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Abstract: Cartilage tissue engineering has attracted great attention in defect repair and regeneration.
The utilization of bioactive scaffolds to effectively regulate the phenotype and proliferation of
chondrocytes has become an elemental means for cartilage tissue regeneration. On account of the
simultaneous requirement of mechanical and biological performances for tissue-engineered scaffolds,
in this work we prepared a naturally derived hydrogel composed of a bioactive kartogenin (KGN)-
linked chitosan (CS-KGN) and an aldehyde-modified oxidized alginate (OSA) via the highly efficient
Schiff base reaction and multifarious physical interactions in mild conditions. On the basis of the
rigid backbones and excellent biocompatibility of these two natural polysaccharides, the composite
hydrogel demonstrated favorable morphology, easy injectability, good mechanical strength and tissue
adhesiveness, low swelling ratio, long-term sustainable KGN release, and facilitated bone marrow
mesenchymal stem cell activity, which could simultaneously provide the mechanical and biological
supports to promote chondrogenic differentiation and repair the articular cartilage defects. Therefore,
we believe this work can offer a designable consideration and potential alternative candidate for
cartilage and other soft tissue implants.

Keywords: cartilage tissue regeneration; kartogenin; hydrogel scaffold; Schiff base; injectability

1. Introduction

Articular cartilage is inherently free of blood vessels and has a low cell count. Once
cartilage is damaged, it cannot repair itself, which significantly limits its self-recurrence and
leads to progressive degeneration of the entire joint, resulting in severe osteoarthritis. In
order to prevent further deterioration of the invasive lesions of articular cartilage, several
clinical managements have been well developed using surgical interventional treatments,
such as osteochondral transplantation, autologous chondrocyte implantation, bone marrow
stimulation, and others [1–4]. However, current approaches in recent years are considered
controversial because they possess a variety of inherent drawbacks, such as donor site
morbidity, potential immunogen rejection, and insufficient transplantation resources [5–7].
Therefore, the advent of tissue engineering, based on the three main elements of scaffolds,
growth factors, and seed cells, represents a new dawn and innovative therapeutic modality
for cartilage tissue regeneration.

Along with the rapid development of tissue engineering technology, the scaffold
material is gradually regarded as the most important factor in tissue engineering for
repairing defective tissues [8–12]. For example, hydrogels can simulate the compositions,
structures, and properties of native cartilage, so as to promote the growth, proliferation, and
differentiation of cells in the defect site, thus facilitating tissue regeneration [13–18]. Naturally
derived polysaccharide hydrogels with porous networks, suitable mechanics, and designable
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biological properties have made great progress for several decades and proved to be crucial
ingredients in cell growth, adhesion, proliferation, and differentiation [19–23]. Among them,
chitosan (CS), as a sole alkaline polysaccharide in nature, has excellent biocompatibility,
tailored biodegradation, and beneficial chondrocyte phenotype expression for wide bio-
application, but its poor solubility, weak strength, and difficult processability are still
cumbersome problems that need to be solved. Therefore, it is necessary to introduce
other polymeric moieties into CS-based systems to enhance chitosan’s properties [24–28].
Consequently, sodium alginate (SA) and its derivative of oxidized sodium alginate (OSA)
are frequently incorporated into CS-based systems due to their good accessibility and
non-immunogenicity [29,30]. OSA can be easily chemically linked with the amine groups
of CS polymers via the Schiff base bonds to yield composite hydrogels in mild conditions.
Moreover, its carboxyl and hydroxyl groups within the polymeric chains can further allow
the OSA to crosslink with the CS backbone through hydrogen interactions and multiple
ionic interactions to increase crosslinking density, enhance mechanical properties, and
decrease water absorption.

Numerous studies have shown that kartogenin (KGN), as an excellent chondrogenic
promoter, can maintain biological activity and maintain good stability, thus promoting long-
term chondrogenesis in cartilage tissue repair. After screening 22,000 structurally diverse and
heterocyclic drug-like small molecules, it was found that KGN, without any toxicity, could
obviously improve the chondrocyte differentiation of MSCs in a dose-dependent manner [31].
Moreover, KGN also has longer stability and half-life than those of the biological protein
growth factors in the application of cartilage tissue engineering [32–36]. In addition, the
lymphatic system can rapidly clear the pure KGN injected via the articular cavity, and this
intra-articular injection can also cause organ damage due to leakage into the circulatory
system. Thus, a drug delivery system for the controlled KGN release is urgently required
and needed [33,37,38]. However, most of the KGN-based drug delivery methods relied on
physical encapsulation, which caused the initial burst release, uncontrolled drug delivery,
and later difficulty in long-term release [39]. On the basis of the above background infor-
mation, the pursuit of simultaneously satisfied mechanical and chondrogenic properties of
hydrogel scaffolds as well as a novel delivery system for bioactive KGN is a topic worthy
of deep investigation and clinical exploitation in order to enhance the therapeutic effect of
cartilage repair.

It is difficult for cartilage scaffolds to simultaneously meet the requirements of bio-
compatibility, degradability, mechanics, and microenvironment supplies, thus significantly
limiting their widespread use. In this work, combining the advantages of the efficient
Schiff base reaction between the polysaccharide KGN-conjugated chitosan (CS-KGN) and
OSA polymer (Figure 1), we tried to prepare a kind of composite hydrogel with favorable
mechanical and biological properties and investigated its application in cartilage tissue
engineering. Relying on the chemical modification methods, the bioactive KGN molecules
were chemically linked into the CS backbone while the OSA macromolecule was obtained
in the presence of antioxidant NaIO4. Since the residual aldehyde groups within the OSA
could further be reacted with the amino groups of tissue protein, the Schiff base reaction
could allow the injectable hydrogels to fill up almost all areas of cartilage defect. In addition,
they exhibited good biocompatibility that, in combination with the ECM, facilitated cell
survival, adhesion, growth, and proliferation. Moreover, in view of the local delivery of
KGN molecules along with the polysaccharide degradation, the optimized CS-KGN/OSA
hydrogel was able to locally deliver the stable chondrogenesis KGN promoter, and sup-
port cell growth and chondrogenic differentiation of the encapsulated BMSCs, thus effec-
tively maintaining the phenotype and function and elucidating the therapeutic effect on
cartilage repair.
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Figure 1. Schematic illustrations of synthesis pathways of CS-KGN and OSA polysaccharides and
the CS-KGN/OSA composite hydrogel.

Therefore, this study aimed to prepare a biocompatible hydrogel with a low swelling
ratio and favorable mechanical and long-term sustainable KGN release capacities. Even
without loaded chondrotropic drugs, a CS/OSA hydrogel scaffold could facilitate the cell
adhesion, growth, proliferation, and chondrogenic differentiation of BMSCs, exhibiting
a suitable cell-supporting effect for potential tissue engineering. In addition, KGN is an
excellent chondrogenesis promoter that induces mesenchymal stem cells to homing to
promote long-term chondrogenesis in the process of cartilage tissue repair. Compared
with the initial burst release and uncontrolled drug delivery of physical KGN encap-
sulation, we are also aiming to fabricate the chemically linked CS-KGN polymer and
corresponding CS-KGN/OSA hydrogel with stable and long KGN release in situ to collab-
oratively promote chondrogenesis. Consequently, compared with the previous attempts
to construct engineered scaffolds in order to achieve tissue regeneration, the current trial
presents the synergistic effects of a hydrogel and its potential to provide a clinical alter-
native that highlights excellent biocompatibility, ease of injection, flexibility of use, and
long-lasting chondrogenesis.

2. Materials and Methods
2.1. Materials

Chitosan (CS, degree of deacetylation > 90%, viscosity 45 mPas, Mw ≈ 10 kPa, Shan-
dong Jinhu Co., Ltd., Zibo, China), sodium alginate (SA, 98%, Energy Chemical), kartogenin
(KGN, 95%, Selleckchem Co., Ltd., Houston, TX, USA), N-hydroxysuccinimide (NHS, 99%,
Energy Chemical), 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDCI,
99%, Energy Chemical), proteinase K (Solarbio Science & Technology Co., Ltd., Beijing,
China), sodium periodate (NaIO4, J&K), and fibrin glue (Guangzhou Bioseal Biotech, Co.,
Ltd., Guangzhou, China) were used. All the other biochemical reagents were directly
purchased from Sigma-Aldrich (St. Louise, MO, USA) and used without any further
treatment steps.

2.2. Synthesis of the CS-KGN Polymer

Briefly, an appropriate molar of KGN (2 mmol, 0.64 g), NHS (2.4 mmol, 0.28 g), and
EDCI (2.4 mmol, 0.46 g) were mixed in the DMSO/H2O solutions under vigorous stirring.
After mixing for 4 h at room temperature, 5 wt% of CS (0.36 g) solution was added to the
mixture with vigorous stirring for another 24 h. Then, the KGN-conjugated CS was dialyzed
against deionized water (MW cutoff, 2 kDa) for 2 d to remove the impurities/DMSO solvent
and lyophilized to yield a purified product referred to as the CS-KGN polymer.

2.3. Synthesis of the OSA Polymer

Briefly, 10 g of SA was first dissolved in 200 mL of aqueous solution followed by the
addition of 50 mL of anhydrous ethanol under vigorous stirring for 2 h. Then, the oxidant
NaIO4 agent was incorporated into the solutions under the N2 atmosphere. After vigorous
stirring overnight, 2 mL of ethylene glycol was added to reduce the remnant oxidizing
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agent, and then the targeted OSA polymer was precipitated after adding the anhydrous
ethanol and NaCl solutions. Furthermore, the impurities were removed via the dialysis
procedure (MW cutoff, 2 kDa) against deionized water for 2 d and lyophilized to yield a
purified product referred to as the OSA polymer.

2.4. Preparation of the CS-KGN/OSA Composite Hydrogel

The CS-KGN and OSA solutions were first prepared in water at room temperature.
Without adding any other additives, the CS-KGN/OSA composite hydrogel was simply
prepared by adding 5 wt% of CS-KGN solution into the same equivalent volume of OSA
solution (3 wt%) via the vortexing method and then stored at room temperature to al-
low gelation to occur. As a control, the CS/OSA hydrogel was also prepared with the
same method.

2.5. Structural Characterizations
1H NMR was applied for ensuring the chemical structures of CS-KGN and OSA poly-

mers on a Bruker DRX-400 using D2O. Fourier transform infrared spectroscopy (FTIR) was
recorded on a TENSOR-27 spectrometer in the range 400–4000 cm−1 to assess the chemical
linkage of CS-KGN polymer. Scanning electron microscopy (SEM) images were obtained
on a JSM-6700F microscope to observe the network morphology and inner structure of
CS-KGN/OSA hydrogel.

2.6. Compressive Strength Measurement

The compressive profile of CS-KGN/OSA hydrogel was measured using a Instron
3365 testing machine. Wherein, the cylindrical sample (diameter: 15 mm; height: 5.5 mm)
was constructed with an experiment compressive speed of 1 mm/min.

2.7. Rheology Study

The rheological measurement was carried out using a rheometer. The CS-KGN/OSA
hydrogel was spread on a 25 mm parallel plate and sealed with silicone oil to prevent
solvent evaporation. The dynamic frequency scan range: 0.1–100 rad s−1; stress amplitude:
0.1%; and temperature: 25 ◦C.

2.8. Adhesive Study

The adhesion measurement was performed using the lap shear test by injecting 1 mL
of CS-KGN/OSA onto the porcine skins, and commercially available fibrin glue was used
as a control. Briefly, standard lap shear and peeling tests were performed on porcine skins
that were adhered using the CS-KGN/OSA or fibrin glue for pressing 30 s before the tests,
respectively. The porcine skins were cut into slices with a length of 60 mm, thickness of
10 mm, and width of 20 mm for usage. All tests were performed using a Instron 3365 testing
machine under a constant rate of 10 mm min−1.

2.9. Burst Pressure Test

The burst pressure measurement was conducted using a published method [40,41].
Briefly, a segment of porcine aorta vein was first cut and then cleaned to remove the excess
fat. The vein was filled with pH 7.4 PBS solutions and linked to a syringe pump. A 2 mm
incision was made on the vein surface. Then, 500 µL of CS-KGN/OSA was injected into the
incision. The hydrogel thickness was set at ca. 5 mm and the burst pressure was assessed
after 2 min of gel formation. The peak pressure before pressure loss is considered to be
the burst pressure. All the measurements were repeated three times at room temperature.
Fibrin glue was used with the same parameters and conditions.

2.10. Swelling Behavior

Briefly, the CS-KGN/OSA hydrogel with the initial weight (Wi) was immersed into
25 mL of pH 7.4 PBS solutions and successively weighed (Ws) after incubation for certain
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periods of time (0.5, 1, 2, 4, 8, 12, 16, 24, 48, and 72 h) at 37 ◦C. The swelling ratio was
calculated according to the equation below:

Swelling ratio (%) = (Ws −Wi)/Wi × 100%

2.11. Cumulative Release of KGN In Vitro

The CS-KGN/OSA hydrogel was prepared in a container (diameter: 15 mm; height:
7.5 mm), which was then immersed into the PBS solution (pH 7.4, 3 mL) with and without
proteinase K (6 U/mL) at 37 ◦C. After incubation and collection at the predetermined
intervals, the PBS solution containing the released KGN was withdrawn and added to the
same PBS solutions to keep the total volume constant, which was quantified using the
standard curve to obtain the KGN release behavior using a UV−vis spectrophotometer.
The absorption peak of KGN was at 279 nm and the calculation equation of cumulative
release equation was used as shown below:

Cumulative release rate (%) = (released KGN/total KGN content in hydrogel) × 100%

2.12. Cell Seeding and Cell–Hydrogel Composite Culture

Bone marrow mesenchymal stem cells (BMSCs) were isolated from 3-month-old New
Zealand white rabbits, which were reviewed and approved by the institutional Animal Care
and Use Committee of PLA General Hospital (ethics approval number: KYLL20210617).
Isolation, culture, trilineage differentiation potential assay, and immunophenotypic iden-
tification of BMSCs were verified as previously described in the literature [42]. Injection
seeding was used to seed the MSCs to hydrogel scaffolds [12]. Cell suspension injec-
tion was carried out by injecting 60 µL of concentrated cell solution (1 × 105) into the
top/bottom/side of the hydrogel using a 25-gauge needle. The cells seeded on the hydro-
gel scaffold were the third-passage BMSCs.

For chondrogenic differentiation, the cell–hydrogel composites were incubated for
2 h to facilitate cell adhesion, and then the fresh chondrogenic differentiation medium
(Cyagen Biosciences Inc., Beijing, China) was added to support further culture and the
following experiments.

2.13. Cell Cytotoxicity and Proliferation

A Cell Counting Kit-8 assay (CCK-8, Dojindo Laboratories, Tokyo, Japan) was applied
to assess the cytotoxicity of the hydrogel. The injection seeding method was used to seed the
BMSCs to the hydrogels. Briefly, the cell suspension injection was performed by injecting
80 µL of concentrated cell solution (1 × 105 cells) into the hydrogel using a 25-gauge needle.
After incubation for 1, 2, 3, 5, and 7 days, we removed the original culture medium and
replaced it with fresh culture medium (100 µL) containing 10 µL of CCK-8. The cell viability
was measured with the absorbance of 450 nm on a microplate reader.

2.14. Live and Dead Assay

The live and dead assay method was used to visualize the survival of BMSCs on the
CS-KGN/OSA composite hydrogel. After culturing for 1 d, the cell–hydrogel composite
was washed with PBS to remove the culture medium and then immersed in 2 mM of calcein
AM and 4 mM of ethidium homodimer-1 reagents for 1 h at 37 ◦C. Confocal microscopy
was then used to observe the live (green) and dead (red) cells with excitation wavelengths
of 568 nm and 488 nm.

2.15. Semiquantitative RT-PCR

After incubation for 7 and 14 days, the cell–hydrogel composite was removed from the
culture medium and washed with pH 7.4 PBS solutions. After that, it was placed in a mortar
and ground into a powder with liquid nitrogen. The powder was added to TRIZOL reagent
(Invitrogen, Carlsbad, CA, USA) to fully lysate the cells. The total RNA was isolated by the
acid guanidinium thiocyanate–phenol–chloroform extraction technique [43]. The RevertAid
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First Strand cDNA Synthesis Kit (K1622, Thermo Scientific, Carlsbad, CA, USA) was used
to reverse-transcribe isolated RNA. According to the previous literature [12,32], real-time
polymerase chain reaction (RT-PCR) analysis was performed to detect the expression of
cartilage-specific marker genes using the SYBR Green PCR Master Mix Real-time PCR
system. The relative expression of the target genes was calculated using the ∆∆CT method.
The sequences of the primers are listed in Table 1.

Table 1. Primer sequences used for the RT-PCR.

Gene Forward Primers (5′–3′) Reverse Primers (5′–3′)

COL2 GCAGCTGTGTGCAGGAGGGGAAG TGGCAGTGGCGAGGTCAGTAGGG
ACAN GACTCATTGTTAGAGGACAGCCA CACTCCCAAAAAGAACTCCAGAT
PRG4 GGCAGGGAATGTGACTGTGATG TGGGTGAGCGTTTAGTTGTTGA
SOX9 CGGCGGAGGAAGTCGGTGAAGA AGTGGTGGGTGGGGTGGTGGTG

GAPDH CATCAAGAAGGTGGTGAAGCAGG AGCATCGAAGGTAGAGGAGTGGG
COL2: type II collagen; ACAN: aggrecan; PRG4: proteoglycan 4 precursors; SOX9: SRY-related high mobility
group-box gene 9; and GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

2.16. Quantification of DNA, GAG, and COL-2 Content

Briefly, the COL2 content was tested using an ELISA kit (Cloud-Clone, Corp., Houston,
TX, USA) according to the manufacturer’s instructions (Jianglai bio, JL22853) and pre-
vious literature [32]. A high-efficiency RIPA tissue/cell lysis solution (R0010, Solarbio
Science & Technology Co., Ltd., Beijing, China) was used to obtain the total proteins of the
cell–hydrogel composites. The content of proteoglycan was detected from the GAG con-
tent by a 1,9-dimethyl methylene blue (DMMB; Sigma, St. Louis, MO, USA) dye-binding
assay. Total GAG was normalized to total DNA content. Thereafter, 10 µL of the sample
was added to 100 µL of DMMB and mixed for the measurement with an absorbance of
525 nm. A standard curve was established from the chondroitin-6-sulfate derived from
shark cartilages (Sigma, St. Louis, MO, USA). Hoechst33258 staining and fluorometric
assay were performed to measure the DNA content of the cell–hydrogel composites. After
culturing for 7 and 14 days, the cell–hydrogel composites were weighed and then digested
in a prepared papain solution (Sigma, St. Louis, MO, USA) containing EDTA (0.5 M),
cysteine-HCl (0.05 M), and papain enzyme (1 mg/mL) at 60 ◦C for 48 h to obtain aliquots
of the sample digestion. A 10 µL aliquot of sample digestion was mixed with 100 µL
of Hoechst33258 working solution (2 µg/mL) and incubated at 37 ◦C for 20 min. The
fluorescence intensities were then determined using a microplate reader (Thermo, Waltham,
MA, USA) at an excitation wavelength of 360 nm and an emission wavelength of 460 nm.
The DNA content was normalized with a standard curve of calf thymus DNA (Sigma,
St Louis, MO, USA).

2.17. Statistics Analysis

All results were obtained as mean ± standard deviation for more than 3 times. After the
homogeneity test of variance, one-way analysis of variance (ANOVA) was used to calculate
the differences between the groups, and p < 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Preparation and Characterization of Polymers

The synthetic routes of CS-KGN, OSA polysaccharides, and the CS-KGN/OSA hy-
drogel are shown in Figure 1. KGN, as a non-protein chondrogenesis inducing agent,
was testified to have abilities on the facilitation of biological activity and promotion of
chondrocyte differentiation for cartilage repair. By means of the efficient amidation be-
tween the EDC/NHS-activated ester of the KGN agent and the CS in the DMSO/H2O
solutions, the CS-KGN conjugate was simply prepared with a grafting ratio of ca. 92%. The
1H NMR spectrum in Figure 2A shows that the major signals of benzene groups (a–j) at
δ = 7.3–7.9 ppm are attributed to the KGN moieties and the resonance peaks at δ = 1.9 and



Pharmaceutics 2023, 15, 1949 7 of 13

2.7 ppm belong to the methyl (-CH3) and methylene proton at the C3 position of the CS
polymer. Especially, these obvious shift peaks in the benzene groups and the glycoside
units in Figure 2A (blue and yellow boxes) revealed the formation of amide linkages and
successful preparation of the CS-KGN conjugate without the mixture of two polymers.
In addition, the chemically grafting ratio of KGN onto the CS-KGN was ca. 91.5% via
the 1H NMR spectrum in Figure 2A, indicating its highly effective amidation reaction
in mild conditions. Furthermore, FT-IR spectra also provided powerful evidence for the
formation of the CS-KGN conjugate. As shown in Figure 2B (blue and yellow boxes), the
characteristic absorption peaks of vibration (C-N) at ca. 3418 cm−1 and amide I and II bands
at ca. 1640 cm−1 and 1545 cm−1 were basically attributed to the deacetylated CS polymer
and CS-KGN polymer, but the explicit signal shift from 3448 cm−1 to 3418 cm−1 (purple
dotted line) clearly convinced a successful amidation reaction between the acid group of
KGN and the amino group of CS. As for the OSA polymer, the inert dihydroxy groups of
alginates were feasibly oxidized to form the dialdehyde in the presence of oxidative NaIO4.
As shown in Figure 2B, the generated two peaks at 5.3 ppm and 5.6 ppm in the 1H NMR
spectra are ascribed to the hemiacetalic protons originating from the hydroxyl groups of
aldehydes and their neighbors, demonstrating the preparation of the targeted OSA polymer.
In this case, the CS-KGN/OSA composite hydrogel could be facilely yielded via the highly
efficient Schiff base reaction between the aldehyde group of the OSA and amine groups of
the CS-KGN composite in mild conditions. In addition to the chemical crosslinking, the
physical interaction also played an important role in constructing the hydrogel network
due to a few hydrophilic-group-induced electrostatic interactions, hydrogen–hydrogen
interactions, and various molecular chain entanglements within these polymeric networks.
Since the residual aldehyde group of the OSA polymer can continue to undergo a Schiff
base reaction with the amine groups in the tissue protein once injected into the tissue
defects, this hydrogel has the required strong tissue adhesion strength for application in
osteochondral-related diseases.
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3.2. The Porous Structures and Mechanical Properties of Hydrogels

The CS-KGN/OSA hydrogel was prepared via mixing the CS-KGN and OSA precur-
sor solutions together with a dual-barrel syringe, presenting good gelation ability and easy
injectability. The porous structure and pore size of the hydrogel scaffold is important for cell
infiltration and nutrition transfer as well as other substance exchanges. For the composite
CS-KGN/OSA hydrogel, Figure 3A shows the inner porous morphology, suitable size
(ca. 20 µm), and porosities (75.04 ± 4.84%) that could satisfy the requirement of ad-
vantageous chondrogenic differentiation of BMSCs and nutrition and waste transfer for
biological scaffolds. A variety of dense clusters in the SEM image were observed, verifying
the complex polymeric interactions within the hydrogel networks. Moreover, these dense
architectures also indicated the slowly sustained drug release from the network that may
allow high drug concentration in situ over a longer period of time to promote cartilage
tissue repair.
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Furthermore, mechanical strength is another key aspect of hydrogel scaffolds because
of the requirement of mechanical support for the implanted engineered scaffold. Before tis-
sue regeneration, mechanical matching to the native cartilage in the defect area is beneficial
in order to maintain scaffold stability and avoids random movements caused by exposure
to external forces. Thus, rheological and compressive experiments were carried out and the
results are shown in Figure 3B–D. The rheological curves in Figure 3B not only demonstrate
the gel state with a higher storage modulus (G′) than loss modulus (G′ ′) within the whole
frequency range but also indicate that the chemical grafting of KGN groups cannot alter the
rigid backbones and mechanical properties of CS-based hydrogels. Figure 3C,D show that
the CS-KGN/OSA hydrogel possesses robust mechanical properties with resilient elasticity
and a compressive stress of 300 kPa at the strain of 80%, which may be ascribed to the rigid
CS/SA backbones, dense network structures, and complex polymeric chain entanglements.

More importantly, on account of the residual aldehyde groups within the OSA backbone,
the composite CS-KGN/OSA hydrogel also demonstrated attractive adhesive strengths in
tissue applications owing to the generation of a number of Schiff base bonds between the
aldehyde groups of the CS-KGN/OSA hydrogel and the amine groups of the tissue, which
is important for clinical applications in order to dissipate energy through a flexible network
and resist damage once exposed to external forces. Firstly, the burst pressure measurement
was utilized to evaluate the adhesive strength and whether it could effectively seal the
sustainable flow of fluid inside the artery. Figure 3E,F show that the bursting pressure
of the CS-KGN/OSA hydrogel could achieve 123 mmHg, which is far beyond that of the
clinically used fibrin glue. In addition, the adhesive strength of the hydrogel was also
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quantitatively assessed on the porcine tissue by a lap shear test in Figure 3G,H. Compared
with the most commonly used control of fibrin glue, the CS-KGN/OSA hydrogel exhibited
a higher interface adhesive strength of 13.8 kPa, which relied on the chemical reaction of the
remaining aldehyde groups with the tissue amines; this result is indicative of a satisfactory
adhesive property for the tissue-engineered scaffold.

3.3. The Swelling Property and Drug Release from the CS-KGN/OSA Hydrogel

Figure 4A shows that the CS-KGN/OSA hydrogel could achieve a swelling equilib-
rium after 72 h of incubation in PBS solutions and exhibited a lower swelling ratio (238%)
compared with traditional natural polysaccharide hydrogels, which was attributed to its
physical chain entanglement and denser framework that could confine the water diffusion
to the internal network to a certain degree. To the best of our knowledge, traditional
regulatory factors (e.g., protein growth factors) possessed some fatal defects like short
half-life, poor stability, and easy deactivation, which significantly limited the working ac-
tivity and service life of the hydrogel within the implanted scaffolds for tissue regeneration.
Thereafter, to address these troublesome issues, we used stable and non-toxic KGN agents
as regulatory drugs to induce BMSCs into chondrocytes and promote cartilage regeneration.
Compared with the physical encapsulation of KNG drugs, KGN moieties chemically linked
into the network displayed slow-release behavior.
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various time periods.

Proteinase K, also known as protease K or endopeptidase K, is a serine protease with
wide cleavage activity. It can cut the carboxy-terminal peptide bonds of aliphatic and
aromatic amino acids. Since protease K has the ability to degrade natural proteins, it has
been widely used to digest various proteins in various molecular biology and cell biology
methods and other applications, including preparation of chromosomal DNA by pulsed
electrophoresis, Western blotting, removal of nucleases from DNA and RNA preparation,
and enzyme digestion and removal, etc. The normal working concentration of protease K is
50–100 µg/mL, and it is active in a wide range of pH values (pH 4.0–12.5) [32,44]. Therefore,
to simulate the degradation process in vivo, a PBS solution containing protease K was
employed for scaffold degradation because the protease K could facilitate the degradation
of the amide bond and the ester bond in solution. As shown in Figure 4B, compared with
the PBS solution with only a 7.8% release rate, the incorporation of protease K in PBS
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solutions could indeed accelerate hydrogel degradation. In this case, the cumulative release
achieved 38.7% with a slow, sustainable release behavior after 2 weeks, which could completely
overcome the limitations of protein factor-loaded scaffolds and meet the requirement of long-
lasting release with sufficient drug concentration in vivo (100 nM–100 µM) for immune
regulation during a long period of time [33,45]. Moreover, it also indicated the suitable
degradation of the implanted hydrogel scaffold to match the chondrogenic differentiation
of BMSCs and promote cartilage repair.

3.4. Cell Biocompatibility of the CS-KGN/OSA Hydrogels

On account of the universal biocompatibility of naturally derived CS and SA polymers
and non-protein chondrogenesis of the KGN molecule, the CS-KGN/OSA hydrogel should
be favored as an effective hydrogel for its effects on cells and/or tissues. As shown in
Figure 4C, the cytotoxicity assay showed that this biocompatible CS-KGN/OSA hydrogel
could efficiently support cell growth and promote cell proliferation. After incubation for
3 days, an obviously increasing cell number with 123% cell viability fully demonstrated the
excellent cytocompatibility of this hydrogel scaffold, which also indicated that the complete
chemical grafting of KGN moieties onto the CS framework did not affect the material
biosafety even though some of the KNG drugs may leak out of the CS-KGN/OSA hydrogel
within 3 days. Actually, the seeded cells within the scaffolds could retain higher viability
during the culturing period for more than a week. This advantageous cell growth and
proliferation capacity reflects its potential as an alternative and ideal engineered scaffold in
cartilage tissue engineering and regenerative medicine applications.

3.5. Chondrogenic Differentiation

Taking into consideration the porous networks, favorable mechanics, and excellent bio-
compatibility of the composite hydrogel, this CS-KGN/OSA should be a good candidate for
the chondrogenic differentiation of BMSCs and cartilage repair. Therefore, we investigated
the chondrogenic differentiation by analyzing some important cartilage-specific marker
gene expressions in vitro. After the chondrogenesis culture of BMSC with the hydrogel,
Figure 5 shows the typical mRNA expression levels of cartilage-specific marker genes
(ACAN, COL2, PRG4, and SOX9). To reveal the KGN effect on the chondrogenic differen-
tiation, we prepared another CS/OSA hydrogel without KGN modification as a control.
The real-time PCR results showed that all four cartilage-specific marker genes exhibited
higher expression levels of the CS-KGN/OSA hydrogel than that of the CS/OSA hydrogel.
In addition, the slow KGN release behavior endowed the CS-KGN/OSA hydrogel scaffold
with beneficial and sustainable chondrogenesis because all the mRNA expression levels of
cartilaginous markers were kept upregulated after incubation for 14 d, which suggested
that the KGN drug could significantly induce the chondrogenesis of BMSCs for a long
period of time in vitro. The non-KGN-laden CS/OSA hydrogel also exhibited upregulated
gene expression from day 7 to day 14, which may be ascribed to its well-matched mechanics,
adhesive strength, and excellent biocompatibility for promoting cell attachment, growth,
proliferation, and differentiation in vitro.

The ELISA assay can be applied to quantitatively assess the extracellular protein
levels in BMSCs within the biocompatible hydrogel scaffolds. Figure 6A shows that with
the prolongation of time, the DNA content of CS-KGN/OSA and CS/OSA groups were
increased during the two weeks. The higher DNA content of the CS-KGN/OSA hydrogel
further indicated the effect of KGN in promoting chondrogenesis in vitro. Figure 6B,C
show similar significant improvements relative to chondrogenic levels of GAG and COL-2,
with higher levels of GAG and COL-2 on day 14 than in the CS/OSA group, respectively.
These results powerfully disclose the synergistic effects of the biocompatible hydrogel and
demonstrate its suitable mechanics, excellent cell proliferation, outstanding chondrogenic
differentiation, and tailorable drug release in facilitating articular cartilage regeneration.
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4. Conclusions

In summary, a novel KGN-conjugated composite hydrogel was fabricated with porous
networks, easy injectability, suitable mechanics, favorable adhesion, low swelling ratio,
and excellent compatibility via simple preparation approaches. In view of its good cell
activity and proliferation capacities, this composite CS-KGN/OSA hydrogel is beneficial
for maintaining cell viability, stable chondrogenic differentiation, and effective cartilage
regeneration. In addition, on account of the sustainable KGN release from the chemi-
cally linked CS backbone for a long time, the typical cartilage-specific gene expressions
were significantly upregulated while DNA level and GAG content were also increased
after co-culturing with hydrogel and BMSCs in vitro, thus verifying the enduring chon-
drogenesis and great potential application prospects in a clinic setting. Therefore, this
CS-KGN/OSA composite hydrogel not only furnishes surgeons with the availability of an
injectable scaffold to fill in different gaps in cartilage defects, but also provides a hydrogel
with stable chondrogenic activity to favor cartilage growth in the clinical treatment of
bone-related diseases.
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