https://github.
com/ElArkk/jax-unirep (accessed on 20 August 2022). UniRep uses the mLSTM structure
for performing next-token prediction, and it was trained on 24 million sequences in the
Uniref50 dataset with 18 M parameters. For ESM, we chose ESM2 [47] with 1280 vector
dimensions and 650 M parameters and means over layer representations. GitHub for ESM
is https://github.com/facebookresearch/esm (accessed on 21 January 2023).

2.3. Sampling and Splitting

Sampling refers to choosing a random subset of data to represent the underlying
population. Three different sampling methods were tested for our severely imbalanced
affibody dataset: undersampling, random oversampling, and the synthetic minority over-
sampling technique (SMOTE) [48]. Due to the sparse and rugged nature of the protein
fitness landscape, it is common for experimental data obtained in the protein domain to be
highly imbalanced. One practical approach for resolving the imbalanced dataset issue is
using sampling techniques when training the dataset. Oversampling is randomly repeating
the minority class examples; thus, it could be prone to overfitting in comparison to under-
sampling. However, undersampling may discard useful information, especially in severely
imbalanced datasets, as it is removing many samples from the majority class. SMOTE is a
more recent addition to sampling methods, and it is oversampling the minor population by
synthetically generating more instances that are highly similar to the minority class. While
SMOTE has shown promising results in increasing the prediction performance for various
imbalanced datasets [49–51], there are also studies indicating undersampling superior
performance compared to oversampling methods [52,53]. As a result, we examined the
performance of all three sampling techniques to validate which sampling method performs
well within our wet-lab protein dataset over different encoding methods.

For splitting the datapoints within the test set in an imbalanced dataset, sampling
equally from each class may lead to an overestimation of the model performance [54]. As a
result, we made sure that the test set distribution follows the initial data distribution (93%
naïve vs. 7% enriched).

2.4. Algorithm Selection and Training Details

For classification, logistic regression (LR) was chosen and L2 penalization (Ridge) was
used to reduce the likelihood of overfitting. We reasoned that a simple logistic regression
enables a fair comparison between cases. One regression task was also implemented over
the NESP dataset with random forest regressor (RFR). We used regression to observe how
models perform with increasing the prediction challenge, from binary prediction to actual
label prediction. The rationale for using RFR was that linear regression model was not
viable to meet the prediction task complexity. For a fair comparison between protein

https://github.com/ElArkk/jax-unirep
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encoding performances in regression, the RFR hyperparameters, max number of estimators
and max_depth, were optimized with OPTUNA [55].

2.5. Ensemble Learning

To improve the predictive performance of protein encoding predictions, we developed
a framework that combines various encoding methods. We experimented with two ap-
proaches: concatenation and voting. In concatenation, the encodings were combined by
adding them together, and we used the resulting representation as input for our predictive
model. In voting, separate predictive models for each encoding method were trained. The
final prediction was then calculated with the majority-voted label over a fixed test set.

2.6. Metrics and Statistical Analysis

One key metric we used for analyzing classification performance is the F1-score. By
considering both precision and recall (Figure 1E), the F1-score is particularly well suited for
evaluating the highly imbalanced data within our study (Table 1). Therefore, the model
is trained to identify the positive instances among all positive predictions and minimize
missing out the positive instances while predicting classes. Note that other classification
metrics, such as confusion matrix values (TP, TN, FP, FN), are reported in the supplement
figures. For regression analysis among NESP data, we used mean squared error (MSE)
and R2 to indicate how the models perform. MSE is the mean of the square of differences
between the actual labels and the predicted values in the test set while R2 represents the
variation explained by the independent variables.
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Figure 1. Overview of the implemented techniques, data attributes, and evaluation metrics.
(A) Illustrates the use of sequence–function mapping to identify protein sequence functionality
(e.g., therapeutics, diagnostics, enzymatic function). (B) Data attributes for the two datasets used in
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this study. The first dataset includes high-fitness protein binders among a pool of non-binder affibody
sequences with up to 17 mutation sites. The other dataset includes a wide array of proteins with
their associated melting point. (C) One-Hot encoding, physicochemical encoding, and pre-trained
models were used to encode the protein sequences present in our datasets. All present protein amino
acid information is in a machine-readable format, but in different ways. One-Hot encoding converts
each amino acid to a binary vector of all 0 s but 1 where it belongs to its position in the matrix. In
physicochemical encoding, each amino acid is represented by its physiochemical characteristics, such
as polarity, charge, size, etc. Pretrained models are trained over a large corpus of unlabeled data
capturing the syntax and semantics of protein language via NLP-driven models, such as next-token
prediction (e.g., UniRep) and masked token prediction (e.g., ESM). (D) The sampling methods used
in this study are undersampling, oversampling, and synthetic minority oversampling techniques
(SMOTE). (E) The main metrics used for evaluating the performance of prediction tasks (classification
and regression) are defined (a complete list of performance metrics are listed in Figure S7).

Experiments were implemented with multiple random seeds (20 in affibody and
30 in NESP dataset) to obtain a distribution of performances for each pair of encoding
and sampling methods in each fitness prediction task. Then we implemented multiple
statistical tests to confirm if the obtained differences were significant. Analysis of variance
among the groups was performed with ANOVA [56]. After obtaining significant results
in ANOVA, post hoc methods were implemented to account for family-wise error rates.
Here, we implemented two post hoc methods, Bonferroni [57] and Tukey [58], for adjusting
the p-values and reducing the risk of type-1 error. The null hypothesis assumes that the
performances of the methods are similar and when rejected, we consider the methods to be
statistically significant in their obtained output. The results for multiple seeds are shown
with violin plots where the white dots represent the mean values. A complete collection
of statistical analyses for comparing the significance among the means are located in the
supplementary information.

2.7. Multiple Criteria Decision Analysis (MCDA)

We used F1-score as our primary classification metric in classification to optimize the
algorithms based on finding the rare positive sequences. Depending on specific applications,
the user may need to choose different criteria for analyzing the ML predictive performance.
Note that it is also generally advised to use multiple metrics to establish more rigorous
analyses, specifically in imbalanced datasets [59,60]. Therefore, we incorporated five
more classification metrics in addition to F1-score and implemented MCDA, which is a
robust approach for decision making (i.e., ranking alternatives based on multiple, often
conflicting, criteria). In our study, the alternatives are the choice of protein representation
within different sampling methods. The criteria (classification metrics) used for this MCDA
include F1-score, false positive rate (FPR), true positive rate (TPR), precision, negative
predictive value (NPV), and false discovery rate (FDR). FPR and TPR measure the model’s
ability to identify the positive and negative classes. Precision quantifies the number of
correctly positive classes among all being predicted as positive, while NPV is measuring
this for the negative class. FDR measures the number of false positives over all instances
that are predicted as positives.

The performance of each encoding and sampling technique was recorded based on all
six mentioned criteria. For implementing the decision-making, we chose a well-established
and widely used MCDA method: the technique for order of preference by similarity to
ideal solution (TOPSIS) [61]. TOPSIS finds the optimal solution rooted in the idea that
the best alternative should have the minimum Euclidean distance from the positive ideal
solution and maximum distance from the negative ideal solution.

For implementing TOPSIS, the PyTopsis package in python was used, https://github.
com/shivambehl/PyTopsis (accessed on 4 April 2023). It requires three inputs: the decision
matrix (i.e., alternative scores within chosen criteria), list of weights (i.e., criteria impor-
tance), and list of signs (−1 indicates the criteria should be minimized while 1 implies

https://github.com/shivambehl/PyTopsis
https://github.com/shivambehl/PyTopsis
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maximizing). Following this structure, we built our decision matrix and assigned directions
that each criterion should be optimized in classification. Assigning weights to criteria
can be implemented either by the decision-maker’s opinion (subjective weighting) or a
numerical process over the decision matrix (objective weighting). We implemented both
methods and compared their results in ranking the alternatives. For subjective weighting,
we assigned a slightly higher weight for precision and FPR metrics to prioritize identifying
the positive instances. For objective ranking, the Shannon’s entropy method [62] was
implemented to measure the entropy based on the given decision matrix. The formula used
to calculate weights based on the entropy are in the following where xij is each entity in the
matrix, n is the number of alternatives, and m is the number of criteria.

Normalizing the decision matrix value

rij =
xij

∑n
i=1 xij

(1)

Calculating Entropy for each criterion

Ej = −k
n

∑
i=1

rijln rij, k =
1

ln(n)
(2)

Calculating weight for each criterion

wj =
1 − Ej

∑m
j=1

(
1 − Ej

) (3)

The results from TOPSIS need to be validated via statistical methods to ensure the
correct ranking among alternatives (i.e., difference between performances is not random
but significant). Therefore, we applied multivariate analysis of variance (MANOVA) [63]
followed by a post-hoc method, Tukey [58], to analyze the result significance overall and
between pair of alternatives, respectively.

Figure 1 provides an overview of the data attributes (e.g., protein size, protein fitness)
that will be predicted and alternatives (e.g., protein encodings within different sampling
methods) that will be compared.

3. Results
3.1. Sequence-Function Mapping Obtained from High-Throughput Selection Methods and Deep
Sequencing Affibody Dataset

To investigate the impact of feature representation, ensemble learning, and sampling
methods, several prediction tasks were leveraged. We performed a classification task on
the obtained sequences to predict the scarce high affinity binder class among the pool
of non-binder class in the affibody data. For NESP dataset, in the classification task,
we simplified the data by choosing two classes of low- (Tm ≤ 35 ◦C) and high-stability
(Tm ≥ 60 ◦C). In addition, regression was implemented to increase the prediction difficulty
and to observe how protein encodings perform relatively. The models were tasked with
predicting the stability (Tm) value, and all the sequences with measured pH = 7 were
included. The details of obtained sequences after cleaning and the type of prediction tasks
are reported in Table 1. Note that the NESP results will be overviewed in Section 3.5 and
supplementary information.

Table 1. Dataset attributes and prediction tasks.

Dataset Task Fitness Model Attributes

Affibody Classification Binding Affinity Logistic Regression 82,663 non-binders
6077 binders
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Table 1. Cont.

Dataset Task Fitness Model Attributes

NESP Classification Stability Logistic Regression 3743 high-stability
1311 low-stability

NESP Regression Stability Random Forest Regressor 18,190 total

3.2. Physiochemical Feature Encoding, Interpretable Yet Lower Predictive Capacity

The classification results in physiochemical encodings are shown in Figures 2 and 3. We
ranked the leading features in discriminating non-binder and binder classes and listed the
encoding method’s F1-score in different sampling methods. The physiochemical encoding
performance was not among the lead encoding methods, yet it achieved a high F1-score
with only 20 features. It also provided insights on how physical features correlate with
each other in the given data (Figure S1).
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3.3. Comparison over All the Encoding and Sampling Methods

Once the lead physical features for high-affinity binders were determined, we demon-
strated the performance of different protein representations within our selected sampling
techniques. The prediction performance indicates that each encoding method performed
differently in predicting the fitness of proteins, and One-Hot and UniRep were the top
performers. In addition, among the samplings, SMOTE boosted the F1-score in almost all
cases. Figure 4 exhibits the F1-score distributions within 20 different random seeds.
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Figure 4. Performance analysis of encoding methods highlights the shortcomings of physical features
and strength of the SMOTE sampling method. Protein sequences encoded using physical features,
One-Hot, UniRep, and ESM were used to perform classification tasks among the affibody dataset.
Within each encoding method, undersampling, random oversampling, and SMOTE sampling meth-
ods were evaluated. The resulting F1 scores over 20 random seeds are shown here as violin plots.
The obtained p-value from ANOVA was 9.52E−190, which indicated a significant effect among
comparisons. Post-hoc results for ranking methods are shown in Table S1, which consolidates the
mentioned conclusions in the caption.

3.4. Increased Generalizability and Predictive Performance via Ensemble Learning

Due to the varying performances of the protein encodings, we postulated that ensem-
ble learning increases the models’ predictive performance. As oversampling performed
better than undersampling in three out of four encoding methods, we exclusively ana-
lyzed the ensemble learning for the two oversampling types (i.e., R-oversampling, and
SMOTE). The physical encoding for this analysis was discarded since its performance was
not as potent as the other encodings. Figure 5 represents the ensemble technique, voting,
which remarkably enhanced the performance with respect to all the methods with a mean
F1-score = 97% over the 20 random seeds.

As shown in Figure 5 and Table S2, voting boosted the prediction score among the
candidates, and SMOTE increased the performance in single encoders compared to R-
oversampling. In order to obtain a more informed and transparent decision making among
the mentioned methods, we also incorporated an MCDA with TOPSIS over five more
classification metrics in addition to F1-score (refer to Section 2.7 for more details on the
methods). These classification criteria were compared over single encoders, concat_all
encoder, and upvoting technique. Figure 6 represents a summary of our MCDA design in
addition to obtained ranking results from TOPSIS.
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Figure 5. Voting substantially improved the predictive performance in all random initializations
over different encoding methods. The plot above has three regions from left, respectively; it includes
single encoding methods, concatenation of encodings, and voting of predictions. The vote was
performed such that each encoding went through a predictive model over the same dataset. Then,
the final prediction was obtained by majority voting. It is insightful how voting increases the models’
robustness and generalizability. The concatenation performed similarly or worse than the best
model in single encodings. The best model among all predictions was Upvote with oversampling
methods with Mean-F1-score = 97% and Mean-F1-score = 96.80% (no statistical significance among
oversampling performances in upvoting). Refer to the supplementary material for a summary of the
statistical analysis and confusion matrix plots (Table S2, Figure S2).
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Figure 6. Upvoting achieved the best ranking both in subjective and objective weighting in MCDA
design. A. The main steps for performing MCDA are elaborated. Then we highlighted our selected
methods for implementing MCDA (e.g., classification criteria, model selection, and statistical analysis).
B. TOPSIS scores (i.e., closeness coefficients) and their associated rankings are shown for subjective
and objective weighting.

The MCDA design in the affibody dataset with only 7% high-fitness population
enabled the comparison of encoding and sampling methods over multiple conflicting
criteria. In addition, with selective weighting in MCDA, the user can bias the results
toward more favorable results, based on data attributes and specific applications. Note that
the rankings need to be validated by statistical analysis. Our MANOVA analysis showed
significant results between the candidates. The Tukey method for pairwise comparison and
family-wise correction error indicated that while upvoting methods achieved significant
results over other candidates, there was no statistical difference between upvoting methods
in using either SMOTE or R-oversampling. Table 2 is a summary reports of Tukey results
among top candidates in rankings. A list of pair-wise comparisons over all alternatives can
be found in the supplementary information.

Table 2. Tukey results over all classification metrics between selected representation methods.

Comparison Mean GP1 Mean GP2 Metrics Reject Null

0.9712 0.9682 F1 FALSE
Upvote_SM 0.0187 0.0258 FDR FALSE

vs. 0.9614 0.9622 TPR FALSE
Upvote_RO 0.9813 0.9742 Precision FALSE

0.9972 0.9972 NPV FALSE
0.0019 0.0013 FPR FALSE
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Table 2. Cont.

Comparison Mean GP1 Mean GP2 Metrics Reject Null

0.9712 0.9307 F1 TRUE
Upvote_SM 0.0187 0.0930 FDR TRUE

vs. 0.9614 0.9557 TPR TRUE
UniRep_SM 0.9813 0.9070 Precision TRUE

0.9972 0.9967 NPV TRUE
0.0019 0.0072 FPR TRUE

0.9712 0.9261 F1 TRUE
Upvote_SM 0.0187 0.1061 FDR TRUE

vs. 0.9614 0.9607 TPR FALSE
Concat_RO 0.9813 0.8939 Precision TRUE

0.9972 0.9971 NPV FALSE
0.0019 0.0084 FPR TRUE

0.9682 0.9307 F1 TRUE
Upvote_RO 0.0258 0.0930 FDR TRUE

vs. 0.9622 0.9557 TPR TRUE
UniRep_SM 0.9742 0.9070 Precision TRUE

0.9972 0.9967 NPV TRUE
0.0013 0.0072 FPR TRUE

0.9682 0.9261 F1 TRUE
Upvote_RO 0.0258 0.1061 FDR TRUE

vs. 0.9622 0.9607 TPR FALSE
Concat_RO 0.9742 0.8939 Precision TRUE

0.9972 0.9971 NPV FALSE
0.0013 0.0084 FPR TRUE

0.9261 0.9307 F1 TRUE
Concat_RO 0.1061 0.0930 FDR TRUE

vs. 0.9607 0.9557 TPR TRUE
UniRep_SM 0.8939 0.9070 Precision TRUE

0.9971 0.9967 NPV TRUE
0.0084 0.0072 FPR TRUE

The voting method enhanced the prediction score in both using a single metric and
multiple metrics in MCDA by combining the predictions of multiple models based on
single encodings. We concluded that as different encodings might capture the distance
and relationship of the datapoints differently, combining their predictions boosted the
final model performance. The encoding methods used for voting technique in the
dataset are visualized in Figure 7 in a uniform manifold approximation and projection
(UMAP) [64] plot.
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method in UMAP. This method is a dimensionality reduction technique such as principal component
analysis (PCA) [65] with unique advantages such as preserving the local structure of the data
and capturing non-linear relationships between data points. In observing the sequence–function
relationship in proteins, one can conclude that each protein sequence representation/encoding has
the potential to capture different aspects of fitness.

3.5. How Protein Encodings Perform Considering Different Data Attributes

The hypotheses were tested over affibody datasets that had notable attributes such
as severe imbalance, multiple mutation sites, affinity and specificity enrichment, and
small molecular protein length. The obtained results indicated voting and oversampling
were highly effective methods to boost the fitness prediction performance. However,
individual protein-encoding performance comparisons need more convincing explanation
and thorough exploration. Specifically, we wondered why ESM underperformed One-Hot
and UniRep despite more the powerful setup in pretraining and being showcased in studies
for high prediction potential [66]. While the performance could be due to the datatype (e.g.,
small protein, complex fitness, etc.), we decided to further analyze the encoding prediction
scores in a completely different dataset and bring insights on embedding performances in
various conditions (e.g., data size in training, protein length, prediction task difficulty). The
curated data contains 18,190 sequences with varying amino acid (aa) lengths and provides
melting points that indicate the protein stability. Figure 8 is the performance comparison
in the stability prediction of embeddings, their concatenation, and voting using different
data sizes. Despite down performing in the affibody affinity data, ESM performed best for
stability prediction when including proteins with max aa length = 500 (Figure S6).
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Figure 8. The effect of protein size on the performance of encoding methods in stability prediction
while data sizes vary. The obtained results are largely different with respect to the protein size—small
proteins (aa length ≤ 120) vs. large (400 ≤ aa length ≤ 1500). Highlights: For small proteins, upon
comparing the violin plots and statistical test results, protein sequence encoding methods were
performed distinctively with respect to the initial dataset (protein max length = 500). One-Hot
encoding had a more significant contribution in boosting the classification metrics for small proteins.
As an example, when n = 400, both One-Hot and All-Encoding concatenation with a mean F1-score of
94% outperformed the other encoding methods. One-Hot tends to be problematic for large proteins
as it results in a highly sparse encoding vector. This was shown in this plot when One-Hot encoding
performance was not satisfactory in comparison with ESM and UniRep. When n = 400, based on both
the violin plots and the post-hoc analysis after ANOVA (both Bonferroni and Tukey), either ESM or
ESM_UniRep with 92% mean F1-score achieved the highest performance. One-Hot with 73% mean
F1-score was the lowest score among all the encodings. Refer to the supplementary information for
all one-by-one comparisons of the statistics and classification.
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We further evaluated the performance of embedding methods in large (400 ≤ aa
length ≤ 1500) and small proteins (aa length ≤ 120) to check if ESM still outperforms the
other representations in stability prediction. A complete list of statistical analysis is attached
in the supplementary materials (Tables S1–S4). The analysis of physical feature encoding is
provided in Figure S5.

The last analysis is a regression task for predicting the melting point value. We
wondered how different encoding methods performed if we used all the data and increased
the prediction challenge (Tm prediction rather than stability class prediction). MSE and
R2 are shown predicting the Tm values of a dataset of 18,190 sequences with 0.3 test size.
There was a significant difference in the performance of encoding methods, which was not
the case in the classification task. ESM was the best encoding method in predicting stability
(R2 score = 0.65). Note that we used all the data (i.e., did not use sampling) for training our
regression model. The regression metrics are reported in Table 3.

Table 3. Regression metrics for encoding methods in validation and test.

Encoding
Validation Test

R2 MSE R2 MSE

One-Hot 0.21 141 0.24 130

UniRep 0.49 108 0.40 102

ESM 0.65 63 0.65 60

4. Discussion

In this study, we shed light on two key challenges of applying discriminative mod-
els over amino acid sequence data for protein engineering applications: (1) handling
imbalanced data and (2) choosing an appropriate protein representation (i.e., encoding).
Assay-labeled sequence data in this domain is often severely imbalanced (due to the rugged
and sparse nature of the protein fitness landscape) and requires careful consideration in
data sampling, splitting, and choice in data representation for model training. To capture
this common occurrence of imbalanced data, we trained discriminative ML models over
our cytometry-sorted deep-sequenced small protein (affibody) data to distinguish between
functional sequences (n = 6077) among a large collection of non-functional protein se-
quences (n = 82,663). We then explored the impact of encoding protein sequences using two
simplistic approaches (One-Hot encoding, physiochemical encoding) and two language-
based methods (UniRep, ESM). We hypothesized that as each protein representation may
capture distinct information, combining representations via embedding concatenation and
ensemble learning increases overall performance and generalizability.

To address the issue of imbalanced data, we implemented multiple sampling techniques—
undersampling, random oversampling, and SMOTE—and compared performances via multi-
ple classification metrics. Our results indicate that implementing oversampling techniques
over imbalanced datasets improves predictive performance relative to undersampling or the
exclusion of sampling methods. Among the sequence representation methods, embeddings
are the answer to improved fitness prediction and data requirements. However, it is essential
to consider the choice of protein representation, its benefits, and its drawbacks. For example,
the choice of fitness to be predicted (e.g., thermal stability, binding affinity, target specificity)
and the language model pretraining procedure affect the model’s predictive performance and
need further discussion. Therefore, we analyzed an additional dataset (i.e., the NESP dataset,
which included a variety of protein sequences with their Tm) to discuss the effect of protein
representations over the variables such as protein length, protein fitness, and prediction type
(i.e., classification vs. regression). For ensemble learning, we used majority voting to combine
the prediction of each representation over the same ML model, which significantly improved
the prediction score, and its obtained results were statistically significant using MANOVA
and the post-hoc method (Figure 6, Table 2).
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As only a very small fraction of protein sequences are experimentally annotated with
properties, the primary goal of embeddings is to distill valuable information from unlabeled
data and use them for property/fitness prediction. Previous reports have observed that
there are sequence motifs, conserved regions, and evolutionary information in the protein
databases that can be learned by language models [33,34,67]. This has been tested with
different NLP techniques, varying model parameters, and clustering sizes for databases
used and resulted in a wide array of language-based protein representations [30,66,68,69].
These promising embeddings (e.g., ESM, UniRep) have been evaluated in many studies
and have improved the fitness prediction scores and alleviated the assay-labeled data
requirements [37,68]. However, there are also studies that report minor improvements in
predictions by using solely embedding methods. In some cases, prediction scores were
improved by simpler representations such as One-Hot or physiochemical encoding [70,71].
Similarly, Rao et al. pointed out a different performance of embeddings in TAPE [34] with
38 million parameters based on different protein engineering tasks. Their model performed
outstandingly in fluorescence and stability prediction while it did not perform as well as
hand-engineered features in contact prediction.

The current capabilities and limitations of language models motivate the need for opti-
mizing the pretraining task and improving the methodology for supervising the pre-trained
models. Consider ESM2, one of the largest language models used for protein sequences that
has shown significant improvement in protein structure prediction compared to previous
models. In our study, protein representations obtained via ESM2 significantly outperformed
UniRep or One-Hot in stability prediction. However, in the context of predicting binding
functionality among small protein affibody variants, its performance was exceeded by
UniRep and One-Hot (Figure 4). This motivates looking into what knowledge is transferred
by pretraining models and how useful they are for specific fitness predictions, with or
without further supervision. Here, we covered the core challenges and considerations
in supervising the models in fitness prediction, yet additional downstream analysis and
posing insightful questions will give us more understanding and directions in discrimi-
nating the protein sequences based on their fitness. In order to improve the pretraining
step, we might adopt techniques such as adjusting the masking rate [72], adding biological
priors [69,73], increasing the model parameters [66], and building specialized language
models for the desired fitness [74], given the growing data availability and computational
resources. Additional studies are required for improved downstream fitness predictions,
such as fine-tuning with a reduced chance of overfitting [75], incorporating the effect
of post-translational modifications, and characterizing the performance of embeddings
in different data setups [76] with varying protein types and finesses for supporting the
development of novel proteins in diagnostics and therapeutics.

5. Conclusions

This study intends to inform protein engineers that: (i) embeddings derived from
self-supervised representation techniques are not always the optimal route to take, depend-
ing on the protein size and protein fitness to be predicted; (ii) oversampling techniques,
especially SMOTE, have the ability to overcome the notorious challenge of highly imbal-
anced data in the protein fitness landscape; (iii) different aspects learned in each protein
encoding can be combined by voting techniques and result in better predictive scores.
These conclusions were revealed in the context of integrating machine learning and pro-
tein engineering knowledge to identify high-fitness protein sequences. Specifically, we
quantified model performance while varying the choice of feature representation, ensemble
learning, and sampling methods. Analysis across a broad range of protein chain lengths re-
vealed the ESM language model to be most beneficial for encoding large protein sequences
(Figure 8). However, in the context of small protein sequences, a comparable performance
was observed between One-Hot encoding and the language models (ESM and UniRep). In
our analysis, oversampling proved to be an effective technique to improve performance
when dealing with severely imbalanced datasets (Figure 4). Finally, ensemble learning
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was a promising method for boosting the binding prediction scores when using unique,
competitive encoding methods (Figures 5 and 6).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15051337/s1, Figure S1: Physicochemical fea-
ture correlation plot for affibody dataset. Figure S2: Confusion matrix results for the affibody dataset
given single encodings, encoding con-catenation, and upvoting. Figure S3: Physicochemical fea-
ture correlation plot NESP dataset. Figure S4: Physicochemical feature ranking for NESP dataset.
Figure S5: Physical feature representation while using maximum n = 1000 performed poorly and
was not selected for the main figure. Figure S6: Mean F1-score comparison between protein repre-
sentations including proteins with max length = 500. Figure S7: A complete list of used criteria for
MCDA and their derivations from confusion matrix values. Table S1: Figure 4 Statistical analysis
for analyzing significance of the results and ranking the methods based on their performance. This
analysis is performed with initial one-way ANOVA accompanied by Bonferroni post hoc to account
for family-wise error rate and rank the methods based on their performance. Table S2: Figure 5
Statistical analysis for analyzing significance of the results and ranking the methods based on their
performance. This analysis is performed with initial one-way ANOVA accompanied by Bonferroni
post hoc to account for family-wise error rate and rank the methods based on their performance.
Table S3: Statistical analysis for R-Oversampling vs. SMOTE. SMOTE performed significantly better
than oversampling in ESM, One-Hot, and UniRep encodings while its performance was similar to
R-Oversampling in techniques such as upvoting and physical feature encoding. Table S4: Statistical
analysis for Figure S2. Note that Tukey method results are provided in csv files.
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