Formulation and Characterization of Ursodeoxycholic Acid Nanosuspension Based on Bottom-Up Technology and Box–Behnken Design Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HPLC Analysis
2.3. Experimental Design
2.4. Preparation of UDCA Nanosuspensions
2.4.1. Precipitation–Ultrasonication Technique
2.4.2. Particle Size, Distribution, and Zeta Potential of UDCA Nanosuspensions
2.4.3. Formulation Optimization
2.4.4. Preparation and Characterization of Freeze-Dried UDCA Nanosuspensions
2.5. Residual Solvents (Acetone)
2.5.1. Instrumental and Chromatographic Conditions
2.5.2. Stock and Sample Solutions
- Linearity, LOD, and LOQ
2.6. Dissolution Test
2.7. In Vitro Physicochemical Stability
2.8. UDCA Oral Pharmacokinetics
Pharmacokinetic Parameters
3. Results and Discussion
3.1. Preparation of UDCA Nanosuspension
3.1.1. Experimental Design
3.1.2. Lyophilization of UDCA Nanosuspension
3.2. Residual Solvent
3.3. Characterization of Nanosuspensions
3.3.1. Particle Size, Distribution, and Zeta Potential
3.3.2. SEM
3.4. Dissolution Test
3.5. Physicochemical Stability
3.5.1. HPLC-UV Methods
3.5.2. Stability
3.6. UDCA Oral Pharmacokinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thao, T.-D.T.; Phuong, H.-L.T.; Minh, N.U.N.; Khanh, T.M.T.; Minh, N.P.; Phuc, C.T.; Toi, V.V. Amorphous isradipine nanosuspension by the sonoprecipitation method. Int. J. Pharm. 2014, 474, 146–150. [Google Scholar] [CrossRef]
- Kassem, M.A.A.; Elmeshad, A.N.; Fares, A.R. Enhanced Solubility and Dissolution Rate of Lacidipine Nanosuspension: Formulation Via Antisolvent Sonoprecipitation Technique and Optimization Using Box–Behnken Design. AAPS PharmSciTech 2017, 18, 983–996. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Zhang, L.; Wang, Q.; Zhang, D. Stability issue of nanosuspensions in drug delivery. J. Control Release 2013, 172, 1126–1141. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, X.; Lian, R.; Zheng, S.; Yin, Z.; Lu, Y.; Wu, W. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/ homogenization based on acid–base neutralization. Int. J. Pharm. 2012, 438, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Surya, G.; Monika, S.; Vijay, A. Nanosuspension Technology: Recent Patents on Drug Delivery and their Characterizations. Recent Pat. Drug Deliv. Formul. 2019, 13, 91–104. [Google Scholar] [CrossRef]
- Daisy, A.; Bharat, K.; Goutam, R.; Sanju, N.; Amit, K.G. Recent Advances in Nanosuspension Technology for Drug Delivery. Curr. Pharm. Des. 2018, 24, 2403–2415. [Google Scholar] [CrossRef]
- Shah, D.; Patel, B.; Shad, C. Nanosuspension technology: A innovative slant for drug delivery system and permeability enhancer for poorly water soluble drug. J. Drug Deliv. Ther. 2015, 5, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Liu, G.; Wang, X.; Liu, F.; Xu, Y.; Ma, J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int. J. Pharm. 2011, 404, 231–237. [Google Scholar] [CrossRef]
- Chow, S.F.; Wan, K.Y.; Cheng, K.K.; Wong, K.W.; Sun, C.C.; Baum, L.; Chow, A.H.L. Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization. Eur. J. Pharm. Biopharm. 2015, 94, 436–449. [Google Scholar] [CrossRef]
- Du, J.; Li, X.; Zhao, H.; Zhou, Y.; Wang, L.; Tian, S.; Wang, Y. Nanosuspensions of poorly water soluble drugs prepared by bottom-up technologies. Int. J. Pharm. 2015, 495, 738–749. [Google Scholar] [CrossRef]
- Wang, L.; Du, J.; Zhou, Y.; Wang, Y. Safety of nanosuspensions in drug delivery. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Ryan, K.M.; Padrela, L. Production and isolation of pharmaceutical drug nanoparticles. Int. J. Pharm. 2021, 603, 120708. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Cong, Z.; Gao, P.; Wang, Y. Nanosuspensions technology as a master key for nature products drug delivery and In vivo fate. Eur. J. Pharm. Sci. 2023, 185, 106425. [Google Scholar] [CrossRef] [PubMed]
- Touqeer, S.I.; Jahan, N.; Abbas, N.; Ali, A. Formulation and Process Optimization of Rauvolfia serpentina Nanosuspension by HPMC and In Vitro Evaluation of ACE Inhibitory Potential. J. Funct. Biomater. 2022, 13, 268. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.P.; Hul, J.; Sui, H.; Zhao, Y.S.; Feng, J.; Liu, C. Glabridin nanosuspension for enhanced skin penetration: Formulation optimization, in vitro and in vivo evaluation. Pharmazie 2016, 71, 252–257. [Google Scholar]
- Hu, J.; Ng, W.K.; Dong, Y.; Shen, S.; Tan, R.B.H. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. Int. J. Pharm. 2011, 404, 198–204. [Google Scholar] [CrossRef]
- Zelenková, T.; Onnainty, R.; Granero, G.E.; Barresi, A.A.; Fissore, D. Use of microreactors and freeze-drying in the manufacturing process of chitosan coated PCL nanoparticles. Eur. J. Pharm. Sci. 2018, 119, 135–146. [Google Scholar] [CrossRef]
- Rudd, N.A.; Reibarkh, M.; Fang, R.; Mittal, S.; Walsh, P.L.; Brunskill, A.P.J.; Forrest, W.P. Interpreting in vitro release performance from long-acting parenteral nanosuspensions using USP-4 dissolution and spectroscopic techniques. Mol. Pharm. 2020, 17, 1734–1747. [Google Scholar] [CrossRef]
- Xia, D.; Quana, P.; Piaoa, H.; Piaoa, H.; Suna, S.; Yinc, Y.; Cui, F. Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability. Eur. J. Pharm. Sci. 2010, 40, 325–334. [Google Scholar] [CrossRef]
- Gajera, B.Y.; Shah, D.A.; Dave, R.H. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Int. J. Pharm. 2019, 25, 348–359. [Google Scholar] [CrossRef]
- Mishra, B.; Sahoo, J.; Dixit, P.K. Formulation and process optimization of naproxen nanosuspensions stabilized by hydroxy propyl methyl cellulose. Carbohydr. Polym. 2015, 127, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.S.; Hegde, R.; Gadad, A.P.; Dandagi, P.M.; Masareddy, R.; Bolmal, U. Exploring the Solvent-Anti-solvent Method of Nanosuspension for Enhanced Oral Bioavailability of Lovastatin. Turk. J. Pharm. Sci. 2021, 18, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Alshweiat, A.; Katona, G.; Csóka, I.; Ambrus, R. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur. J. Pharm. Sci. 2018, 122, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.-Q.; Jia, X.; Wei, Z.; Liua, Z.-Y. Box–Behnken experimental design for investigation of microwave-assisted extracted sugar beet pulp pectin. Carbohydr. Polym. 2012, 88, 342–346. [Google Scholar] [CrossRef]
- Porwal, O. Box-Behnken Design-based formulation optimization and characterization of spray dried rutin loaded nanosuspension: State of the art. S. Afr. J. Bot. 2022, 149, 807–815. [Google Scholar] [CrossRef]
- Singarea, D.S.; Marellaa, S.; Gowthamrajanb, K.; Kulkarni, G.T.; Vooturi, R.; Rao, P.S. Optimization of formulation and process variable of nanosuspension: An industrial perspective. Int. J. Pharm. 2010, 402, 213–220. [Google Scholar] [CrossRef]
- Dudhipala, N.; Janga, K.Y. Lipid nanoparticles of zaleplon for improved oral delivery by Box-Behnken design: Optimization, in vitro and in vivo evaluation. Drug Dev. Ind. Pharm. 2017, 43, 1205–1214. [Google Scholar] [CrossRef]
- Patel, P.J.; Gajera, B.Y.; Dave, R.H. A Quality-by-Design study to develop Nifedipine nanosuspension: Examining the relative impact of formulation variables, wet media milling process parameters, and excipient variability on drug product quality attributes. Drug Dev. Ind. Pharm. 2018, 44, 1942–1952. [Google Scholar] [CrossRef]
- Emami, J.; Mohiti, H.; Hamishehkar, H.; Varshosaz, J. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box Behnken design. Res. Pharm. Sci. 2015, 10, 17–33. [Google Scholar]
- Boscolo, O.; Salvo, L.; Dobrecky, C.; Fissore, E.N.; Buontempo, F.; Tripodi, V.; Lucangioli, S.E. Pharmaceutical suspensions of ursodeoxycholic acid for pediatric patients: In vitro and in vivo studies. Pharm. Dev. Technol. 2021, 26, 599–609. [Google Scholar] [CrossRef]
- Ma, Y.-Q.; Zhang, Z.-Z.; Li, G.; Zhang, J.; Xiao, H.-Y.; Li, X.-F. Solidification drug nanosuspensions into nanocrystals by freeze-drying: A case study with ursodeoxycholic acid. Pharm. Dev. Technol. 2014, 21, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Ursofalk®ácidoursodesoxicólico250mg/5ml. Available online: https://www.grupobiotoscana.com/wp-content/uploads/sites/96/2020/03/Prospecto-URSOFALK-250-SUSP.pdf (accessed on 13 March 2023).
- EMA. Benzyl Alcohol and Benzoic Acid Group Used as Excipients. Available online: https://www.ema.europa.eu/en/documents/report/benzyl-alcohol-benzoic-acid-group-used-excipients-report-published-support-questions-answersbenzyl/chmp/508188/2013-t_en.pdf (accessed on 15 March 2023).
- Lee, J.; Lee, C.H.; Lee, J.-G.; Jeon, S.Y.; Choi, M.-K.; Song, I.-S. Enhancing Dissolution and Oral Bioavailability of Ursodeoxycholic Acid with a Spray-Dried pH-Modified Extended Release Formulation. Pharmaceutics 2022, 14, 1037. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.-F.; Zhang, W.-J.; Yuan, H.-L.; Yang, M.; Zhu, W.-F.; Cai, P.-L.; Xiao, X.-H. Process Optimization, Characterization and Pharmacokinetic Evaluation in Rats of Ursodeoxycholic Acid–Phospholipid Complex. AAPS PharmSciTech 2008, 9, 322–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, E.; Khaled, S.; Mohammad, M.A.l.-S.; Omnia, M.H.; Ayman, S.; Mohamed, F.I.; Mohammed, M.G. Influence of Stabilizer on the Development of Luteolin Nanosuspension for Cutaneous Delivery: An In Vitro and In Vivo Evaluation. Pharmaceutics 2021, 13, 1812. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B.; Shah, J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res. 2020, 24, 3. [Google Scholar] [CrossRef] [Green Version]
- Yue, P.-F.; Yuan, H.-L.; Liu, Y.; Han, J.; Teng, P.M. Preparation and characterization of ursodeoxycholic acid nanosuspension. J. Disp. Sci. Technol. 2012, 33, 965–969. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Yue, P.-F.; Hu, P.-Y.; Wu, Z.-F.; Yang, M.; Yuan, H.-L. A novel high-pressure precipitation tandem homogeneization technology for drug nanocrystals production-a case study with ursodeoxycholic acid. Pharm. Dev. Technol. 2014, 19, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chen, Z.; Su, R.; Li, Y.; Qi, J.; Wu, W.; Lu, Y. Preparation and optimization of amorphous ursodeoxycholic acid nanosuspension by nanoprecipitation based on acid-base neutralization for enhanced dissolution. Curr. Drug Deliv. 2017, 4, 483–491. [Google Scholar] [CrossRef]
- Boscolo, O.; Flor, S.; Dobrecky, C.; Salvo, L.; Tripodi, V.; Lucangioli, S. Development and validation of a LC-UV method applied to the quality control of ursodeoxycholic acid in raw material and pharmaceutical formulations. IOSR J. Pharm. 2017, 7, 111–116. [Google Scholar] [CrossRef]
- Thakkar, S.; Sharma, D.; Misra, M. Comparative evaluation of electrospraying and lyophilization techniques on solid state properties of Erlotinib nanocrystals: Assessment of In-vitro cytotoxicity. Eur. J. Pharm. Sci. 2018, 111, 257–269. [Google Scholar] [CrossRef]
- United States Pharmacopeia USP-NF 2022. Ursodiol Capsules. Available online: https://doi.usp.org/USPNF/USPNF_M87510_01_01.html (accessed on 29 March 2022).
- Boscolo, O.; Flor, S.; Dobrecky, C.; Tripodi, V.; Lucangioli, S. Dissolution testing of ursodeoxycholic acid suspension using SPE as sample preparation. RPS Pharm. Pharmacol. Rep. 2022, 2, rqac006. [Google Scholar] [CrossRef]
- United States Pharmacopeia USP-NF 2022. Ursodiol Compounded Oral Suspension. Available online: https://doi.usp.org/USPNF/USPNF_M1404_02_01.html (accessed on 29 March 2022).
- Martinefski, M.; Contin, M.; Rodriguez, M.; Gerez, E.; Galleano, M.; Lucangioli, S.; Bianciotti, L.; Tripodi, V. Coenzyme Q in pregnant women and rats with intrahepatic cholestasis. Liver Int. 2014, 34, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Boscolo, O.; Flor, S.; Dobrecky, C.; Martinefski, M.; Tripodi, V.; Lucangioli, S. LC-MS/MS Method Applied to the Detection and Quantification of Ursodeoxycholic Acid Related Substances in Raw Material and Pharmaceutical Formulation. J. Pharm. Pharmacol. 2018, 6, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.; Dang, Y.; Lin, G.; Yashu, Y.; Li, G.; Ji, G.; Shen, H.; Xie, Y. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: An in vitro and in vivo evaluation. Int. J. Pharm. 2014, 477, 251–260. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, L.; Tao, X.; Xu, M.; Feng, J.; Tang, X. Preparation, characterization, stability and in vitro-in vivo evaluation of pellet-layered Simvastatin nanosuspensions. Drug Dev. Ind. Pharm. 2013, 39, 936–946. [Google Scholar] [CrossRef]
- Rajamani, S.; Radhakrishnan, A.; Sengodan, T.; Thangavelu, S. Augmented anticancer activity of naringenin-loaded TPGS polymeric nanosuspension for drug resistive MCF-7 human breast cancer cells. Drug Dev. Ind. Pharm. 2018, 44, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Nakarani, M.; Misra, A.K.; Patel, J.K.; Vaghani, S.S. Itraconazole nanosuspension for oral delivery: Formulation, characterization and in vitro comparison with marketed formulation. Daru 2010, 18, 84–90. [Google Scholar]
- Douroumis, D.; Fahr, A. Stable carbamazepine colloidal systems using the cosolvent technique. Eur. J. Pharm. Sci. 2007, 30, 367–374. [Google Scholar] [CrossRef]
- Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev. 2006, 58, 1688–1713. [Google Scholar] [CrossRef]
- Sharma, A.; Khamar, D.; Cullen, S.; Hayden, A.; Hughes, H. Innovative Drying Technologies for Biopharmaceuticals. Int. J. Pharm. 2021, 609, 121115. [Google Scholar] [CrossRef]
- Beirowski, J.; Inghelbrecht, S.; Arien, A.; Gieseler, H. Freeze drying of nanosuspensions, 2: The role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design. J. Pharm. Sci. 2011, 100, 4471–4481. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J. Effective polymeric dispersants for vacuum, convection and freeze drying of drug nanosuspensions. Int. J. Pharm. 2010, 397, 218–224. [Google Scholar] [CrossRef]
- Jakubowska, E.; Bielejewski, M.; Milanowski, B.; Lulek, J. Freeze-drying of drug nanosuspension–Study of formulation and processing factors for the optimization and characterization of redispersible cilostazol nanocrystals. J. Drug Deliv. Sci. Technol. 2022, 74, 103528. [Google Scholar] [CrossRef]
- De Jesús Valle, M.J.; Alves, A.; Coutinho, P.; Prata Ribeiro, M.; Maderuelo, C.; Sánchez Navarro, A. Lyoprotective Effects of Mannitol and Lactose Compared to Sucrose and Trehalose: Sildenafil Citrate Liposomes as a Case Study. Pharmaceutics 2021, 13, 1164. [Google Scholar] [CrossRef]
- Luo, W.-C.; Beringhs, A.O.R.; Kim, R.; William Zhang, W.; Patel, S.M.; Bogner, R.H.; Lu, X. Impact of formulation on the quality and stability of freeze-dried nanoparticles. Eur. J. Pharm. Biopharm. 2021, 169, 256–267. [Google Scholar] [CrossRef]
- Moretton, M.A.; Chiappetta, D.A.; Sosnik, A. Cryoprotection–lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles. J. R. Soc. Interface 2012, 9, 487–502. [Google Scholar] [CrossRef]
- Ojha, T.; Hu, Q.; Colombo, C.; Wit, J.; van Geijn, M.; Steenbergen, M.J.; Bagheri, M.; Königs-Werner, H.; Buhl, E.M.; Bansal, R.; et al. Lyophilization stabilizes clinical-stage core-crosslinked polymeric micelles to overcome cold chain supply challenges. Biotechnol. J. 2021, 6, e2000212. [Google Scholar] [CrossRef]
- Degobert, G.; Aydin, D. Lyophilization of Nanocapsules: Instability Sources, Formulation and Process Parameters. Pharmaceutics 2021, 13, 1112. [Google Scholar] [CrossRef] [PubMed]
- Trenkenschuh, E.; Friess, W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur. J. Pharm. Biopharm. 2021, 165, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.N.; Mallik, S.; Sarkar, K. Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes. J. Acoust. Soc. Am. 2017, 142, 3670. [Google Scholar] [CrossRef] [PubMed]
- Di Tommaso, C.; Como, C.; Gurny, R.; Michael Möller, M. Investigations on the lyophilisation of MPEG–hexPLA micelle based pharmaceutical formulations. Eur. J. Pharm. Sci. 2010, 40, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Kim, M.Y.; Kim, S.; Lee, J. Cryoprotectants for Freeze Drying of Drug Nano-Suspensions: Effect of Freezing Rate. J. Pharm. Sci. 2009, 98, 4808–4817. [Google Scholar] [CrossRef] [PubMed]
- ICH Harmonised Guideline. Impurities: Guideline for Residual Solvents Q3C(R8). Available online: https://database.ich.org/sites/default/files/ICH_Q3CR8_Guideline_Step4_2021_0422.pdf (accessed on 3 April 2023).
- Mehnert, W.; Mäder, K. Solid Lipid Nanoparticles: Production, Characterization and Applications. Adv. Drug Deliv. Rev. 2012, 64, 83–101. [Google Scholar] [CrossRef]
- Yang, T.; Shu, T.; Liu, G.; Mei, H.; Zhu, X.; Huang, X.; Zhang, L.; Jiang, Z. Quantitative profiling of 19 bile acids in rat plasma, liver, bile and different intestinal section contents to investigate bile acid homeostasis and the application of temporal variation of endogenous bile acids. J. Steroid Biochem. Mol. Biol. 2017, 172, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Han, Y.; Neuvonen, M.; Laitila, J.; Neuvonen, P.J.; Niemi, M. High performance liquid chromatography-tandem mass spectrometry for the determination of bile acid concentrations in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.-J.J.; Zhong, Y.-S.; Weng, J.-F.; Huang, H.-H.; Pei-Yin Hsieh, P.-Y. Determination of bile acids in pig liver, pig kidney and bovine liver by gas chromatography-chemical ionization tandem mass spectrometry with total ion chromatograms and extraction ion chromatograms. J. Chromatogr. A 2011, 1218, 524–533. [Google Scholar] [CrossRef]
- Chang, H.Y.; Kuo, C.H.; Sun, S.W. Determination of ursodeoxycholic acid in pharmaceutical preparations by capillary electrophoresis with indirect UV detection. J. Pharm. Biomed. Anal. 2003, 32, 949–956. [Google Scholar] [CrossRef]
- Khairy, M.A.; Mansour, F.R. Simultaneous Determination of Ursodeoxycholic Acid and Chenodeoxycholic Acid in Pharmaceutical Dosage Form by HPLC-UV Detection. J. AOAC Int. 2017, 100, 59–64. [Google Scholar] [CrossRef]
Levels | ||||
---|---|---|---|---|
Independent Variables | Low (−1) | Medium (0) | High (+1) | |
X1 | Stabilizer (%) | 0.3 | 0.5 | 1.0 |
X2 | Amplitude (W) | 30 | 50 | 100 |
X3 | Sonication time (min) | 3 | 5 | 10 |
Dependent variable | Constraints | |||
Y1 | Particle size (nm) | Minimize |
Stabilizer | Particle Size * (nm) | PDI * |
---|---|---|
HPMC E-15 | 660 ± 6.45 | 0.313 ± 0.034 |
TETRONIC 1107 | 489 ± 16.12 | 0.984 ± 0.022 |
TPGS | 992 ± 12.87 | 0.145 ± 0.061 |
Formula | Levels | Response | ||
---|---|---|---|---|
Stabilizer (%) | Amplitude (W) | Sonication Time (min) | Size (nm) | |
N1 | 0.5 | 100 | 3 | 399.0 |
N2 | 1.0 | 50 | 10 | 421.2 |
N3 | 1.0 | 100 | 5 | 522.3 |
N4 | 1.0 | 30 | 5 | 694.7 |
N5 | 0.5 | 30 | 10 | 398.1 |
N6 | 0.3 | 50 | 10 | 354.1 |
N7 | 0.3 | 100 | 5 | 333.4 |
N8 | 0.3 | 50 | 3 | 351.7 |
N9 | 0.3 | 30 | 5 | 351.1 |
N10 | 0.5 | 100 | 10 | 412.8 |
N11 | 0.5 | 30 | 3 | 417.4 |
N12 | 1.0 | 50 | 3 | 664.5 |
N13 | 0.5 | 50 | 5 | 411.2 |
N14 | 0.5 | 50 | 5 | 413.1 |
N15 | 0.5 | 50 | 5 | 403.8 |
Factors | Factor Levels |
---|---|
X1: Stabilizer (%) | HPMC 0.3% |
X2: Amplitude (W) | 50 |
X3: Sonication time (min) | 5 |
Lyophilized Nanosuspension | ||||||
---|---|---|---|---|---|---|
TIME (Days) | 25 °C | 4 °C | ||||
Particle Size * (nm) | PDI * | Z Potential * (mV) | Particle Size * (nm) | PDI * | Z Potential * (mV) | |
0 | 522.0 ± 7.11 | 0.204 ± 0.021 | −4.43 ± 0.21 | 459.6 ± 1.13 | 0.232 ± 0.011 | −3.01 ± 0.03 |
7 | 507.4 ± 0.71 | 0.182 ± 0.020 | −3.28 ± 0.21 | 466.2 ± 1.84 | 0.171 ± 0.004 | −3.79 ± 0.08 |
14 | 497.4 ± 5.81 | 0.212 ± 0.001 | −3.58 ± 0.16 | 491.4 ± 4.24 | 0.206 ± 0.004 | −4.14 ± 0.12 |
30 | 525.5 ± 6.36 | 0.177 ± 0.022 | −2.21 ± 0.15 | 487.7 ± 1.98 | 0.207 ± 0.004 | −3.09 ± 0.08 |
60 | 458.6 ± 8.14 | 0.212 ± 0.010 | −4.30 ± 0.17 | 426.0 ± 2.63 | 0.235 ± 0.016 | −3.70 ± 0.23 |
Lyophilized Nanosuspension | ||
---|---|---|
TIME (Days) | 4 °C (%) | 25 °C (%) |
0 | 100.0 (1.98) | 100.0 (1.95) |
7 | 103.9 (1.03) | 100.0 (1.98) |
14 | 105.3 (1.07) | 100.0 (0.30) |
30 | 100.0 (0.57) | 102.6 (2.00) |
60 | 107.9 (0.63) | 103.8 (0.50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boscolo, O.; Flor, S.; Salvo, L.; Dobrecky, C.; Höcht, C.; Tripodi, V.; Moretton, M.; Lucangioli, S. Formulation and Characterization of Ursodeoxycholic Acid Nanosuspension Based on Bottom-Up Technology and Box–Behnken Design Optimization. Pharmaceutics 2023, 15, 2037. https://doi.org/10.3390/pharmaceutics15082037
Boscolo O, Flor S, Salvo L, Dobrecky C, Höcht C, Tripodi V, Moretton M, Lucangioli S. Formulation and Characterization of Ursodeoxycholic Acid Nanosuspension Based on Bottom-Up Technology and Box–Behnken Design Optimization. Pharmaceutics. 2023; 15(8):2037. https://doi.org/10.3390/pharmaceutics15082037
Chicago/Turabian StyleBoscolo, Oriana, Sabrina Flor, Leandro Salvo, Cecilia Dobrecky, Christian Höcht, Valeria Tripodi, Marcela Moretton, and Silvia Lucangioli. 2023. "Formulation and Characterization of Ursodeoxycholic Acid Nanosuspension Based on Bottom-Up Technology and Box–Behnken Design Optimization" Pharmaceutics 15, no. 8: 2037. https://doi.org/10.3390/pharmaceutics15082037
APA StyleBoscolo, O., Flor, S., Salvo, L., Dobrecky, C., Höcht, C., Tripodi, V., Moretton, M., & Lucangioli, S. (2023). Formulation and Characterization of Ursodeoxycholic Acid Nanosuspension Based on Bottom-Up Technology and Box–Behnken Design Optimization. Pharmaceutics, 15(8), 2037. https://doi.org/10.3390/pharmaceutics15082037