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Abstract: Artificial intelligence (Al) has emerged as a powerful tool that harnesses anthropomorphic
knowledge and provides expedited solutions to complex challenges. Remarkable advancements in
Al technology and machine learning present a transformative opportunity in the drug discovery,
formulation, and testing of pharmaceutical dosage forms. By utilizing AI algorithms that analyze
extensive biological data, including genomics and proteomics, researchers can identify disease-
associated targets and predict their interactions with potential drug candidates. This enables a more
efficient and targeted approach to drug discovery, thereby increasing the likelihood of successful drug
approvals. Furthermore, Al can contribute to reducing development costs by optimizing research and
development processes. Machine learning algorithms assist in experimental design and can predict
the pharmacokinetics and toxicity of drug candidates. This capability enables the prioritization
and optimization of lead compounds, reducing the need for extensive and costly animal testing.
Personalized medicine approaches can be facilitated through Al algorithms that analyze real-world
patient data, leading to more effective treatment outcomes and improved patient adherence. This
comprehensive review explores the wide-ranging applications of Al in drug discovery, drug delivery
dosage form designs, process optimization, testing, and pharmacokinetics/pharmacodynamics
(PK/PD) studies. This review provides an overview of various Al-based approaches utilized in
pharmaceutical technology, highlighting their benefits and drawbacks. Nevertheless, the continued
investment in and exploration of Al in the pharmaceutical industry offer exciting prospects for
enhancing drug development processes and patient care.

Keywords: artificial intelligence (AI); machine learning; drug discovery; formulation; dosage form
testing; pharmacokinetics; pharmacodynamics; PBPK; QSAR

1. Introduction

Numerous industries are striving to enhance their progress to meet the demands
and expectations of their customers, utilizing various methodologies. The pharmaceutical
industry is a critical field that plays a vital role in saving lives. It operates based on
continuous innovation and the adoption of new technologies to address global healthcare
challenges and respond to medical emergencies, such as the recent pandemic [1]. In
the pharmaceutical industry, innovation is typically predicated on extensive research
and development across various domains, including but not limited to manufacturing
technology, packaging considerations, and customer-oriented marketing strategies [2].
Novel pharmaceutical innovations are range from small drug molecules to biologics, with
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a preference for better stability with high potency to fulfil unmet needs to treat diseases.
The assessment of the significant levels of toxicity associated with new drugs is an area of
considerable concern, necessitating extensive research and exploration in the foreseeable
future. One of the primary aims is to provide drug molecules that offer optimal benefits and
suitability for utilization in the healthcare industry. Despite this, the pharmacy industry
faces numerous obstacles that necessitate further advancement using technology-driven
methods to address worldwide medical and healthcare demands [3-5].

The need for a proficient workforce in the healthcare industry is persistent, neces-
sitating the continuous provision of training to healthcare personnel to augment their
involvement in routine duties. Identifying skill gaps in the workplace is a crucial undertak-
ing within the pharmaceutical industry. It is imperative to effectively address the identified
gaps through appropriate remedial measures while acknowledging that providing ade-
quate training can also pose a significant challenge. As per a report presented by certain
authorities, it has been observed that approximately 41% of supply chain disruptions oc-
curred in June 2022. The report further highlights that supply chain disruption has emerged
as the second-most-formidable challenge to overcome. Several pharmaceutical industries
are anticipating further advancements in their supply chain, as well as innovative models
to address these challenges, with the potential to enhance business resilience [6]. The global
outbreak of coronavirus disease 2019 (COVID-19) has caused significant disruptions to
various operations worldwide, including ongoing clinical trials [7].

Pandemics, natural catastrophes, pricing changes, cyberattacks, logistical delays, and
product issues increase supply chain disruptions. Transportation challenges caused by
the epidemic have devastated the supply chain network and global industries. Decision-
induced delays for price updates from suppliers owing to misunderstanding over whether
to utilize the new price or the existing price for commodities or materials create price
fluctuation delays. New obstacles arise from countries’ cross-border trade cooperation
strategies, increasing criminal activity and instability in the availability of crucial resources
for operation and production. The manufacturing of footprint modifications is needed to
suit patient needs and compliance.

Within the pharmaceutical industry, a significant quantity of COVID-19 vaccines
ended up being unusable during the pandemic because of complications related to the
maintenance of the cold chain. The primary cause of supply chain disruption resulting
from the delayed response can be attributed to insufficient innovation and imprecise
forecasting in industrial and commercial operations. Supply chain disruptions within the
pharmaceutical industry have significant ramifications on customer satisfaction, corporate
reputation, and potential profits [8,9].

The implementation of Al is poised to bring about a significant transformation in
the way the pharmaceutical industry handles supply chain operations (Figure 1). It also
consolidates numerous Al research endeavors from recent decades to create effective
solutions for diverse supply chain issues. Additionally, the study suggests potential
research areas that could enhance decision-making tools for supply chain management in
the future [10,11].

The primary impact of the pandemic is receding, but it still has some influence on
clinical trials. Many pharmaceutical companies are looking to adopt newer technologies,
including platforms such as Al and virtual platforms in this field. These new technologies
may be helpful in the restart or recreation of these clinical trials, with minimal interaction
for face-to-face types [12-18], as presented in Figure 1. At present, highly skilled workers
and high maintenance costs pose a larger challenge. The fourth main challenge in seeking
a technology-based solution is data breaches and cybersecurity threats. The number of
cyberattacks on available patient data has also increased in the 21st century, and many phar-
maceutical companies are more concerned about confidential medical records and patient
data, which are especially vulnerable to cybersecurity attacks. Some of the major challenges
associated with traditional clinical trials are data fragmentation and disconnected system
involvement, which generally result from scattered data generated during the trials and
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hence require extensive manual data transcription efforts for documents along with those
of the systems. There is a lack of innovation in the trial models, which thus requires the
rework and repetition of the ongoing work. In the healthcare sector, patient recruitment,
enrollment, monitoring, retention, and medical adherence are the key points that require
special attention due to clinical trials. The enrollment of the patient is affected due to the
traveling process at the trial sites, which is time-consuming for the participants, and fre-
quent visits to sites contribute to patient re-enrollment in the same context. The application
of Al to the study design helps with optimization as well as accretion for the work related
to the creation of the patient-centric type of design. Al uses techniques for the collection of
the huge amounts of data generated from those clinical trials, thus reducing the amount of
data manpower required for the same. Such technologies implement body sensors along
with wearable devices to record the patient’s vital signs and valuable information in a
remote mode, which helps meet the patient’s requirement for face-to-face interaction on a
routine basis. Al algorithms using wearable technology provide real-time insights during
the study process [19].
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Figure 1. Depicts a possible artificial intelligence (Al) solution to the pharmaceutical industry’s

challenges: acquiring a proficient workforce is a prerequisite in all sectors to leverage their expertise,
proficiency, and aptitude in product innovation. The second pertains to supply chain disruption
and clinical trial experimentation challenges. The incidence of cyberattacks is on the rise, with data
breaches and security emerging as significant concerns for the industry.
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A new technology platform and solution are required for the implementation of
effective cybersecurity inside the office and for remote workers. Special attention must
also be paid to data security and breach techniques. Technology is also required to address
political fraud, and many cases have been reported, especially during the pandemic in the
last few years around the world. Therefore, there is a need to take appropriate steps for the
prevention of healthcare fraud, along with constant encouragement for internal discussions
about fraudulent behaviors, which may help in the inhibition of the same.

2. Current Pharmaceutical Challenges and the Role of Al

In the pharmaceutical industry, research on small molecules for better products and
customer satisfaction is ongoing due to their multiple advantages. The chemical synthesis
process is simple, while the synthetic derivative preparation is economical. Thus, many
stable and potent small-molecule-loaded formulations are present in the pharmacy sector.
Except for the treatment of rare diseases, many innovative small molecules face competition
from generic molecules, and complex data are required for them to be launched, along with
clinical trials. These processes increase the economic pressure on companies to engage in
more innovation. However, the biomolecular drug industry is still growing at a rapid pace
to compensate for the crisis induced by the small molecular size and poor dissemination
of research and innovations. Small-molecule actions are based on their conformation and
reactivity [20-26]. Biomolecules, which are large units, mostly contain amino acids from the
protein source along with nucleotides or ribonucleotides for the nucleic acid. Their stability
and function are also influenced by the supramolecular sequence and the spatial conforma-
tion [27]. Some biomolecules are very successful products, such as insulin and adalimumab.
The pharmacokinetic aspects of these molecules are complex, as infusion is the preferred
and most usable route of administration for these biomolecules. Pharmacokinetic modula-
tion and molecular stabilization are important aspects of nucleic acid-based research. The
pharmacokinetic exposure and enhancement of these molecular forms are crucial goals.
New technological advancement may be helpful to address these challenges and solve
related issues [28-33]. Although there is huge scope for Al in drug delivery innovation
and drug discovery, it still presents some major limitations that ultimately require human
interference or intellectuals to interpret the complex results. The major contributions of Al
predictions are based on the datasets, but the interpretation of the results, owing to the gray
zone, require human interference to reach the appropriate conclusion. Al can experience
issues with algorithm bias regarding the processing of information for predictions and the
assessment of hypotheses. Moreover, it is not uncommon for docking simulations to result
in the discovery of inactive molecules [34]. Therefore, a critical analysis of these parameters
still requires human involvement for effective decision-making and cross-verifications,
to rule out system bias issues. Nevertheless, there is huge potential in Al for possible
application, and thus, extensive work may be able to reduce the limitations associated with
Al and make it effective and reliable [35].

Regarding Al, the methodology employed involves the utilization of machine learning
or its subsets, such as deep learning and natural language processing. The learning process
can be either supervised or unsupervised, and the type of algorithm employed is also a
crucial factor. Supervised learning is a machine learning methodology that involves the
use of known inputs (features) and outputs (labels or targets), as opposed to unsupervised
learning, which deals with unknown outputs. The supervised approach involves the
prediction of output, such as labels or targets, based on multiple inputs or features. On
the other hand, unsupervised classification aims to create groups that are homogeneous in
terms of features [36].

In pharmaceutical product development, various AI models have been explored to
enhance different aspects of the process. A list of commonly explored Al models in this
domain is described in Table 1 and Figure 2.
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Figure 2. Different supervised and unsupervised Al learning models/tools for pharmaceutical
applications.

2.1. Supervised Al Learning

Supervised learning refers to a type of machine learning in which an algorithm is
trained on a labeled dataset, where the desired output is already known. The algorithm
learns to map input data to the correct output by analyzing the patterns and relationships
within the labeled data. This approach is commonly used in various applications, such
as image recognition, natural language processing, and predictive modeling. Task-driven
strategies involve setting specific goals for achieving desired outcomes from a given set of
inputs. This approach utilizes labeled data to train algorithms for tasks such as data classifi-
cation or outcome forecasting. The predominant supervised learning tasks are classification,
which involves predicting a label, and regression, which involves predicting a quantity.
A variety of techniques are available for solving supervised learning tasks, depending on
the nature of the data in a given problem domain. These techniques include Naive Bayes,
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K-nearest neighbors, support vector machines, ensemble learning, random forest, linear
regression, support vector regression, and others [37]. It has several applications in the
pharmaceutical industry, as described below:

e  Drug Discovery and Design: Supervised learning algorithms can be used to predict
the activity or properties of new drug candidates. By training on a dataset of known
compounds and their associated activities, the model can learn patterns and relation-
ships between molecular features and desired outcomes. This enables the prediction
of the activity, potency, or toxicity of novel compounds, aiding in drug discovery and
design [38].

e  Predictive Maintenance and Quality Control: In pharmaceutical manufacturing, su-
pervised learning can be utilized for predictive maintenance and quality control. By
training on data from manufacturing processes, equipment sensor data, or quality
testing results, the model can learn to predict equipment failure, product quality
deviations, or process abnormalities, allowing for proactive maintenance and quality
assurance [39].

e  Drug Target Identification: Supervised learning techniques can help identify potential
drug targets by analyzing biological data. By training on data that include information
about genetic, proteomic, or transcriptomic features and their relationship to drug
response or disease progression, the model can learn patterns and identify potential
targets for further investigation [40].

e  Disease Diagnosis and Prognosis: Supervised learning models can be used to diagnose
diseases or predict patient outcomes based on medical data. By training on labeled
datasets containing patient characteristics, clinical data, and disease outcomes, the
model can learn to classify patients into different disease categories or predict disease
progression or treatment response [41].

e  Adverse Event Detection: Supervised learning algorithms can be applied to pharma-
covigilance data to identify and classify adverse events associated with drugs. By
training on labeled adverse event reports, the model can learn to recognize patterns
and identify potential safety signals, helping in the detection and characterization of
adverse events [42].

e  Predictive Modeling for Clinical Trials: Supervised learning can be used to predict
outcomes in clinical trials. By training on historical clinical trial data, including patient
characteristics, treatment interventions, and trial outcomes, the model can learn to
predict patient response, treatment efficacy, or safety outcomes. This information can
guide trial design and optimize patient selection [43].

These are just a few examples of how supervised learning can be applied in the
pharmaceutical industry. Supervised learning techniques, combined with appropriate
feature selection, data preprocessing, and model evaluation, can provide valuable insights
and support decision-making in various stages of pharmaceutical research, development,
and manufacturing.

2.2. Unsupervised Al Learning

Unsupervised learning refers to a type of machine learning where the algorithm is
not provided with labeled data. Instead, it is tasked with identifying patterns and rela-
tionships within the data on its own. This approach is often used in exploratory data
analysis and can be useful for discovering hidden structures or clusters within a dataset.
The approach being described is commonly known as a “data-driven methodology,” which
aims to extract patterns, structures, or insights from unannotated data. There are several
prevalent unsupervised tasks, including clustering, dimensionality reduction, visualization,
finding association rules, and anomaly detection. Various unsupervised learning tasks can
be addressed using popular techniques such as clustering algorithms (e.g., hierarchical
clustering, K-means, K-medoids, single linkage, complete linkage, BOTS), association learn-
ing algorithms, and feature selection and extraction techniques (e.g., Pearson correlation,
principal component analysis) based on the data’s characteristics [44,45]. Unsupervised
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learning techniques in Al can be valuable for pharmaceutical applications, particularly for
exploratory analysis, pattern recognition, and data visualization, as described below:

Clustering: Clustering algorithms group data points based on their similarities, al-
lowing the identification of natural groupings or clusters within the data. In phar-
maceutical applications, clustering can be applied to various datasets, such as gene
expression profiles, chemical structures, or patient data, to uncover subgroups with
similar characteristics. This can aid in target identification, patient stratification, and
identifying distinct classes of compounds or diseases [46].

Dimensionality Reduction: Dimensionality reduction techniques, such as principal
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE),
are used to reduce the complexity of high-dimensional datasets while preserving
meaningful information. These methods can help visualize and explore complex
datasets, identify key variables or features, and support decision-making processes.
Dimensionality reduction can be applied to various types of pharmaceutical data,
including gene expression data, drug activity profiles, or imaging data [47].
Anomaly Detection: Anomaly detection algorithms identify rare or unusual data
points that deviate significantly from the expected patterns. In the pharmaceutical
industry, anomaly detection can be useful for detecting adverse events, identifying
potential safety concerns, and uncovering data quality issues. Unsupervised anomaly
detection techniques, such as the local outlier factor (LOF) or isolation forest, can help
highlight abnormal patterns or data points that warrant further investigation [48].
Association Rule Mining: Association rule mining techniques, such as the Apriori
algorithm, aim to discover interesting relationships or associations between items in a
dataset. In the pharmaceutical context, association rule mining can be applied to drug—
drug interactions, adverse event data, or co-occurrence patterns between medical
conditions and medications. These techniques can provide insights into potential drug
interactions, identify medication patterns, or support pharmacovigilance activities [49].
Topic Modeling: Topic modeling algorithms, such as latent Dirichlet allocation (LDA),
extract latent topics or themes from large text datasets. In the pharmaceutical industry,
topic modeling can be used to analyze the scientific literature, clinical trial reports, or
social media data to identify key research themes, emerging trends, or patient senti-
ments. This can aid in literature mining, competitive intelligence, or understanding
patient perspectives [50,51].

Unsupervised learning techniques offer valuable insights and exploratory analysis

in pharmaceutical applications. However, it is important to note that the interpretation of
results from unsupervised learning methods often requires domain expertise and further
validation to extract actionable knowledge and ensure the reliability of the findings.

Table 1. Top 10 list of commonly used Al models in the pharmaceutical industry.

Al/Machine Learning Models

Description/Usage References

Generative Adversarial Networks
(GANs)

GAN:Ss are widely used in drug product development to generate novel
chemical structures and optimize their properties. GANs consist of a

generator network that creates new molecules and a discriminator network  [52]
that evaluates their quality, leading to the generation of structurally

diverse and functionally optimized drug candidates.

Recurrent Neural Networks (RNNs)

RNNSs are commonly employed for sequence-based tasks in drug
development, such as predicting protein structures, analyzing genomic
data, and designing peptide sequences. They capture sequential
dependencies and can generate new sequences based on learned patterns.

[53]
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Table 1. Cont.

Al/Machine Learning Models

Description/Usage References

Convolutional Neural Networks structures and identifying potential drug targets. They can extract relevant

(CNNs)

CNN:s are effective in image-based tasks, including analyzing molecular

features from molecular images and aid in drug design and target (541

identification

Long Short-Term Memory Networks  dependencies. They have been used in pharmacokinetics and

(LSTMs)

LSTMs are a type of RNN that excel in modeling and predicting temporal

pharmacodynamics studies to predict drug concentration-time profiles and (53]

evaluate drug efficacy.

Transformer Models

Transformer models, such as the popular BERT (Bidirectional Encoder
Representations from Transformers), have been employed in natural
language processing tasks in the pharmaceutical domain. They can extract
useful information from the scientific literature, patent databases, and
clinical trial data, enabling researchers to make informed decisions in drug
development.

[56]

Reinforcement Learning (RL)

RL techniques have been applied to optimize drug dosing strategies and
develop personalized treatment plans. RL algorithms learn from
interactions with the environment to make sequential decisions, aiding in
dose optimization, and improving patient outcomes.

[57]

Bayesian Models

Bayesian models, such as Bayesian networks and Gaussian processes, are
employed for uncertainty quantification and decision-making in drug
development. They enable researchers to make probabilistic predictions,
assess risks, and optimize experimental designs.

[58,59]

Deep Q-Networks (DQNs)

DQNs, a combination of deep learning and reinforcement learning, have
been used to optimize drug discovery processes by predicting the activity
of compounds and suggesting high-potential candidates for further
experimentation.

[60,61]

Autoencoders

Autoencoders are unsupervised learning models used for dimensionality
reduction and feature extraction in drug development. They can capture
essential characteristics of molecules and assist in compound screening
and virtual screening.

[62,63]

Graph Neural Networks (GNNs)

GNNis are designed to process graph-structured data, making them
suitable for drug discovery tasks that involve molecular structures. They
can model molecular graphs, predict properties, and aid in virtual
screening and de novo drug design.

[64,65]

3. Al for Drug Discovery

Al has revolutionized drug research and discovery in numerous ways. Some of the
key contributions of Al in this domain include the following;:

3.1. Target Identification

Al systems can analyze diverse data types, such as genetic, proteomic, and clinical
data, to identify potential therapeutic targets. By uncovering disease-associated targets and
molecular pathways, Al assists in the design of medications that can modulate biological
processes.

3.2. Virtual Screening

Al enables the efficient screening of vast chemical libraries to identify drug candi-
dates that have a high likelihood of binding to a specific target. By simulating chemical
interactions and predicting binding affinities, Al helps researchers prioritize and select
compounds for experimental testing, saving time and resources.
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3.3. Structure-Activity Relationship (SAR) Modeling

Al models can establish links between the chemical structure of compounds and
their biological activity. This allows researchers to optimize drug candidates by design-
ing molecules with desirable features, such as high potency, selectivity, and favorable
pharmacokinetic profiles.

3.4. De Novo Drug Design

Using reinforcement learning and generative models, Al algorithms can propose novel
drug-like chemical structures. By learning from chemical libraries and experimental data,
Al expands the chemical space and aids in the development of innovative drug candidates.

3.5. Optimization of Drug Candidates

Al algorithms can analyze and optimize drug candidates by considering various
factors, including efficacy, safety, and pharmacokinetics. This helps researchers fine-tune
therapeutic molecules to enhance their effectiveness while minimizing potential side effects.

3.6. Drug Repurposing

Al techniques can analyze large-scale biomedical data to identify existing drugs that
may have therapeutic potential for different diseases. By repurposing approved drugs for
new indications, Al accelerates the drug discovery process and reduces costs.

3.7. Toxicity Prediction

Al systems can predict drug toxicity by analyzing the chemical structure and char-
acteristics of compounds. Machine learning algorithms trained on toxicology databases
can anticipate harmful effects or identify hazardous structural properties. This helps re-
searchers prioritize safer chemicals and mitigate potential adverse responses in clinical
trials.

Overall, Al-driven approaches in drug research and development offer the potential
to streamline and expedite the identification, optimization, and design of novel therapeutic
candidates, ultimately leading to more efficient and effective medications [66].

For example, in silico target fishing technology (TF) is used in pharmaceuticals for
biological target prediction based on chemical structure. This information is provided
depending on the information available in the chemical database in the biological annotated
form. Along with this, several other methods, such as data mining and docking of the
chemical structure, were used for the exploration of the mechanism of action along with
target class information required for effective planning. The target fishing technique was
used in drug discovery with the help of machine learning along with cheminformatics tools.
These two are used to obtain detailed knowledge related to the proper analysis of complex
structures and the design of novel drug ingredients for the effective treatment of complex
diseases. The routine drug discovery methods run by different industries are quite costly,
as they involve several complicated events that must be addressed properly to conclude,
such as the selection and identification of the target proteins and the mechanism of action
of the small molecules in depth. To speed up this process, the TF was applied, which
assisted in reducing the total experimental cost during the drug development processes.
The reference molecules are used for the prediction of the ligand-target with the help of
the 3D descriptors. This technique was used for the identification of the high binding
ability of diethylstilbestrol, while the TF technique is widely implemented for the study
of the phytopharmacology of the drug along with monthly similarity assessments. It is
a computational and a proteomics-based method, which is based on the ranking of the
data points depending on the similarity of data fusion along with drug targets. It is also
used for the prediction of potential toxicities for the ligand-based approach used in drug
discovery. Some of the critical points required in the drug development and drug discovery
phases, such as novel target identification, selection, prediction of the phytopharmacological
profiles, and prediction of the adverse effects associated with novel therapeutic indications,
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are explored with the TF. For these events, the bioactive compound similarity is applied for
target identification to that of the unrecognized compounds. Some of the drugs that have
been successfully characterized by using this method are loperamide and emetine, along
with methadone, while the targets identified for the same are muscarinic, adrenergic, and
neurokinin receptors [2,67-75].

The field of drug discovery has seen significant advancements with the use of Al
models and tools. Some of the popular Al model tools used for drug discovery are described
in Table 2. These are just a few examples of the Al model tools available for drug discovery.
The field is rapidly evolving, and new tools and models are continuously being developed
to accelerate the discovery of new drugs.

Table 2. Popular Al model tools used for drug discovery.

AI Model Tools Summary

An open-source library that provides a wide range of tools and models for
DeepChem drug discovery, including deep learning models for molecular property
prediction, virtual screening, and generative chemistry.

A widely used open-source cheminformatics library that offers various
functionalities for molecule handling, substructure searching, and
descriptor calculation. It can be integrated with machine learning
frameworks for drug discovery applications.

RDKit

A language model specifically designed for drug discovery tasks. It is
based on the Transformer architecture and is pretrained on a large corpus
of the chemical and biomedical literature, allowing it to generate molecular
structures, predict properties, and assist in lead optimization.

ChemBERTa

A deep learning model architecture that operates on molecular graphs. It
has been successful in predicting molecular properties, such as bioactivity
and toxicity, by leveraging the structural information encoded in the graph
representation of molecules.

GraphConv

A popular docking software that uses machine learning techniques to
AutoDock Vina predict the binding affinity between small molecules and protein targets. It
can assist in virtual screening and lead optimization for drug discovery.

A deep learning model that takes Simplified Molecular Input Line Entry

SMILES System (SMILES) strings as input and generates molecular structures. It
Transformer . L

can be used for de novo drug design and lead optimization.

A comprehensive software package for drug discovery that incorporates

1 . various Al-driven tools. It includes modules for molecular modeling,

Schrodinger Suite . . . .

virtual screening, ligand-based and structure-based drug design, and

predictive modeling.

An Al model designed to predict chemical reactions. It utilizes deep
IBM RXN for learning algorithms and large reaction datasets to generate potential
Chemistry reaction outcomes, aiding in the discovery of new synthetic routes and

compound synthesis.

scape-DB (Extraction of Chemical and Physical Properties from the
Literature-DrugBank) is a database that combines natural language

scape-DB processing and machine learning to extract chemical and biological data
from the scientific literature. It provides valuable information for drug
discovery research.

GENTRL

(Generative A deep learning model that combines reinforcement learning with
Tensorial generative chemistry to design novel molecules with desired properties. It
Reinforcement has been used for de novo drug design and optimization.

Learning)
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4. Al Tool Application in Dosage Form Designs

The human body system is divided into several compartments to understand the
impact of drug delivery. The compartments are further simplified based on biological
membranes. Physicochemical barriers are vital for biological compartments and can be
implemented based on the mode of drug delivery inside the body. One of the most sig-
nificant criteria for efficient drug delivery system monitoring is the rate of permeation
based on the route of administration. The orally administered drug, after entering the
gastric environment, must permeate through the intestinal or gastric epithelium. This
step is vital for the further distribution of the drug into the bloodstream. The distribution
step conveys the drug to the target site, which can be tissue or any of the specific cellular
components [76-80]. Intracellular molecules can also act as targets for drug entry into the
body. Most of the permeation of drugs is facilitated through biological barriers, either
passively or actively. Passive diffusion is based on the drug’s molecular features. The
in silico models are used to predict drug distribution through computation analysis, but
these results are somewhat different from the actual drug distribution study. The drug’s
interaction with biological components and the availability of the drug in biological envi-
ronments have a great impact on the drug’s fate in the body. This process is governed by the
molecular features of the drug. For many biologically active entities and small molecules,
passive permeation is inefficient and requires a specific drug delivery system. The active
permeation process is driven by membrane transport and depends on complex biological
interactions. This complex process must be explored by using many specific parameters
through computation and systematic modeling approaches. This newer computational
model is used to study the pharmacokinetic parameters of the drug delivery system. One
of the major loopholes present in the research and development of the pharmacy industry
is the predictability of preclinical models. The predictability assumption is based on the
selected parameters, and the same applies to complex in silico models as well. All these
cases are linked to drug interactions with membranes and can be better analyzed by the
modeled environment, as presented in Figure 3. This modeled environment can be studied
and analyzed more effectively through AI [81-83]. AI provides sophisticated technology
for the analysis of such multilayer data. The thoroughness of the analysis will contribute to
a better understanding of the research units. The systematically applied model along with
parameter evaluation is based on many factors, such as simulation, scoring, and refinement,
in each step of the research to determine the best outcomes. Al could provide an automated
system that can be implemented for all these functions for better guessing and predicted
refinement of the data for consistent improvement. For better Al training in the biological
environment, a proper understanding of the drug-biological interaction is essential, which
is indicated by the system biology type of the databases. Pharmacokinetic studies can be
performed using many novel Al technologies, such as artificial neural networks. Along
with this, many databases are provided by Al, such as chemical, genomic, and phenotypical
databases, for a better understanding of the drug interaction and the effective study of
the molecules’ complex unit roles within the same. Some of the methods are also applied
to study the impact of the drug delivery system on the pharmacokinetics of the drug, for
an effective understanding of the disposition and toxicity. Many new approaches to drug
delivery systems involve the design of quality attributes along with critical attributes and
studying their impacts on experimental trials before actual experiments.
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Figure 3. Al contribution to drug development and research. Al can be used to enhance nanosystem
design, expand the present drug testing modeling system, and increase the accuracy of parameter
and factor selection in drug design, drug discovery, and drug repurposing methods. It also helps to
better understand the mechanism of membrane interaction with the modeled human environment by
studying drug permeation, simulation, human cell targets, etc.

The benefits of Al are that it collects information from multiple sources and provides
indications for the selected drug delivery system to work as per the anticipated results.
The evaluation of the molecular information, patient data, and pharmacokinetic data are
considered part of the complex data for analysis for the possible selection of the best
active pharmaceutical against patient diseases or requirements. The passive type of Al
is implemented for the identification of molecular entity features against those of known
molecules for comparison. Effective treatment depends on the accuracy of the selection of
drug delivery systems, which are provided by AL

Al is also useful for the drug discovery process along with the drug repurposing
method. This addresses the application of the existing therapeutics to that of the new
disease. The requirement of the patients and disease condition are major factors con-
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tributing to formulation, pharmacokinetics, and drug development. One of the major
challenges associated with the application of Al in full scope to develop delivery systems is
the availability of databases with detailed information. This is required for the evaluation
of the models, along with parameters, in an unbiased way. Al provides help for future
applications by using current knowledge. A large quantity of the data can be handled or
digested by using Al tools for a better approach to the rational design of the product, as
presented in Figure 4. A more vigorous codification inside the knowledge database can
be performed with excellent self-supervised experimental results and related to proper
parameter recording [84-90].
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Figure 4. Application of Al tools in the pharma sector. Al tools are helpful for the analysis of
multilayered data. Automated Al systems are used to perform effective searches, simulations, and
refinements of data and processes involved in research and product development. The system biology
database, chemical database, genomic database, phenotypic database, and Al bots are used for better
exploration of drug models, drug release, and activity predictions along with recommendations for
effective drug delivery systems.
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5. Al for Drug Delivery

The integration of Al and big data in the field of pharmaceutics has led to the devel-
opment of computational pharmaceutics, which aims to enhance drug delivery processes
by utilizing multiscale modeling approaches. Computational pharmaceutics employs Al
algorithms and machine learning techniques to analyze large datasets and predict drug
behavior (Table 3). By simulating drug formulation and delivery processes, researchers
can evaluate various scenarios and optimize drug delivery systems without the need for
extensive trial-and-error experiments. This accelerates the drug development timeline,
reduces costs, and increases productivity. Computational pharmaceutics involves mod-
eling drug delivery systems at different scales, ranging from molecular interactions to
macroscopic behavior. Al algorithms can analyze complex relationships between drug
properties, formulation components, and physiological factors to predict drug behavior at
each scale. This allows for a more comprehensive understanding of drug delivery mech-
anisms and aids in designing efficient drug delivery systems. It helps in the prediction
of the physicochemical properties of the drug, the in vitro drug release profile, and the
stability of the drug. The same technology is also implemented for the better assessment of
in vivo pharmacokinetic parameters and drug distribution along with in vivo-in vitro cor-
relation studies. By utilizing the right set of Al tools, researchers can identify potential risks
and challenges associated with drug delivery systems early in the development process.
This allows for proactive modifications and adjustments to mitigate risks and optimize
drug performance. The use of Al and computational modeling reduces the reliance on
time-consuming and expensive trial-and-error experiments, minimizing the chances of
unforeseen outcomes [91,92].

5.1. Al for Oral Solid Dosage Form Development

Al involves the use of advanced tools and software to achieve human-like capabilities.
Such innovation has helped in many sectors, such as the pharmaceutical industry, especially
in the product development phase over the past few years. The implementation of these
technological innovations can save time, money, and resources required for manufacturing
and proper distribution to end customers through the supply chain. It also provides a
better platform to understand the impact of process parameters on the formulation and
manufacturing of products.

Run Han et al. explored the utilization of machine learning methods for the prediction
of solid dispersion stability for six months. Hanlu Gao et al. investigated the application
of machine leaching for solid dispersion dissolution studies. They used a random forest
algorithm to generate a classification model that further helps to distinguish between the
spring and parachute types of dissolution profiles. It also contributed to maintaining
supersaturation with eighty-five percent accuracy and eighty-six percent sensitivity. The
time-dependent drug release was predicted based on the regression model created by the
random forest algorithm [93].

In the pharmaceutical market, solid dosage forms are predominant, and tablets are one
of the dominant dosage forms in this domain. The preparation of the tablet includes many
factors based on the type of tablet. Al can help in the search for optimized formulation
and the study of the desired attributes involved in the same. Al is also expected to process
obligations with the help of automated algorithms and technologies. The implementation
of Al also poses a challenge to the regulatory authorities to redefine the policies regarding
current good manufacturing practice (cGMP). Different technologies in Al, such as artificial
neural networks (ANNSs), fuzzy logics, and neural networks, along with genetic algorithms,
are implemented for the development of solid dosage forms and a better understanding
between the inputs and outputs for processing and operations. ANN is used for better
prediction abilities for solid dosage forms, while genetic algorithms are used to predict the
results obtained from the utilization of input parameters [94].
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Table 3. List of commonly explored Al models in pharmaceutical product development.

AlI/Machine Learning
Models

Description/Usage

References

Genetic Algorithms

Genetic algorithms are optimization techniques
inspired by the principles of natural selection
and genetics. They can be applied to optimize

formulation compositions, drug release profiles,

and process parameters to achieve desired
dosage form characteristics.

[95]

Artificial Neural Networks
(ANNS)

ANNSs have been employed to model and
optimize drug release kinetics from different
dosage forms. They can assist in determining
optimal formulations and predict the release

behavior of active pharmaceutical ingredients
(APIs) under various conditions.

[96]

Support Vector Machines
(SVMs)

SVMs have been used in dosage form
optimization to predict and model relationships
between formulation variables, such as excipient

composition, processing parameters, and drug
release profiles. They aid in optimizing
formulation design space.

[97]

Particle Swarm
Optimization (PSO)

PSO is a population-based optimization
algorithm that can be used for dosage form
optimization. It has been applied to optimize
particle size distribution, dissolution profiles,
and other formulation parameters.

Artificial Intelligence-based
Expert Systems

Expert systems utilize Al techniques, including

rule-based systems and fuzzy logic, to simulate

the decision-making process of human experts.

They can be applied to dosage form optimization

by considering multiple formulation and process
variables.

Monte Carlo Simulation

Monte Carlo simulation methods have been used
to optimize drug product performance by
considering uncertainties and variability in
formulation and process parameters. They aid in
robust formulation and process design.

[100]

Computational Fluid
Dynamics (CFD)

CFD simulations enable the optimization of fluid
flow and mixing within dosage form
manufacturing processes, such as granulation,
coating, and drying. They help in designing
efficient and uniform processes.

[101,102]

Response Surface
Methodology (RSM)

RSM is a statistical technique that helps optimize
dosage form formulations by modeling and
analyzing the relationship between multiple

variables and their effect on formulation
responses. It aids in understanding and
optimizing formulation parameters.

[103-105]

Artificial Neural
Network-Genetic Algorithm
(ANN-GA) Hybrid Models

Hybrid models combining ANN and GA
techniques have been used for dosage form
optimization. They can efficiently search the

formulation space to identify optimal solutions
and predict formulation characteristics.
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Table 3. Cont.

AlI/Machine Learning

Models Description/Usage References

Multivariate analysis methods, such as principal
component analysis (PCA) and partial least
squares (PLS), have been employed in dosage
form optimization. They aid in identifying [106-108]
critical formulation variables, reducing
dimensionality, and optimizing formulation
performance.

Multivariate Analysis
Techniques

Tablets are a highly used solid dosage, occupying a substantial portion of the market
within the drug delivery segment. The process of creating this product involves the utiliza-
tion of active pharmaceutical ingredients along with excipients, which are subsequently
compressed or molded to achieve the intended form and dimensions. Numerous excipients
are incorporated into tablets to manage the desired product outcome, including tablet disin-
tegration, dissolution, and drug release. These factors are predetermined by the formulator
to meet the specific needs of the target patient population. Certain excipients are essential
in facilitating the manufacturing process, including glidants and lubricants. Al can also
be utilized in the context of systemic drug delivery to predict drug release. Additionally,
it is employed to investigate the effects of crucial processing parameters that are integral
to tablet manufacturing, with the potential to ensure consistent quality control measures.
Certain Al applications have been utilized to identify defects in tablets [109,110].

5.1.1. Prediction of Dug Release through Formulations

The prediction of drug release certainly has the potential for stable quality control.
Drug release studies are performed through in vivo and in vitro methods, which are treated
as fundamental technologies regularly evaluated or tested during product development.
The release of the drug from oral solid dosage forms is based on the contribution of
critical material attributes along with the processing parameters. Some of the common
factors affecting drug release include compaction parameters such as the pressure used for
tablet hardness setting, geometric aspects of the tablets, and drug loading characteristics.
Many analysis techniques, including spectrophotometric analysis methods, have been
implemented, or drug release studies are usually required for extensive analysis.

The drug release results must be set as per the formulator’s requirements and require
repetitive testing and preparation of the batches to obtain an optimized batch, which makes
this task tedious and time-consuming [111]. Alis implemented in the drug formulation and
will assist in the prediction of drug release; hence, there is a limited number of runs required
to optimize the batch, which further induces a reduction in the work and cost during pilot
batch scale and production processes. Al can help predict the drug release profiles and
dissolution profiles and explore the disintegration time for the effective selection of the best
batch for further scale processing. Some researchers have implemented Al algorithms for
the prediction of dissolution profiles into the hydrophilic matrix type of sustained-release
tablets with the help of artificial neural networks (ANNSs). The support machine vector
(SVM), as well as regression analysis, are also implemented during the analysis of the data
and prediction of the dissolution profile. The data for the modeling study of drug release
were obtained with the help of process analytical technology (PAT) along with critical
material attributes. The particle size distribution was found to be the most crucial variable
during model prediction. Finally, the ANN was implemented for the identification of the
most accurate models as part of the evaluation metrics, as presented in Figure 5 [112,113].



Pharmaceutics 2023, 15, 1916 17 of 46

Fate of conventional tablet Time consuming

6. @ .O+@» . »Z

Drug loadmg Tablet Analy51s by UV

Convennonal
T e — & Drug release  geometry Cost meffecuve
Tablet surface
crack analysis by Combination
only XRCT with Artificial
intelligence
XRCT +
Artificial

Artificial neural *
network ~
Lr'\\//_\\\ﬁl
//A\\\\ '_//’
Support vector &\

machine, PAT & ¢
Regression trees

Intelligence

Particle size
distribution act

Better Patient
Compliance and

+ Module 2 UNetB results

,z y o

c:/

APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN ORAL DOSAGE FORMS

Figure 5. Al for Oral Dosage Forms. Conventional tablet analysis is performed by screening many
factors, such as drug release, drug loading, and study of the tablet geometry and hardness, by using
in-process quality control tests along with ultraviolet spectrophotometry. These methods are often
time-consuming and cost-ineffective to the industry. To address these issues, the combination of such
traditional techniques along with Al was performed by using ANN, SVM, PAT, and regression trees.
The data analysis and drug release predictions indicated that particle size distribution was a crucial
factor for the same. Defective tablet surface crack analysis is performed by XRCT in combination with
Al, containing three modules for distinguishing features for effective application in the healthcare
sector.
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5.1.2. Application of Al for 3D-Printed Dosage Forms

The application of Al in the field of 3D-printed dosage forms has revolutionized phar-
maceutical manufacturing by enabling personalized medicine and enhancing drug delivery
systems. Al algorithms can optimize the design and formulation of 3D-printed dosage
forms based on patient-specific factors, such as age, weight, and medical history, leading to
tailored drug therapies. By leveraging machine learning and computational modeling, Al
can analyze large datasets and simulate the behavior of 3D-printed dosage forms, allowing
for the rapid prototyping and optimization of drug release profiles, dosage strengths, and
geometries. Al also aids in predicting and overcoming potential manufacturing challenges,
optimizing printing parameters, and ensuring quality control. Furthermore, Al-driven
feedback systems can continuously improve the 3D-printing process by learning from
real-time data, enhancing accuracy, reproducibility, and scalability. Overall, the application
of Al in 3D-printed dosage forms holds tremendous potential in advancing personalized
medicine and improving patient outcomes [114,115].

The 3D-printed tablets are prepared by using the fused-filament type of fabrication,
jetting of the binder, utilization of laser sintering, and pressure microsyringe. Some of
the crucial processing parameters impacting the 3D-printed tablets are the temperature of
the nozzle and platform along with the speed of the printing. Obeid et al. demonstrated
the impact of the processing parameters on a 3D-printed tablet containing diazepam and
its subsequent drug release study with the help of an ANN model. They explored the
infill pattern, infill density, and other input variables for effective drug dissolution into
3D-printed tablets. The interactions between the different variables were evaluated with
the help of self-organizing maps. Further modeling studies were performed by keeping the
infill density along the surface area and volume ratio as the crucial factors contributing to
the same. The higher dissolution resulted after extensive testing and ANN modeling along
with validation [116,117].

5.1.3. Application of Al for the Detection of Tablet Defects

The application of Al in the detection of tablet defects has revolutionized quality
control processes in pharmaceutical manufacturing. Al algorithms and computer vision
techniques are employed to analyze images of tablets, enabling the automated and efficient
detection of defects such as cracks, chips, discoloration, or variations in shape and size.
By training Al models on large datasets of labeled images, the system learns to accurately
classify and identify different types of defects, achieving high levels of precision and recall.
Conventional methods, such as X-ray computed tomography, have been used to analyze the
internal structure of tablets, but they are still time-consuming and affect the demand for the
rapid production of tablets. Deep learning is implemented along with X-ray tomography
to detect tablet defects. Ma et al. explored the application of neural networks for tablet
defect detection with the help of image analysis completed through X-ray tomography.
These researchers have manufactured several batches of tablets by using excipients such as
microcrystalline cellulose along with mannitol. The prepared batches were analyzed with
the help of the so-called image augmentation strategy. Three different models were used
during the same research, including UNetA, which is applicable for the identification of
distinguished characteristics of tablets from those of bottles. Module 2 was used for the
identification of individual tablets with the help of augmented analysis. The internal cracks
in the internal structure of the tablet were analyzed with the help of UNetB. Such UNet
networks have been used to check tablet defects with better accuracy and thus provide
ease of identification of defects with significant reductions in time, financial costs, and
workload [118,119]. This Al-powered detection not only improves the speed and accuracy
of defect identification but also reduces the dependence on manual inspection, minimizing
human errors and subjective judgment. The real-time monitoring capabilities of Al systems
ensure the prompt detection of defects, facilitating timely intervention and preventing
the release of faulty tablets into the market. Ultimately, the integration of Al into tablet
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defect detection enhances product quality, increases productivity, and ensures the safety
and efficacy of pharmaceutical products.

5.1.4. Al for the Prediction of Physicochemical Stability

Al has emerged as a powerful tool for predicting the physicochemical stability of
oral dosage forms in pharmaceutical research. By leveraging machine learning algorithms
and computational models, Al can analyze and interpret large datasets, including drug
properties, formulation parameters, and environmental conditions, to predict the stability of
oral formulations. Al models can assess factors such as drug degradation, interaction with
excipients, and environmental effects on formulation stability. These predictive capabilities
enable researchers to optimize formulation designs, identify potential stability issues early
in the development process, and make informed decisions to enhance the shelf life and
efficacy of oral dosage forms. The integration of Al into stability prediction contributes
to more efficient and cost-effective drug development processes, ultimately leading to
the delivery of safe and effective medications to patients. Some researchers have studied
the utilization of machine learning for the determination of solid dispersion with the
help of several algorithms. Han et al. explored the application of machine learning for
the prediction of solid dispersion by implementing ANN along with K-nearest neighbor
(KNN) algorithms as well as a light gradient boosting machine (LightGBM). The SVM
was also applied in the same way. KNN is a nonparametric type of supervised learning
classifier. It was used to classify or complete the predictions for the grouping along
with the individual data point [120]. The free- along with the open-source distributed
gradient boosting framework implemented with machine learning was the LightGBM. It is
usually utilized for ranking assessments and classification along with machine learning
tasks. In this study, approximately fifty drug molecules with six hundred forty-six data
points for physical stability were collected from the public database and implemented
for the training model. The generation of the database was performed with the help of
molecular representations and molecular descriptors, such as molecular weight, along with
the hydrogen bond acceptor count. The melting point and heavy atom count also acted
as molecular descriptors. For three months, an accelerated stability study was conducted
for the further evaluation of the model performance as a part of the physical stability
prediction. They found an overall 82% accuracy for the same experiments [121,122].

5.1.5. Contribution of Al to Dissolution Rate Predictions

The dissolution rate of a drug, which refers to the rate at which it dissolves in a
biological fluid, is a crucial parameter that determines its bioavailability and therapeutic
effectiveness. Al has made significant contributions to the prediction of dissolution rates,
aiding in the optimization of drug formulations and dosage forms. Through the analysis of
vast amounts of experimental data, Al models can identify key physicochemical properties
and molecular features that influence the dissolution process. These models leverage
machine learning algorithms to learn complex patterns and relationships between drug
properties and dissolution rates, enabling accurate predictions. By providing insights
into the dissolution behavior of different drug formulations, Al facilitates the design of
more effective drug delivery systems and helps in the selection of optimal formulation
strategies for enhanced drug solubility and absorption. This advancement in dissolution
rate prediction powered by Al empowers pharmaceutical scientists with valuable tools
to accelerate drug development, optimize formulation strategies, and ultimately improve
patient outcomes [97].

Many researchers have studied the dissolution profiles of routine drugs, and they
have documented the rapid dissolution of some drugs and supersaturation of related drugs.
Amorphous drug recrystallization and precipitation are also crucial factors associated with
this process. Some studies have shown that solid dispersions do not precipitate due to
the addition of excipients. Dong et al. explored a method for predicting dissolution along
with the dissolution rate by using Al for at least 50 active pharmaceutical ingredients along
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with 25 polymers. Some of the Al algorithms they have used include SVM, LightGBM,
and extreme grading boosting (XGBoost) [123]. XGBoost is a scalable machine learning-
related library consisting of a distributed gradient-boosted decision tree, which is helpful
in the prediction of problems associated with unstructured data, including images and
texts. The artificial neural network was used to outperform all other types of algorithms
or frameworks. In the same study, the same team used molecular computational software
for the descriptors for the active pharmaceutical ingredients as well as the polymers. The
input variables selected for the same study were temperature, drug loading, and volume,
while dissolution was recognized as that of the binary output including precipitation or
supersaturation. The dissolution rate was considered the research output for the same and
resulted in the greater accuracy of the prediction of the results for the dissolution profiles
of the selected active pharmaceutical ingredients, along with the polymers [124,125].

5.2. Al for Nanomedicine

By harnessing Al’s capabilities in data analysis, pattern recognition, and optimization,
nanomedicine researchers can accelerate the development of novel nanoscale interventions,
improve diagnostics, enhance drug delivery, and advance personalized medicine. Al in
nanomedicine holds great potential for revolutionizing healthcare by enabling precise and
targeted therapeutic approaches at the nanoscale [126]. Nanoparticles are used for targeted
drug delivery, imaging, and sensing. Al algorithms can aid in designing and optimizing
nanoparticles by predicting their physicochemical properties, stability, and efficacy. This
helps researchers develop nanoparticles with desired characteristics for specific applications.
Nanomedicines are used effectively as drug delivery carriers for drugs or combinations
of drugs based on the concept of drug synergy, especially for the treatment of cancer
patients. They contain major impactful inputs, such as drug selection, dose selection, and
stimuli-responsive material selection. The deep learning type of algorithm was used for
melanoma and has shown great accuracy in caring for patients and assisting in diagnostic
procedures [127,128].

Al algorithms can model the behavior and interactions of nanoscale materials within
biological systems. This enables the prediction of nanoparticle behavior, drug release kinet-
ics, and potential toxicity, facilitating the development of safe and effective nanomedicine
formulations. Al can be used in nanosensors and biosensors for the real-time monitoring
of biomarkers, drug levels, or disease progression. These sensors can provide continuous
feedback to healthcare providers, enabling timely interventions and personalized treatment
adjustments [129].

The Al-based database is useful for scaling up nanocarriers by using an automated sys-
tem. Al is also used in nanocarrier drug delivery systems, particularly in the optimization
of nanocarriers and drug compatibility testing by using computational approaches. Such
approaches are used for the evaluation of drug loading, formulation stability, and drug
retention. Thus, Al intervention contributes to the enhancement of the therapeutic nanocar-
riers required for specific cell types for the treatment of tumors. Yuan He et al. studied
the application of machine learning methods to the prediction of nanocrystals prepared by
high-pressure homogenization along with the wet ball milling method. The demands for
a repetition of the experiments can also be decreased by using computational techniques
through Monte Carlo simulations and molecular dynamics, along with theoretical tech-
niques. The simulation techniques are helpful for quantitative measurements in critical
experiments. Alis also implemented for the creation of the database repository required for
nanocarriers, which further helps in the determination of 3D structures along with physical
and chemical property investigations in collaboration with structural nanobiology. Such
repositories are essential to investigate the relationship between nanocarrier structure and
toxicological, physical, and biological data [130-137]. In another study performed by Lutz
Nuhn for the application of Al for better analysis, it was found that Al helped to reveal
the heterogeneous vascular permeability for prepared nanoparticle-based drug delivery
systems using an analysis of single blood vessels. Such findings may help in the design
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of a protein nanoparticle drug delivery system to obtain an active type of transendothe-
lial permeability into tumors [138]. Zhoumeng Lin et al. used Al for better assessment
with a PBPK modeling approach to study cancer medicine effectively. The same is also
helpful to obtain a better understanding of the causes of low nanoparticle tumor delivery
efficacy [139].

5.3. Al Application for Parenteral, Transdermal and Mucosal Route Products

Injectables, biologics, and other complicated formulations can be developed and man-
ufactured using Al Predicting complicated drug formulation physicochemical parameters
using Al systems may help formulation development. AI models optimize pH, solubility,
stability, and viscosity by analyzing formulation components, excipients, and manufactur-
ing processes. This helps create stable parenteral formulations. Al can optimize parenteral
product production for quality, efficiency, and variability. Al algorithms may discover
process factors that affect product qualities and offer appropriate modifications by analyz-
ing real-time process data. Thus, product consistency, batch failures, and manufacturing
productivity increase. Al algorithms may find trends and product quality variations in
huge datasets from analytical tests, including particle size analysis, spectroscopy, and
chromatography. This helps identify and fix quality concerns early, assuring high-quality
goods. Al models may anticipate contamination, stability, and regulatory deviations using
historical data and process factors. Al-based monitoring systems may analyze important
process parameters in real time during parenteral product manufacture. Al algorithms can
identify abnormalities and forecast deviations and take quick action by combining data
from sensors, instruments, and process controls. This maintains product quality and mini-
mizes noncompliance. Al optimizes maintenance procedures for complicated parenteral
product manufacturing equipment. Al models analyze sensor data, equipment perfor-
mance history, and maintenance records to forecast equipment failure or deterioration and
schedule proactive maintenance. This saves unnecessary downtime, boosts output, and
cuts maintenance. Al can help ensure parenteral and complex biological product regula-
tory compliance. Al algorithms may analyze compliance, detect possible noncompliance
concerns, and provide process improvement ideas by analyzing process data and product
properties. This aids GMP compliance and regulatory compliance [140].

For example, Al was used in the inspection of the particles to check whether the
particles were swimming, sinking, or sticking into the inner side of the container. For proper
inspection of the individual particles, the optical setup, strategy, algorithm, and inspection
were recommended. The particle tracking algorithm along with image subtraction was
used for the analysis of the floating particles. The liquid inside the container is allowed
to move so that the behavior of the moving particles can be recorded with the help of
high-resolution images, while the particle movement direction can also be traced with the
help of Al The deep learning algorithm is also used for the proper isolation of the particles.
One of the greater issues associated with parenteral batch flaws is bubble formation, which
is normally not harmful to patients, but there is a great need to distinguish between
particles and bubbles. The Al-based image processing type of algorithm was used for
these types of visual inspection and the issues associated with them. One of the other
camera-based applications of Al was surface crack detection by using surface qualifies
7500, which is used to analyze hundreds of millions of data points per second with the help
of graphical processing subunits [127,128,140-142]. Manufacturers may optimize product
performance, decrease manufacturing hazards, and provide safe and effective parenteral
and technologically advanced pharmaceutical products using Al data analysis, pattern
recognition, and predictive modeling.

Bannigan et al. highlight the availability and potential of cutting-edge machine
learning (ML) technologies in the field of pharmaceutical and materials science. They
demonstrate that ML can accelerate the development of innovative drug delivery technolo-
gies by accurately predicting in vitro drug release from long-acting injectables (LAls). The
study emphasizes the interpretability of ML models, which can provide insights into the
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decision-making process. Although neural network models did not perform well due to
the small dataset, tree-based models such as LGBM showed promise in reducing the time
and cost associated with LAI formulation development. The study presents a proof-of-
concept for ML in drug formulation and hopes to inspire more advanced and tailored ML
approaches in the future [143,144].

The conventional trial-and-error approach in formulating ocular, transdermal, pul-
monary and other mucosal drug delivery systems lacks in-depth understanding, making
it inefficient for complex formulations. However, recent advancements in computational
pharmaceutics, specifically machine learning and multiscale simulations, have opened up
new possibilities. Recent progress in using molecular simulations, mathematical modeling,
and PK/PD modeling for these drug delivery routes has led to more efficient product
development. In silico modeling and simulations offer unique advantages by providing
detailed insights and facilitating rational formulation design. The integration of in silico
methodologies, overcoming data challenges, and interdisciplinary collaborations can lead
to more efficient and objective-oriented drug formulation design in the era of Pharma
4.0 [145-148].

5.4. Al Tools for Biologics Product Development

Al helps create newer proteins, peptides, nucleic acid biologics and immunothera-
peutics [144-152]. Al algorithms could help to build proteins and peptides with desired
features [153-157]. Al models may produce therapeutic sequences with better stability,
binding affinity, or immunogenicity by analyzing massive volumes of protein structure
and function data. This allows for customized biologics with improved effectiveness and
safety [158,159].

Al systems can find therapeutic targets using genetic, proteomic, and clinical data.
Al helps researchers build protein and peptide biologics that alter biological pathways or
target illness-causing proteins by finding disease targets. Al models can predict protein
folding from amino acid sequences. Understanding protein function and creating optimized
biologics requires protein folding. Deep learning and molecular dynamics simulations
can anticipate protein folding patterns, helping design stable and functioning biologics
(Figure 6) [160].

Al algorithms predict protein/peptide-target molecule binding affinity. AI models
may reliably estimate binding strength by training on huge protein—protein or protein—
peptide datasets. This improves treatment effectiveness by choosing or creating biologics
with a high affinity and specificity for targets. Al could help to optimize protein and
peptide biologics formulations. Stability, aggregation tendency, and formulation factors
affect biologic quality and effectiveness. Al algorithms can optimize formulation conditions
and biologic stability and shelf life by analyzing protein physicochemical parameters,
formulation components, and manufacturing processes [161].

Al algorithms predict protein and peptide biologic toxicity. Al systems can anticipate
biologic adverse effects and immunogenicity by analyzing structure-activity relationships
while being trained on toxicological datasets. This allows researchers to find and alter
harmful sequences or structures. Al is being utilized to optimize clinical trials for protein
and peptide biologics. Al algorithms are capable of predicting patient responses and
refining trial procedures using patient data, illness features, and treatment results. This
streamlines patient enrollment, study design, and personalized treatment [162-164]. Al has
the potential to significantly enhance research, diagnostics, and therapeutics in the fields of
exosomes, CAR T-cell therapy, and CRISPR/Cas9 [164-166].
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Figure 6. Al can contribute to protein development and customized biologics by using data analysis,
predictive modeling, and pattern recognition tools for better improvisation in the protein development
process and customized proteins. Knowledge of altered biological pathways and finding disease
targets are required for the same. The prediction of protein folding from amino acid sequences
and the use of deep learning and molecular dynamic simulation for better understanding can be
performed by Al The prediction of protein/peptide binding affinity and toxicity studies can be
performed effectively by AI with the help of SAR and toxicological datasets.

By utilizing Al’s capabilities in data analysis, pattern recognition, and predictive
modeling, the development of protein/peptide and gene therapy biologics can be acceler-
ated, and the design and optimization of therapeutic molecules can be more efficient and
targeted. Al holds immense potential to revolutionize the field by enabling the creation
of novel biologics with enhanced properties and improving the success rate of biologic
development [167].

5.5. Al in Medical Devices

The medical device is a sort of apparatus, implement, instrument, implant, or machine
appliance as well as a reagent for specific medical purposes and can be used alone or in
combination with the help of software or other related systems in vitro to address medical
issues of patients. Al has made significant advancements in the field of medical devices,
revolutionizing healthcare in various ways. Due to the pandemic, personalized medicine
along with remote health monitoring has become essential and quite popular in many
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countries, which has boosted Al and machine learning applications in the healthcare sector.
Some examples of how Al is being utilized in medical devices are described below:

e  Diagnostic Assistance: Al algorithms can analyze medical imaging data such as X-rays,
CT scans, and MRISs to assist healthcare professionals in detecting and diagnosing
diseases. For example, Al-powered algorithms can help identify cancerous lesions in
medical images or detect abnormalities in electrocardiograms (ECGs) [168].

e  Remote Monitoring: Al-enabled medical devices can remotely monitor patients” health
conditions, allowing for the continuous tracking of vital signs and other relevant
parameters. This is particularly useful for patients with chronic conditions who can
receive personalized care from the comfort of their homes. Al algorithms can analyze
the collected data and provide alerts or insights to healthcare providers [169].

e Wearable Devices: Al is integrated into wearable devices such as smartwatches, fitness
trackers, and biosensors. These devices can monitor various health parameters, such
as heart rate, sleep patterns, physical activity, and even blood glucose levels. Al
algorithms help interpret the data and provide users with actionable insights for
improving their health and well-being [170].

e  Prosthetics and Rehabilitation: Al is used in advanced prosthetic devices to provide
more natural movement and functionality. Machine learning algorithms can learn
from user movements and adapt the prosthetic to better match the user’s intentions.
Al can also assist in rehabilitation by analyzing motion and providing feedback to
patients to improve their movements and track progress [171].

e  Surgical Assistance: Al has found applications in surgical devices, aiding surgeons
during procedures. For instance, robotic surgical systems use Al algorithms to assist
surgeons in performing precise and minimally invasive procedures. Al can also ana-
lyze preoperative and intraoperative data to provide real-time guidance and improve
surgical outcomes [172].

e  Medication Management: Al-powered devices can help patients manage their medica-
tions effectively. Smart pill dispensers can remind patients to take their medications on
time, dispense the correct dosage, and track adherence. Al algorithms can also analyze
patient data, such as medical history and medication usage, to provide personalized
recommendations for medication management [173].

These examples demonstrate how Al is integrated into medical devices to enhance
diagnostics, monitoring, treatment, and patient care. Al’s ability to analyze large amounts
of data, identify patterns, and provide personalized insights contributes to more accurate
diagnoses, improved treatment outcomes, and better overall healthcare delivery. It also
contributes to the development of new products for patient benefits and to effectively
reaching out to new customer segments to captivate large businesses and create more busi-
ness potential in the healthcare sector. Currently, medical technology-based companies are
using Al in major sectors, such as diagnosis, prevention, and care, along with personalized
medicine work for patients.

For example, Medtronic, a global medical technology company, has indeed developed
innovative applications of Al to help patients with diabetes manage their condition effec-
tively. One notable example is the Medtronic Guardian Connect system, which combines
Al and continuous glucose monitoring (CGM) technology to provide real-time insights and
support to individuals living with diabetes. In 2016, Medtronic collaborated with IBM Wat-
son to develop the Medtronic Sugar 1Q app, which serves as a mobile personal assistant for
individuals managing diabetes. This app incorporates Al technology to provide valuable
features for effective diabetes disease management. One of the major features of the Sugar
IQ app is “insights.” The app analyzes the user’s glucose patterns over time, identifies
trends, and provides personalized messages and notifications to the patient. These insights
help individuals understand how specific actions, habits, and external factors impact their
glucose levels. By gaining this understanding, users can make informed decisions and take
proactive steps to manage their diabetes more effectively. The second important feature
of the Sugar IQ app is “glycemic assistance.” The app utilizes Al algorithms to provide
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real-time guidance and recommendations to users based on their current glucose readings.
If the glucose levels are trending high or low, the app can suggest actions to help the user
maintain a more stable glucose range. This feature acts as a virtual assistant, providing
personalized support and reminders to help users make appropriate choices regarding their
diabetes management. Last, the Sugar IQ app incorporates a “food logging” functionality.
Users can log their meals and track carbohydrate intake through the app. The app can
then analyze the impact of different foods on glucose levels and provide insights into how
specific meals or food choices affect blood sugar. This information enables individuals to
make more informed dietary decisions, leading to better glycemic control. By combining Al
technology with glucose monitoring and personalized messaging, the Medtronic Sugar IQ
app offers valuable tools for individuals with diabetes. It helps users gain insights into their
glucose patterns, provides real-time assistance in managing blood sugar levels, and assists
in making informed decisions about diet and lifestyle choices. These features contribute
to improving disease management and supporting patients in achieving better control of
their diabetes [174-178].

6. Al for Pharmacokinetics and Pharmacodynamics

Drug development is a complex process that involves several stages, including drug
discovery, preclinical studies, clinical trials, and regulatory approval. Pharmacokinetics
and pharmacodynamics are crucial aspects of drug development, as they determine the
optimal dosage, administration route, and safety of a drug in the body [85]. Traditional
experimental methods for pharmacokinetics and pharmacodynamics studies can be time-
consuming and expensive and may not always provide accurate predictions of drug efficacy
and safety [179,180].

Traditionally, pharmacokinetics and pharmacodynamics studies have been conducted
using experimental methods such as animal studies and human clinical trials. These meth-
ods have critical challenges, such as ethical concerns, sample size, and interindividual
variability. Furthermore, these studies may not always provide accurate predictions of
drug pharmacokinetics and pharmacodynamics in humans. To overcome these limitations,
computational models and Al methods have been developed to predict drug pharma-
cokinetics and pharmacodynamics in a faster, more cost-effective, and more accurate
manner [181,182].

Al has shown tremendous potential in the fields of pharmacokinetics, pharmacody-
namics, and drug discovery [183]. With the advent of powerful computing and machine
learning algorithms, Al has emerged as a valuable tool for predicting and optimizing drug
pharmacokinetics and pharmacodynamics. Although the challenges of large data and
reliable datasets are hard to ignore, Al can open new doors in PKPD studies and their
impact on therapies [183-187].

6.1. Al-Based Methods to Predict Pharmacokinetic Parameters

The utilization of machine learning (ML) and deep learning (DL) algorithms is preva-
lent in the prediction of pharmacokinetic parameters. Various ML algorithms, including
the Bayesian model, random forest, support vector machine, artificial neural network, and
decision tree, have been employed to forecast drug absorption, distribution, metabolism,
and excretion (ADME) characteristics. DL algorithms, including convolutional neural net-
works (CNNSs), long short-term memory (LSTM), and recurrent neural networks (RNNs),
are commonly employed in the prediction of various pharmacokinetic parameters, such
as drug absorption, bioavailability, clearance, volume of distribution, and half-life. Quan-
titative structure-activity relationship (QSAR) is a computational approach that utilizes
the chemical structure of a molecule to predict its biological activity. This method has
found application in pharmacokinetics, where it can be employed to anticipate drug ADME
properties, including solubility, permeability, and metabolism (Figure 7) [121,188-191].
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Figure 7. Role of Al in PKPD studies. Pharmacokinetic studies include absorption (A), distribution
(D), metabolism (M), and excretion (E) studies. A pharmacodynamic study includes the drug’s
effect on the target. Understanding the effect of drug molecules and their distribution requires a
large number of calculations. A smaller miscalculation or missed dataset may lead to a huge error
that may be critical. Al helps to accelerate complicated calculations without missing datasets and
provides more accurate, faster, and cost-effective results. It converts complicated data into easily
understandable and representable graphs, which might help to identify the root cause of the problem.
It can also help to minimize animal studies by calculating the impact of different conditions such as
enzymes, diseased conditions, dosing differences, patient data, etc., in different animals and reduce
the number of animals required for clinical trials.

6.2. Al-Based Computational Method for PBPK

PBPK models are widely used to simulate drug distribution and clearance in the body.
These models are complex, and the development of such models requires extensive data
and computational resources. Al-based methods can simplify the development of PBPK
models by using machine learning algorithms to identify the most relevant features of
the model (Table 4). Al-based computational methods can also optimize the parameters
of the PBPK model, which can reduce the need for animal studies and human clinical
trials [192-194].

The efficacy and safety of drug molecules are largely based on their pharmacokinetic
parameters. Drug safety is based on the total time the active drug is present in the body,
while the dose of the drug depends on its elimination from the body. Therefore, in vivo
exposure is a very important tool for drug safety and efficacy assessment. The drug
discovery and development process involves assessment and evaluation prior to clinical
trials. Absorption, distribution, metabolism, and elimination (ADME) are the major factors
in compound attrition for the development of drug molecules. Drug discovery studies
involve in vivo pharmacokinetic studies in animals, while in vitro systems are used for
humans along with animal studies. The first, in human dosing, is used for the optimization
of the drug’s exposure to humans. In vitro and in vivo extrapolations are used for liver
microsomes and hepatocytes. Hepatic clearance is performed with the help of in vivo
studies in humans and animals, while in vitro assays are used for liver microsome studies.
The human pharmacokinetic parameters are estimated by using allometric scaling methods
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along with in vivo preclinical data. The volume of distribution, drug clearance, and
bioavailability are also estimated by the same method. The simulation of the time course
along with ADME properties is simulated by the mathematical framework along with
PBPK modeling. The latter are used to understand the in vivo behavior for extrapolation
to humans, and normally these are applied to the later stages of drug discovery. The
complexity of in vivo data is higher than that of in vitro pharmacokinetic parameters, and
Al and ML are implemented for the analysis and assessment of the same [195].

6.3. Prediction of Drug Release and Absorption Parameters

Al-based models have been successfully employed to predict drug release and absorp-
tion parameters. Al algorithms can analyze data from various drug delivery systems and
predict the release kinetics of drugs. By considering factors such as the drug’s physico-
chemical properties, formulation characteristics, and release mechanism of the delivery
system, Al models can estimate the rate and extent of drug release over time. Al-based
models can also predict the release kinetics of drugs from different drug delivery systems,
such as oral tablets, transdermal patches, and inhalers [196].

Al-based models can predict drug absorption parameters, such as bioavailability
and absorption rate, by considering factors such as drug solubility, permeability, and
formulation characteristics. These models can analyze the physicochemical properties of the
drug, such as lipophilicity and molecular weight, and correlate them with absorption data
to estimate how efficiently the drug is absorbed into the bloodstream. Overall, Al-based
models provide a powerful tool for predicting drug release and absorption parameters.
By analyzing various factors and leveraging machine learning algorithms, these models
can optimize drug formulations, guide drug development decisions, and contribute to the
design of more effective drug delivery systems [189-194,197].

6.4. Prediction of Metabolism and Excretion Parameters

Al-based models have proven valuable in predicting drug metabolism and excretion
parameters, providing insights into drug pharmacokinetics. Al algorithms can analyze the
molecular structure and physicochemical properties of drugs to predict their metabolic
pathways. By training on large datasets of known drug metabolism information, Al models
can identify structural features associated with specific metabolic transformations. These
models enable the prediction of potential metabolites and provide insights into the major
enzymes involved in drug metabolism [198].

Al-based models can calculate enzyme kinetics, such as reaction rates and enzyme-
substrate interactions, to estimate the metabolic fate of drugs. By considering factors
such as enzyme expression levels, genetic variations, and drug-drug interactions, Al
models can assess the potential impact of metabolism on drug clearance and efficacy. This
information is valuable in optimizing drug dosing regimens and predicting potential drug
interactions [199].

Al algorithms can analyze drug physicochemical properties, such as molecular weight,
lipophilicity, and ionization, to predict drug clearance rates. By training on datasets that
include information on drug clearance pathways, Al models can estimate the rate at which
drugs are eliminated from the body. This information is crucial for determining appropriate
dosing regimens and ensuring drug efficacy and safety [200].

Al models can predict drug interactions with transporters involved in absorption,
distribution, metabolism, and excretion processes. By considering drug physicochemical
properties and transporter characteristics, Al models can assess the potential for drug-drug
interactions or altered pharmacokinetics due to transporter-mediated effects. This knowl-
edge aids in understanding drug disposition and optimizing drug formulations [201-204].
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By utilizing Al algorithms and analyzing vast amounts of data on drug metabolism
and excretion, these models contribute to predicting drug fate in the body. They assist in
optimizing drug dosing, identifying potential drug interactions, and aiding in the design
of safer and more effective medications. Additionally, Al models enable researchers and
pharmaceutical companies to prioritize drug candidates based on their predicted metabolic
and excretion profiles, facilitating more efficient drug development processes.

Table 4. Algorithms used for the development of Al models for various PKPD studies along with

their advantages and limitations.
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7. Limitations of Al Tools

Despite their benefits, Al-based models have some limitations, such as the need for
large datasets, potential biases, and lack of interpretability. Therefore, Al-based models
should be used in combination with traditional experimental methods to ensure the safety
and efficacy of drugs. Some of the limitations are highlighted below:

7.1. Lack of Transparency

Al'models use complex algorithms and are often referred to as “black boxes” because it
is difficult to understand how the model arrives at its predictions. This lack of transparency
can make it challenging to gain regulatory approval for Al-based drug development tools,
as it can be challenging to demonstrate that the model is making accurate and reliable
predictions. Furthermore, the lack of transparency can also lead to a lack of trust in the
model’s predictions, particularly if the model makes predictions that conflict with the
expectations of clinicians or researchers [216,217].

7.2. Limited Availability of Data

Al models require a significant amount of data for accurate predictions. However, in
some cases, there may be limited data available for a particular drug or population, leading
to less accurate predictions or biased results. For instance, rare diseases may have limited
data available, which can be a significant challenge for developing AI models. Additionally,
the data used to train AI models may not be representative of the population of interest,
which can lead to biased results. Moreover, some types of data, such as longitudinal data
or real-world evidence, may not be readily available, which can limit the utility of Al
models. These limitations highlight the need for the careful consideration of the quality
and representativeness of the data used to develop AI models.

7.3. Biases in Data

The efficacy and precision of Al models are contingent upon the quality of the data
utilized for their training. In instances where the data exhibit bias or incompleteness, the
resulting predictions may also be biased. The homogeneity of patient populations in clinical
trials is a significant problem within the realm of pharmacology. If a specific demographic
or disease state is inadequately represented in the training dataset, the model’s ability to
make precise predictions regarding the drug’s efficacy in that particular population may
be compromised. Moreover, in the case of incomplete or inaccurate data, the model may
generate erroneous assumptions, which can result in imprecise predictions. The utilization
of an Al model to direct clinical decision-making can pose a significant challenge. Therefore,
it is essential to guarantee that the training data used to create Al models are representative
of the population for whom the model will be utilized and that the data are trustworthy,
comprehensive, and impartial [218,219].

7.4. Inability to Incorporate New Data

Once an Al model is trained, it is often challenging to incorporate new data or update
the model. This can be a significant limitation in the context of drug development processes,
where new information and data are constantly emerging. For example, as new drugs
are introduced or as clinical trials produce additional data, an AI model may need to be
updated to reflect this new information. However, updating an Al model can be challenging,
and it may require significant time and resources to retrain the model with the new data.
Furthermore, as drug development processes continue to evolve, Al models must be able
to keep up with these changes. Failure to do so could result in inaccurate predictions
and flawed decision-making. Thus, it is crucial to carefully consider the limitations of Al
models and to develop strategies for updating them as new information becomes available.
This can include designing models that can be easily updated or integrating the model into
a larger framework that can be continuously refined over time.
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7.5. Limited Ability to Account for Variability

Al models are generally trained on large datasets, which can be biased toward the
average responses observed in the data. As a result, the models may not be able to accurately
predict drug responses for individuals who deviate significantly from the average response.
This is particularly concerning for drugs that have a wide range of responses in different
patients (such as in cancer), where the variability can be significant [220].

7.6. Interpretation of Results

Al models can be complex and can generate outputs that are difficult to interpret,
even for experts in the field. The models may not be able to provide a clear explanation
of how they arrived at their predictions, which can make it challenging for clinicians and
researchers to understand and interpret the results. In some cases, the results may be
difficult to translate into actionable insights that can be used in clinical practice or drug
development. Additionally, the use of Al models may require a level of technical expertise
that is not readily available to all clinicians and researchers, which can further limit their
usefulness. As a result, there is a need for an improved interpretability and explainability of
Al models, to ensure that their predictions can be understood and used effectively [221,222].

7.7. Ethical Considerations

As with any use of Al there are ethical considerations that must be taken into account
when using these technologies in drug development. One major concern is patient pri-
vacy, as sensitive health data are often used to train Al models. Data safety and security
represent crucial parameters that demand significant attention and cannot be overlooked.
It is important to ensure that patient data are collected and used in a way that protects
their privacy and respects their rights. Data ownership is another ethical concern when
using Al in drug development. In some cases, data may be collected from patients without
their explicit consent, and it may not be clear who owns the data or who has the right
to use it. This can lead to conflicts between patients, researchers, and pharmaceutical
companies [223,224]. Regulatory agencies are tasked with the development of stringent
protocols, guidelines, and standardized evaluation processes to effectively integrate Al into
drug development. These measures should encompass multiple dimensions, including the
ethical considerations of animal welfare and patient safety. Animal testing, which plays a
pivotal role in drug development, necessitates a commitment to reducing, refining, and
replacing animal models whenever feasible, aligning with ethical principles. Prioritizing
patient safety, Al models must undergo thorough validation and testing to ensure their
reliability and accuracy. An important step in addressing the regulatory and ethical implica-
tions of Al in drug development is the release of the discussion paper by the U.S. Food and
Drug Administration (FDA) entitled, “Using Artificial Intelligence & Machine Learning in
the Development of Drug and Biological Products.” This document provides an overview
of the role of Al in drug discovery, nonclinical research, and clinical research. Additionally,
it outlines recommended practices for the application of Al and machine learning. This
FDA initiative marks an important milestone in regulating the use of Al in healthcare
and paves the way for new opportunities in the sector. It signifies the recognition of the
potential benefits and challenges associated with Al in drug development and sets the
stage for future regulatory advancements in this domain [225].

7.8. Complex Biological Systems

Al’s ability to accurately mimic the complexity of biological systems as a whole is
limited. Biological systems are intricate and dynamic, encompassing a multitude of inter-
connected pathways, feedback loops, and intricate molecular interactions. This complexity
poses challenges for AI models, which often simplify and abstract the underlying bio-
logical processes. Al models heavily rely on training data to learn patterns and make
predictions, but the available data may not fully capture the intricacies and nuances of
biological systems [226]. Factors such as genetic variations, environmental conditions, and
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interindividual variability contribute to significant complexity and variability that may
not be adequately captured by Al models [45,227]. Moreover, the emergent properties of
biological systems, where the collective behavior of individual components gives rise to
system-level behaviors, are difficult to predict solely based on the properties of individual
components. A limited understanding of certain biological processes and mechanisms
further hampers the accurate incorporation of this knowledge into Al models [228].

7.9. Lack of Clinical Expertise

While Al can identify correlations, it is essential to recognize that individual patient
therapies can vary despite these correlations. Al algorithms typically operate on a statistical
framework, which may limit their comprehension of the intricate factors and the profound
effects certain parameters can have. The complex nature, where treatment decisions are
influenced by various individualized factors, poses a challenge for Al models primarily
focused on statistical associations [229]. Therefore, the ability of Al to fully capture the
critical aspects and implications of specific parameters may be limited.

7.10. Inactive Molecules

Al uses a computational approach to predict the binding interactions between a small
molecule and a target protein by employing algorithms and scoring functions. However,
such simulations can lead to the identification of inactive molecules. One major challenge
is accurately representing the conformational flexibility of both the small molecule and the
target protein, as docking algorithms sample a limited range of conformations, potentially
resulting in false-positive or false-negative binding affinities [34]. Moreover, if the protein
structure used in docking or Al is incomplete or inaccurate, it can lead to erroneous
predictions. Difficulties in accounting for solvation effects, receptor flexibility, and other
influential factors further contribute to the limitations of docking. Hence, it is crucial to
conduct experimental validation to confirm the activity of identified compounds, assessing
their potency and selectivity. Continuous efforts to refine docking algorithms, scoring
functions, and incorporate factors such as protein flexibility and solvent effects aim to
enhance the reliability of docking-based screening. Integrating additional computational
methods, such as molecular dynamics simulations, can provide a more comprehensive
representation of molecular interactions [230].

Despite the limitations of Al tools, they hold significant potential and cannot be over-
looked in the field of pharmaceutical development. It is crucial to promptly identify and
address these limitations to facilitate smoother and faster advancements in the industry.
Recent years have witnessed rapid progress in resolving these challenges, driven by im-
provements in data availability, deep learning algorithms, explainability, integration with
other modeling approaches, and increased computational power [231].

However, one persistent problem that remains unresolved is the issue of misreported
data, which introduces bias and distorts the accuracy of Al models. To mitigate this, it
is imperative to adopt the principles of FAIR data (Findable, Accessible, Interoperable,
Reusable), which align with the fundamental principles of ALCOA (Attributable, Legible,
Contemporaneous, Original, and Accurate) [232]. By adhering to these principles, data
quality can be improved, enhancing the reliability of Al-driven analyses.

While challenges associated with Al in PKPD studies are substantial and will require
time to overcome, the ever-evolving nature of the field instils hope for continuous im-
provement. However, it is crucial to exercise caution and not overly rely on Al without
considering potential limitations and verifying results through rigorous scientific validation.
Although Al has shown great potential in improving and enhancing PKPD studies, it is
not ready to completely replace humans in this field. Al is a powerful tool that can assist
researchers and clinicians in analyzing large amounts of data, identifying patterns, and
making predictions. While Al can automate certain tasks and assist in data analysis, the
collaborative effort between Al and human experts is crucial for successful PKPD studies.
The integration of Al in pharmaceutical research should be approached with a balanced
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perspective, acknowledging both its potential and the need for careful evaluation and
validation.

8. Current Trend: Fairy Tale to the Holy Grail

The current trends demonstrate the wide-ranging impact of Al in pharmaceutics,
spanning drug discovery, precision medicine, formulation optimization, clinical trials,
safety monitoring, and supply chain management. Here are some prominent trends:

o  Drug Discovery and Development: Al is revolutionizing the drug discovery process
by enabling virtual screening, molecular modeling, and predictive analytics. Al
algorithms can analyze vast amounts of chemical and biological data to identify
potential drug candidates, optimize lead compounds, and predict their properties.
This expedites the identification and development of novel therapeutics.

e  Precision Medicine: Al is being utilized to advance precision medicine approaches.
By analyzing patient data, including genomics, proteomics, and clinical records, Al
algorithms can identify patient subgroups, predict treatment responses, and assist in
personalized treatment decision-making. Al also contributes to the development of
biomarkers for disease diagnosis and prognosis.

e Drug Repurposing: Al is being applied to identify new uses for existing drugs, a
process known as drug repurposing. By analyzing large datasets and biological knowl-
edge, Al algorithms can identify potential drug—disease associations and repurpose
approved drugs for new therapeutic indications. This approach offers a faster and
more cost-effective route to drug development.

e  Drug Formulation and Delivery: Al plays a role in optimizing drug formulations and
delivery systems. Al models can predict drug release kinetics and absorption profiles
and optimize formulations for enhanced efficacy and targeted delivery. Al is also
used to design drug delivery devices and systems that improve patient adherence and
convenience.

e  (linical Trial Optimization: Al is being leveraged to optimize clinical trials, improving
efficiency and reducing costs. Al algorithms can aid in patient recruitment, identify
suitable trial populations, and optimize trial protocols. Al also assists in the real-time
monitoring and analysis of trial data, allowing for adaptive trial designs and faster
decision-making.

e  Regulatory Compliance and Safety: Al is increasingly used to support regulatory
compliance and ensure drug safety. Al algorithms can analyze real-world data, adverse
event reports, and the literature to identify potential safety issues and monitor post-
marketing drug safety. Al also helps in pharmacovigilance, signal detection, and
adverse event prediction.

e  Supply Chain Optimization: Al is applied to optimize pharmaceutical supply chains,
ensuring efficient manufacturing, inventory management, and distribution. Al al-
gorithms can predict demand, optimize production schedules, and enhance quality
control processes, contributing to more streamlined and cost-effective operations.

Pharmaceutical companies are increasingly recognizing the potential of Al in PKPD
studies. Al offers valuable tools and approaches that can enhance drug discovery and
development processes. These companies are leveraging Al to analyze large datasets,
predict drug—target interactions, optimize drug candidates, and simulate drug responses
in biological systems. Some examples include GNS Healthcare [233], AstraZeneca [234],
Atomwise [235], Recursion Pharmaceuticals, and Insilico Medicines [236]. Al has helped
to improvise strategies for rapid and more accurate dosage form development. Pfizer has
utilized AI algorithms to predict drug—drug interactions (DDIs) by analyzing vast datasets
of drug structures, clinical outcomes, and adverse effects [237]. This approach has enabled
Pfizer to identify potential DDIs more efficiently and prioritize drug combinations for
further investigation, minimizing the risk of adverse reactions. Novartis has leveraged Al
in drug formulation and delivery optimization, employing algorithms to analyze physico-
chemical properties, solubility, and permeability data to design optimal drug formulations
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and delivery systems. This has streamlined the drug development process and improved
bioavailability and therapeutic efficacy. Additionally, Roche has made significant strides
in personalized medicine by integrating patient-specific data into AI models [238]. By
incorporating genetic profiles, medical histories, and biomarker measurements, Roche
can predict individual drug responses and tailor treatment regimens, leading to more
effective and personalized therapies. These examples highlight the innovative use of Al by
pharmaceutical companies and showcase how it has revolutionized PKPD studies, paving
the way for enhanced drug development strategies and improved patient outcomes. Some
of the major applications of Al in pharmaceutical companies are tabulated in Table 5.

Table 5. Lit of companies using Al and ML technologies in pharmaceutical research [239].

Sr. No.  Domain Technology and Outcome Industry and Collaborations
1 Drug design Novel therapeutic antibodies Exscientia
AtomNet—deep learning-driven
2 Molecular drug discovery computational platform for AtomWise
structure-based drug design
Machine learning based recursion
3 Gene mutation related disease operating system for biological and Recursion
chemical datasets
Ligand- and structure-based de novo
4 Drug design drug design, especially in Iktos
multiparametric optimization
5 Drug discovery Generative modeling Al technology Iktos and Galapagos
6 Drug development Potential preclinical candidates Iktos and Ono Pharma
7 Drug design Rapid drug design by software “Makya”  Iktos and Sygnature Discovery
8 Drug discovery and Drug Pharma.Al, PandaMics, ALS.Al Insilico Medicine
development
9 Drug target and Drug development ChatPandaGPT Insilico Medicine
Protein motion in drug development lie
10 Drug development RLY-4008 (Novel allosteric, pan mutant Relay therapeutics
and isoform selective inhibitor of PI3K«
1 Drug discovery Al and machine learning for selection of BenevolentAl
drug target
12 Drue tareet dD.rug targedt .sde¥ect1ct>1111. for Clh ronic kidney BenevolentAl and AstraZeneca,
& targe Sease and idiopathic puimonary GlaxoSmithKline, Pfizer
fibrosis
13 Clinical trials Al in clinical trials Pfizer and Vysioneer
. Al and supercomputing for oral .
14 Disease treatment COVID-19 treatment Paxloid Pfizer
15 Drug discovery NASH drugs and sequencing behemoth AstraZene.zca and Viking
Nlumina therapeutics
Trials360.ai platform in clinical trials for
16 Drug development site feasibility, site engagement and Janssen
patient recruitment
17 Drug research Al%tomate medical literature review by Sanofi
using natural language processing
18 Drug development Al in drug development BioMed X and Sanofi
19 Drug research and drug Al empowerment and Al exploration Novartis and Microsoft
development platforms
20 Drug discovery Al drug discovery platform Bayer
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9. Futuristic Overview

Al'might revolutionize the pharmaceutical industry in the future to accelerate drug dis-
covery and drug development. Virtual screening techniques will rapidly analyze enormous
chemical libraries and find therapeutic candidates with required features, accelerating
lead compound identification. Al-enabled precise medicine could categorize patients,
predict therapy responses, and customize medicines by analyzing genomes, proteomes,
and clinical records. Scientists may create innovative compounds with target-binding
characteristics using deep learning and generative models, improving medication effec-
tiveness and lowering adverse effects. Additionally, Al will allow patient-specific dose
formulations. Al algorithms will optimize medicine compositions and delivery methods
to improve treatment results by considering patient-specific parameters, including age,
weight, genetics, and illness status. Al algorithms will revolutionize safety assessment by
predicting drug candidate side effects and toxicity.

Al-powered monitoring systems will allow remote patient care and medication ad-
herence. Wearable gadgets and sensors will continuously gather data for Al algorithms
to propose personalized therapy and better compliance. Al improves clinical trial de-
sign, patient selection, and recruitment. Al algorithms will use electronic health records,
biomarkers, and genetic profiles to find appropriate patients, lower trial costs, and speed
up approval.

The real-time monitoring and control of important parameters by Al models will
optimize continuous manufacturing operations. Al algorithms will make pharmaceutical
manufacture uniform and efficient via data analysis and feedback. Al will analyze large
amounts of data to inform regulatory decisions. It will assist regulatory bodies in speeding
up medication approval and improving safety.

The use of artificial intelligence in various segments of healthcare is growing daily,
from the triage and screening of clinical risk prediction to diagnosis [141,240]. Clinical ap-
plications of Al have the potential to increase diagnosis accuracy and healthcare efficiency.
The massive amount of time and money spent on medication research and development ne-
cessitates the use of more inventive methodologies and tactics [241]. Artificial intelligence
is providing large opportunities in the medical field, such as multivariate data analysis
of abundant amounts; resolving the complicated issues involved in the creation of viable
medication delivery systems; making decisions with more accuracy, disease categorization,
and modeling; establishing the correlation between formulations and processing factors;
dosage ratio optimization; rapid drug development; anticipating drug bioactivities and
interactions; cellular response; the effectiveness of the drugs used in combination; the
outcomes of treatment; and many more. As demonstrated in all sections, Al and machine
learning have considerable potential in revolutionizing medication delivery to improve
infectious disease treatment effectiveness. Unfortunately, there are currently limited prac-
tical uses of Al in medication delivery, particularly in the therapeutic setting. Various
Al methods used in drug delivery for the treatment of infectious diseases, such as Boost,
k-nearest neighbors, decision trees and random forest, Naive Bayes, ANN, Feedback System
Control (FSC), SVM, Set Covering Machine (SCM), and logistic regression, have not been
widely evaluated or used in clinical settings, demonstrating the existence of significant
hurdles in the clinical translation of Al for medication administration in the treatment of
infectious diseases [96,144]. Machine learning and artificial intelligence combined with
PBPK modeling are important tools for drug development and risk assessment of envi-
ronmental chemicals. A recently developed model of PBPK was used to describe how
chemicals enter the body, the bioavailability of drugs, the movement of drugs between
tissues, and how drugs are metabolized and eliminated from the body by a mathematical
description. For the determination of the toxicity of the various classes of nanomaterials,
PBPK-based toxicity models are most suitable. Because the chemical ADME routes are
not well described or mathematically formulized, developing mechanistically valid PBPK
models for novel compounds with limited prior knowledge is difficult and complex. With
the recent development of Neural-ODE (Neural-ordinary differential equation) algorithms,
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it is now feasible to build PBPK simulations for a novel medication based on its properties,
which can learn the governing ODE equations algorithmically and directly from PK data
without the need for well-characterized previous knowledge. Overall, advances in Al
approaches, particularly for the deep neural network model, may help to solve some of
today’s challenges, thereby improving the performance of PK and PBPK modeling and
simulations aimed at drug discovery and development, as well as a human health risk
assessment of environmental chemicals [242]. The ultimate goal of the development of
Al in PKPD depends on the understanding of the fundamentals associated with different
scientific principles. This is only possible by developing standard regulations with strict
measures that prevent the abuse of Al but at the same time accelerate its growth. Such a te-
dious task requires the collaboration of multiple pharmaceutical companies and regulatory
bodies along with various healthcare professionals, including doctors, nurses, pharmacists,
data scientists, etc.

While this futuristic overview presents exciting possibilities, it is important to recog-
nize that challenges related to data quality, regulatory frameworks, and ethical guidelines
will need to be addressed for the full realization of Al’s potential in pharmaceutical prod-
uct development. However, with continued advancements and collaborations between
industry, academia, and regulatory bodies, Al-driven innovations have the potential to
revolutionize the pharmaceutical industry and improve patient outcomes in the years to
come.

10. Conclusions

Al is transforming drug delivery technologies, enabling targeted, personalized, and
adaptive therapies. By leveraging Al’s capabilities in data analysis, pattern recognition, and
optimization, pharmaceutical researchers and healthcare professionals can enhance drug
efficacy, minimize side effects, and improve patient outcomes. Al-based methods have
revolutionized the field of pharmacokinetics and pharmacodynamics. They offer several
advantages over traditional experimental methods. Al-based models can predict pharma-
cokinetic parameters, simulate drug distribution and clearance in the body, and optimize
drug dosage and administration routes. Al-based computational methods for PBPK models
can simplify the development of such models and optimize their parameters, reducing the
need for animal studies and human clinical trials. Computational pharmaceutics, facilitated
by Al and big data, revolutionizes the drug delivery process by providing a more efficient,
cost-effective, and data-driven approach. It enables the optimization of drug formulations,
personalized therapies, regulatory compliance, and risk reduction, ultimately leading to
improved drug manufacturing processes and enhanced patient outcomes. Overall, the
integration of Al technologies holds great promise for accelerating drug development,
improving patient outcomes, and revolutionizing the pharmaceutical industry, promoting
its evolution from era 4.0 to era 5.0.
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