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Introduction 

In the manuscript, two datasets (affibody and NESP) with different fitness attributes (stability and 

binding affinity) were selected to not only compare the protein representations and sampling methods 

but also to explain how they perform in important fitness prediction tasks. As an example, language 

models, such as ESM, have been trained over millions of protein sequences in public databases and have 

produced high performance in certain fitness tasks (e.g., stability prediction) while they may not do as 

well in all fitness tasks. This paper aims to emphasize the extra care that users should consider when 

using language model techniques based on their intended application.  In addition, we explored several 

methods to increase the model’s predictive performance (e.g., using sampling methods and voting 

techniques). While many possible factors (e.g., encoding and sampling methods, performance metrics 

used) may influence the results, we limited our search space to focus on four well-represented and 

highly used encodings ((One-hot, Physiochemical Encoding, UniRep[32], and ESM[33]), as well as three 

sampling methods which are relevant to highly imbalanced datasets.   

Protein Fitness: the ability of a protein to perform its biological function or functions effectively and 

efficiently within a specific environment or context. A protein's fitness is influenced by a variety of 

factors, including its structure, stability, and interactions with other molecules. Proteins with high fitness 

are able to carry out their intended roles with minimal errors or deviations from their normal function, 

whereas proteins with low fitness may have reduced activity, altered specificity, or decreased stability. 

Statistical Analysis: For pair-wise comparisons, we performed Student’s t-test for identifying whether 

any potential differences between methods are significant. Moreover, to account for multiple 

comparisons among all groups, we added an analysis of variance (ANOVA; MANOVA when multiple 

metrics are included) test to first identify if there were any significant results among these groups. 

Performing ANOVA between our candidates for encoding and sampling methods, the obtained result 

showed that the results are significant. Then, we conducted post hoc analyses to account for the family-

wise error rates caused by multiple comparisons to reduce the type-1 error rate. Implementing ANOVA 

followed by multiple post hoc statistical methods (Bonferroni and Tukey), we were able to rank their 

performances. We have implemented both the Bonferroni correction and Tukey method for the post 

hoc analysis and made the results available in the supplementary information (Table S1-S3). Both 

methods were largely in agreement on rejecting/accepting the null hypothesis (i.e., no significant 

difference between group i vs group j). The complete set of comparisons for both post hoc statistical 

methods can be found in the attached CSV in the supplementary information. Yet, due to the 

considerable quantity of analyses conducted (e.g. 120 combinatorial comparisons for representations 

and sampling methods), only the statistics directly associated with main manuscript figures are included 

here in the supplement. 



Selection of ML parameters: We have taken several steps to ensure a fair comparison between 

methods. To account for a fair comparison and adequately support our conclusions, we have compiled 

extensive performance metrics within supplementary information (Figure S1-S6; Table S1-S4). 

Specifically, we would like to justify our choices in terms of ML model selection, performance metric 

selection, and encoding choice. For ML model selection, we opted for simple logistic regression for 

classification as it is less sensitive to parameter selection and therefore appropriate for comparing 

methods[1]. For regression analysis, we conducted hyperparameter optimization based on each 

encoding method to ensure the model parameters were optimized based on the encoding input 

attributes. Regarding performance metric selection, we acknowledge that there are numerous criteria 

available for evaluating an ML model. However, given the unique protein fitness landscape attributes 

(we mainly focus on identifying the rare positive instances among a pool consisting of mostly low-fitness 

sequences), we initiated our decision-making process using the F1 score for classification and R-squared 

and MSE for regression as reliable measures for evaluating model performance. Then, to incorporate a 

more complete assessment of our encoding and sampling approaches, we included a total of six criteria: 

F1-score, precision, FPR, TPR, FDR, and NPV. To assess model performance in the context of multiple 

conflicting criteria, we implemented multiple criteria decision analysis (MCDA) with TOPSIS. MCDA 

enables ranking alternatives while taking into account each performance criterion.  

In this way, among virtually endless factors, we reduced our search space by carefully choosing fair ML 

models for comparisons, practical and well-known encodings, and specialized performance metrics 

based on the protein fitness landscape.  

While our study’s results hold true in the context of these protein attributes, generalizing these results 

to encompass all proteins will require more extensive studies. Yet, we aimed to incorporate various 

aspects of the protein fitness landscape in our study (e.g., different protein fitness and different protein 

sizes). Note that while we believe our results could derive generalizable interpretations, this is 

indisputable that different data sets might result in fairly different interpretations. However, this study 

intends to inform protein engineers that: 

i) Language model encoders are not always the definite route to take depending on the 

protein size and protein fitness to be predicted.  

ii) Oversampling techniques, especially SMOTE, has the ability to overcome the notorious 

challenge of highly imbalanced data in the protein fitness landscape. 

iii) Different aspects learned in each protein encoding can be combined by voting techniques 

and result in better predictive scores. 

 

 



Correlation Plot for Physical Features, Affibody Dataset Sample

Figure S1. The majority of physical features are at

least correlated with one other physical feature;

leaving us insights into attribute dependencies in

the affibody dataset. The plot is drawn upon sampling

from both naïve and enriched populations. Bold colors

represent a higher correlation of features. As the

affibody length in our dataset was fixed, the first row

and column of the matrix are empty. Insights on the

given correlation plot include i) a high correlation of

Boman index and protein flexibility index, ii) a high

correlation of aromaticity with molecular weight, MSW,

and refractivity, iii) Aliphatic index having a correlation

with multiple features such as bulkiness, H_Eisenberg,

and H_Gravy.

0)L, 1)Boman,2)Aromaticity, 3)Aliphatic,4)Instability, 5)Charge, 6)MW, 7)H_Eisenberg, 8)uH_Eisenberg, 9H)_GRAVY,10)uH_GRAVY, 11)Z3_1, 12)Z3_2, 

13)Z3_3,14)Levitt alpha, 15)MSS, 16)MSW, 17)refractivity, 18)flexibility, 19)bulkiness



Comparison P-Value

Physical vs. OH 2.37E-27

Physical vs. UniRep 2.60E-24

Physical  vs. ESM 2.22E-20

OH   vs. UniRep 6.86E-06

OH vs.   ESM 9.31E-13

UniRep vs.   ESM 6.44E-08

Physical vs. OH 6.12E-52

Physical vs. UniRep 3.20E-50

Physical  vs. ESM 5.11E-50

OH   vs. UniRep 0.619

OH  vs.   ESM 1.06E-18 

UniRep vs.   ESM 9.01E-17

Physical vs. OH 2.06E-51

Physical vs. UniRep 2.87E-50

Physical  vs. ESM 1.15E-50

OH   vs. UniRep 0.223

OH vs.   ESM 9.29E-15

UniRep vs.   ESM 9.01E-17

Under-sampling

R-oversampling

SMOTE

Table S1: Figure 4 T-test Results

The initial ANOVA test was done for 

multiple comparisons, and it resulted in p-

value= 9.53E-190.

The following tables in the supplement 

show the t-test results when Bonferroni 

correction is considered. The statistically 

significant results are bolded.

Please refer to csv files for additional post-

hoc analysis.



Comparisons R-Oversampling 
for i vs. j

Mean i Mean j P-value

OH-vs-UniRep 91.92 92 0.619375

OH-vs-ESM 91.92 89.91 1.06E-18

OH-vs-UniRep+OH 91.92 92.54 0.000201

OH-vs-ESM+OH 91.92 91.45 0.026281

OH-vs-ESM+UniRep 91.92 90.56 1.77E-09

OH-vs-All 91.92 92.61 8.38E-05

OH-vs-Upvoted 91.92 96.81 2.97E-31

UniRep-vs-ESM 92 89.91 2.04E-16

UniRep-vs-UniRep+OH 92 92.54 0.002124

UniRep-vs-ESM+OH 92 91.45 0.015463

UniRep-vs-ESM+UniRep 92 90.56 1.57E-09

UniRep-vs-All 92 92.61 0.000896

UniRep-vs-Upvoted 92 96.81 8.12E-26

ESM-vs-UniRep+OH 89.91 92.54 4.29E-19

ESM-vs-ESM+OH 89.91 91.45 2.15E-08

ESM-vs-ESM+UniRep 89.91 90.56 0.000344

ESM-vs-All 89.91 92.61 9.44E-19

ESM-vs-Upvoted 89.91 96.81 2.52E-38

UniRep+OH-vs-ESM+OH 92.54 91.45 1.47E-05

UniRep+OH-vs-ESM+UniRep 92.54 90.56 4.37E-13

UniRep+OH-vs-All 92.54 92.61 0.706828

UniRep+OH-vs-Upvoted 92.54 96.81 8.42E-24

ESM+OH-vs-ESM+UniRep 91.45 90.56 0.000355

ESM+OH-vs-All 91.45 92.61 7.00E-06

ESM+OH-vs-Upvoted 91.45 96.81 1.35E-19

ESM+UniRep-vs-All 90.56 92.61 2.59E-13

ESM+UniRep-vs-Upvoted 90.56 96.81 2.84E-25

All-vs-Upvoted 92.61 96.81 8.43E-23

𝛼 = 0.05/120 ≅ 0.0004

Bonferroni Correction for Rejecting Null 

Hypothesis

Table S2: Figure 5 T-test Results-part1



Comparisons for SMOTE

for i vs. j

Mean i Mean j P-value

OH-vs-UniRep 92.88 93.07 0.222968

OH-vs-ESM 92.88 91.09 9.29E-15

OH-vs-UniRep+OH 92.88 92.53 0.050908

OH-vs-ESM+OH 92.88 91.61 5.80E-11

OH-vs-ESM+UniRep 92.88 90.47 1.85E-15

OH-vs-All 92.88 92.58 0.074292

OH-vs-Upvoted 92.88 97.08 4.02E-24

UniRep-vs-ESM 93.07 91.09 9.01E-17

UniRep-vs-UniRep+OH 93.07 92.53 0.003022

UniRep-vs-ESM+OH 93.07 91.61 3.23E-13

UniRep-vs-ESM+UniRep 93.07 90.47 1.72E-16

UniRep-vs-All 93.07 92.58 0.004057

UniRep-vs-Upvoted 93.07 97.08 6.46E-25

ESM-vs-UniRep+OH 91.09 92.53 2.43E-10

ESM-vs-ESM+OH 91.09 91.61 0.000153

ESM-vs-ESM+UniRep 91.09 90.47 0.000995

ESM-vs-All 91.09 92.58 1.50E-11

ESM-vs-Upvoted 91.09 97.08 1.88E-32

UniRep+OH-vs-ESM+OH 92.53 91.61 1.56E-06

UniRep+OH-vs-ESM+UniRep 92.53 90.47 8.55E-13

UniRep+OH-vs-All 92.53 92.58 0.792126

UniRep+OH-vs-Upvoted 92.53 97.08 1.11E-21

ESM+OH-vs-ESM+UniRep 91.61 90.47 1.11E-07

ESM+OH-vs-All 91.61 92.58 1.50E-07

ESM+OH-vs-Upvoted 91.61 97.08 2.07E-34

ESM+UniRep-vs-All 90.47 92.58 1.74E-13

ESM+UniRep-vs-Upvoted 90.47 97.08 1.37E-24

All-vs-Upvoted 92.58 97.08 4.06E-23

𝛼 = 0.05/120 ≅ 0.0004

Bonferroni Correction for Rejecting Null 

Hypothesis

Table S2: Figure 5 T-test Results-part 2



Comparison for Samplings

R-Oversampling vs. SMOTE

Mean R-Oversampling Mean SMOTE P-Value

OH

91.92 92.88

7.30e-08

UniRep

92 93.07

3.08e-08

ESM

89.91 91.09

1.90e-11

UniRep+OH

92.54 92.53

0.96

ESM+OH 

91.45 91.61

0.44

ESM+UniRep

90.56 90.47

0.65

All

92.61 92.58

0.88

Upvoted

96.81 97.08

0.002

Table S3: SMOTE either Improved the performance or had no hampering effect with respect to R-Oversampling. 



Violin plot-based confusion matrix

Figure S2. Individual Encodings

Perform uniquely in the confusion

matrix entities. While the overall

predictive performance is the main goal

and it is represented via F1-Score

throughout the literature, inspecting how

each model performs for maximizing

true positives(TP) and true

negatives(TN) while minimizing false

positives(FP) and false negatives(FN),

provides insights about each model

performance.



Encoding P-value Mean i Mean j Sampling

OH-vs-UniRep 0.532 0.994 0.993 R-Oversampling

OH-vs-ESM 0.005 0.994 0.990 R-Oversampling

OH-vs-Concat_All 0.861 0.994 0.994 R-Oversampling

OH-vs-Upvote 0.848 0.994 0.994 R-Oversampling

UniRep-vs-ESM 0.016 0.993 0.990 R-Oversampling

UniRep-vs-Concat_All 0.634 0.993 0.994 R-Oversampling

UniRep-vs-Upvote 0.410 0.993 0.994 R-Oversampling

ESM-vs-Concat_All 0.006 0.990 0.994 R-Oversampling

ESM-vs-Upvote 0.003 0.990 0.994 R-Oversampling

Concat_All-vs-Upvote 0.707 0.994 0.994 R-Oversampling

OH-vs-UniRep 0.340 0.995 0.994 SMOTE

OH-vs-ESM 1.03E-4 0.995 0.989 SMOTE

OH-vs-Concat_All 0.764 0.995 0.995 SMOTE

OH-vs-Upvote 0.760 0.995 0.995 SMOTE

UniRep-vs-ESM 0.002 0.994 0.989 SMOTE

UniRep-vs-Concat_All 0.493 0.994 0.995 SMOTE

UniRep-vs-Upvote 0.480 0.994 0.995 SMOTE

ESM-vs-Concat_All 1.95E-4 0.989 0.995 SMOTE

ESM-vs-Upvote 1.65E-4 0.989 0.995 SMOTE

Concat_All-vs-Upvote 0.998 0.995 0.995 SMOTE

Encoding P-value Mean i Mean j Sampling

OH-vs-UniRep 0.041 0.844 0.890 R-Oversampling

OH-vs-ESM 0.77 0.844 0.852 R-Oversampling

OH-vs-Concat_All 0.609 0.844 0.833 R-Oversampling

OH-vs-Upvote 0.88 0.844 0.840 R-Oversampling

UniRep-vs-ESM 0.152 0.890 0.852 R-Oversampling

UniRep-vs-Concat_All 0.01 0.890 0.833 R-Oversampling

UniRep-vs-Upvote 0.034 0.890 0.840 R-Oversampling

ESM-vs-Concat_All 0.47 0.852 0.833 R-Oversampling

ESM-vs-Upvote 0.679 0.852 0.840 R-Oversampling

Concat_All-vs-Upvote 0.734 0.833 0.840 R-Oversampling

OH-vs-UniRep 0.281 0.854 0.878 SMOTE

OH-vs-ESM 0.59 0.854 0.840 SMOTE

OH-vs-Concat_All 0.054 0.854 0.812 SMOTE

OH-vs-Upvote 0.463 0.854 0.870 SMOTE

UniRep-vs-ESM 0.153 0.878 0.840 SMOTE

UniRep-vs-Concat_All 0.005 0.878 0.812 SMOTE

UniRep-vs-Upvote 0.708 0.878 0.870 SMOTE

ESM-vs-Concat_All 0.265 0.840 0.812 SMOTE

ESM-vs-Upvote 0.251 0.840 0.870 SMOTE

Concat_All-vs-Upvote 0.01 0.812 0.870 SMOTE

Stat for TP Stat for FN

𝛼 =
0.05

45
≅ 0.001Bonferroni Correction for Rejecting Null Hypothesis

Table S4. T-Test for Figure S4 



Encoding P-value Mean i Mean j Sampling

OH-vs-UniRep 0.569 0.9984 0.9986 R-Oversampling

OH-vs-ESM 0.018 0.9984 0.9990 R-Oversampling

OH-vs-Concat_All 0.758 0.9984 0.9984 R-Oversampling

OH-vs-Upvote 4.60E-07 0.9984 0.9996 R-Oversampling

UniRep-vs-ESM 0.081 0.9986 0.9990 R-Oversampling

UniRep-vs-Concat_All 0.429 0.9986 0.9984 R-Oversampling

UniRep-vs-Upvote 7.12E-6 0.9986 0.9996 R-Oversampling

ESM-vs-Concat_All 0.021 0.9990 0.9984 R-Oversampling

ESM-vs-Upvote 0.001 0.9990 0.9996 R-Oversampling

Concat_All-vs-Upvote 9.80E-06 0.9984 0.9996 R-Oversampling

OH-vs-UniRep 0.340 0.9987 0.9992 SMOTE

OH-vs-ESM 1.03E-4 0.9987 0.9986 SMOTE

OH-vs-Concat_All 0.764 0.9987 0.9982 SMOTE

OH-vs-Upvote 0.760 0.9987 0.9995 SMOTE

UniRep-vs-ESM 0.002 0.9992 0.9986 SMOTE

UniRep-vs-Concat_All 0.493 0.9992 0.9982 SMOTE

UniRep-vs-Upvote 0.480 0.9992 0.9995 SMOTE

ESM-vs-Concat_All 1.95E-4 0.9986 0.9982 SMOTE

ESM-vs-Upvote 1.65E-4 0.9986 0.9995 SMOTE

Concat_All-vs-Upvote 0.998 0.9982 0.9995 SMOTE

Encoding P-value Mean i Mean j Sampling

OH-vs-UniRep 0.022 0.903 0.852 R-Oversampling

OH-vs-ESM 0.975 0.903 0.903 R-Oversampling

OH-vs-Concat_All 7.37E-05 0.903 0.794 R-Oversampling

OH-vs-Upvote 2.54E-08 0.903 0.703 R-Oversampling

UniRep-vs-ESM 0.01 0.852 0.903 R-Oversampling

UniRep-vs-Concat_All 0.025 0.852 0.794 R-Oversampling

UniRep-vs-Upvote 6.07E-06 0.852 0.703 R-Oversampling

ESM-vs-Concat_All 2.71E-05 0.903 0.794 R-Oversampling

ESM-vs-Upvote 2.10E-08 0.903 0.703 R-Oversampling

Concat_All-vs-Upvote 0.05 0.794 0.703 R-Oversampling

OH-vs-UniRep 0.501 0.872 0.824 SMOTE

OH-vs-ESM 0.131 0.872 0.858 SMOTE

OH-vs-Concat_All 0.001 0.872 0.834 SMOTE

OH-vs-Upvote 0.121 0.872 0.743 SMOTE

UniRep-vs-ESM 0.692 0.824 0.858 SMOTE

UniRep-vs-Concat_All 0.033 0.824 0.834 SMOTE

UniRep-vs-Upvote 0.291 0.824 0.743 SMOTE

ESM-vs-Concat_All 0.002 0.858 0.834 SMOTE

ESM-vs-Upvote 0.018 0.858 0.743 SMOTE

Concat_All-vs-

Upvote 0.05 0.834 0.743 SMOTE

Stat for TN Stat for FP

Bonferroni Correction for Rejecting Null Hypothesis

Table S4. T-Test for Figure S4 

𝛼 =
0.05

45
≅ 0.001



Correlation Plot for Physical Features, NESP

0)L, 1)Boman,2)Aromaticity, 3)Aliphatic,4)Instability, 5)Charge, 6)MW, 7)H_Eisenberg, 8)uH_Eisenberg, 9H)_GRAVY,10)uH_GRAVY, 11)Z3_1, 12)Z3_2, 

13)Z3_3,14)levitt_alpha, 15)MSS, 16)MSW, 17)refractivity, 18)flexibility, 19)bulkiness

Note: From this Figure (Figure S2) the results are 

generated from NESP data.

Figure S3. Physical feature correlation plot for NESP dataset.



Feature Scores in Discriminating Stable vs. Unstable Classes
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Figure S4: Physical feature 

ranking for NESP dataset. 

The feature ranking is 

presented after using all the 

data for the classification of 

stable vs. unstable 

sequences. Boman Index, 

H_Eisenberg, and MSS are 

the lead features. However, 

their scores are not 

significantly higher than the 

other physical attributes, 

indicating that more features 

incorporate in the final 

F1_Score=0.86.



Figure S5. Physical Feature representation while using maximum N=1000, performed poorly and have not got selected 

for the main figure.  

Mean value for LR physical encoding



Figure S6. The predictive performances (F1-score) of multiple protein representations (One-Hot, UniRep, and ESM) were

evaluated across stable (Tm>=60C; n=3140) vs. unstable (Tm<= 35C; n=1116) proteins. The performance of individual

representations is compared against the effects of concatenating each embedding as well as ensemble methods (upvote1:

hard voting, upvote2: soft voting). The violin plots were generated by repeating the analysis over 30 random seeds for

sensitivity analysis. N represents the total number of data used with 0.3 as a test-size ratio. Welch t-test with unequal

variances has been implemented over the obtained results to showcase the statistical significance in comparisons (refer to

supplementary information for p-values). Highlight: In low data size (N=20), One-Hot performs poorly with the mean F1-score

of 0.60, and the embeddings that included One-Hot were outperformed by both ESM and UniRep. While increasing the data

size resulted in increased performance for all the methods, concatenating ESM with UniRep representations obtained the best

score, with a mean F1 of 0.92.
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Figure S7: A complete list of used criteria for MCDA & their derivations from confusion matrix values
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