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Abstract: Biofilm formation and antimicrobial resistance pose significant challenges not only in
clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also
in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on
the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will
be one of the major global challenges in the next few years. As traditional pharmacological treatments
are becoming inadequate to curb this problem, a constant commitment to the exploration of novel
therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives
to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and
potential multifunctional properties. Here, we provide a comprehensive overview of the different
biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on
the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development
of light-responsive materials and photosensitive compounds. The synergistic effects of combining
light-triggered therapies with conventional treatments are also discussed. Through elegant molecular
and material design solutions, remarkable results have been achieved in the fight against biofilm
formation and antibacterial resistance. However, further research and development in this field are
essential to optimize therapeutic strategies and translate them into clinical and industrial applications,
ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.

Keywords: antimicrobial resistance; biofilm; EPS; AHLs; AIPs; quorum sensing inhibition; bacterial
adhesion; photopharmacology; hydrogels; nanoparticles; light-triggered drug delivery

1. Introduction

Antimicrobial resistance (AMR) occurs when microbes (bacteria, viruses, fungi, and
parasites) change over time and no longer respond to the action of drugs (antibiotics,
antivirals, antifungals, and antiparasitics) that would normally kill them or limit their
growth. In this regard, bacterial resistance to antibiotics is of paramount importance in
the One Health context. Bacteria can indeed feature AMR, a process that is enabled by
different mechanisms and can be classified into (I) intrinsic, (II) acquired, and (III) adaptive.
While intrinsic AMR relates to all those inherent mechanisms that are adopted by bacteria
to inhibit antimicrobial agents and that do not require any contact with the antimicrobial
agents themselves, acquired resistance is the result of either an exchange of genetic material
or mutations. This type of resistance is more common in biofilms due to cell proximity [1].
Moreover, altered gene expression can result from exposure to environmental stress [2]. It
has also been suggested that adaptive resistance may arise from a change in the intrinsic
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resistance mechanisms, leading to an increase in AMR in response to environmental stress
and mutations [3].

Antibiotics, which have been widely used for more than half a century to treat bacterial
infections, have greatly contributed to the promotion of human health and life expectancy [4,5].
This significant impact of antibiotics has been undermined in recent years due to growing
levels of antimicrobial resistance [6]. Persistent consumption of antibiotics, genetic variations,
and exposure to infections in hospitals can favor the selection and spread of multidrug-
resistant bacteria, which has enormous implications for worldwide healthcare delivery and
population health [7,8]. According to the antimicrobial resistance report published in 2016,
the number of deaths caused by pathogenic bacteria is anticipated to rise to 10 million by 2050
if no urgent action is taken to reverse this course [9]. To this end, many approaches are being
explored by the scientific community, with variable success.

In this review, we describe light-triggered approaches that target different stages of
biofilm formation and maturation. These include surface patterning, pharmacological
interventions, and the use of smart materials. Moreover, we focus on those light-responsive
materials and photo-cleavable or photoswitchable molecules that have been designed
for antibacterial applications. In the last decades, the photopharmacology approach has
been successfully applied to different biological targets, leading to a series of molecular
tools for the functional modulation of ion channels [10-12], glutamate receptors [13],
G-protein-coupled receptors [14-16], protein-protein interactions [17,18], and enzymes [19],
all of which have been successfully tested in vitro and in vivo for different therapeutic
applications [20-23].

The use of light as a trigger appears to be particularly promising, as several classes of
organic and inorganic materials can respond to a broad spectrum of wavelengths [24-29].
Moreover, certain wavelengths of light are not harmful for humans or the environment.
This approach allows a non-invasive, on/off regulation of the material properties and
activity, ultimately leading to enhanced control of the irradiation site and dosage [26].

2. Biofilm Formation and Development

To survive harsh environmental conditions, some bacterial species can live in close
proximity and form highly structured multicelluar communities called biofilms, which
attach to surfaces and interfaces. Inside biofilms, bacterial cells show features that are
distinct from those that they show in their planktonic state, such as reduced motility and
metabolic activities, heterogeneity of gene expression, inter-communal division of labor,
and enhanced tolerance to antibiotics [30] (Figure 1).

In the 1670s, biofilms as complicated bacterial structures were first recognized by the
Dutch microscopist Anton Van Leeuwenhoek when working on dental plaques. With the
advent of electron microscopy, it was later revealed that to anchor themselves at the infection
site, bacterial communities form biofilms, in which the bacteria are embedded in self-secreted
extracellular viscous polymeric substances (EPSs). In most cases, the biofilm matrix accounts
for around 90% of the total biofilm mass, and it is composed of exopolysaccharides, amyloid-
like proteins, lipids, and extracellular DNA (eDNA) [31-33]. Most exopolysaccharides are
species-dependent and contain repeated sugar units of the same and different types that are
responsible for their polycationic or polyanionic nature [34]. Those charged molecules are
essential for water retention in the biofilms and to hydrate the environment, a feature required
to protect the bacterial cells in the biofilm from desiccation due to water stress, hence keeping
the non-rigid structure of the biofilm with different viscosities to allow cell movements in
the matrix [35]. These properties of the EPS matrix provide mechanical support to protect
the resident cells from external forces, such as fluid shear, and to ensure that the biofilm
community remains attached to a surface. In the context of infectious biofilms, it is difficult
for neutrophils to access biofilm-forming bacterial cells because, during phagocytosis, they
can only exert stress up to 1 kPa, which is not enough to break the biofilm into small pieces.
Moreover, neutrophils can only ingest pathogens smaller than 10 um; therefore, living in
clusters within biofilms eventually protects bacteria from being attacked [36].
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Biofilms represent the main cause of infections, such as catheter-associated urinary
tract infections. Unlike planktonic cells, the bacterial population in the biofilms exerts
their action by reducing their motility and metabolic activities while, at the same time,
upregulating their production of extracellular toxins at the site of infection, which ensures
the maximum possible tissue damage. The overall result is an abundant release of nutrient
supplies, leading to further cementation of biofilm [37]. At the same time, adjacent tissues
are also colonized by the shedding of daughter planktonic cells. Eventually, this spread of
infection and development of new biofilms would mature into a densely packed structure
that is difficult to eradicate, hence triggering chronic and recurrent infections [38-40].

Bacteria switch from planktonic life to biofilm mode by utilizing a combination of van
der Waals, electrostatic, and hydrophobic interactions to attach themselves reversibly to
biotic or abiotic surfaces through fimbriae, pili, flagella, and glycocalyx. These attachments
are easily affected by the substratum type, the hydrodynamics, and other characteristics
of the aqueous medium. At some point, bacteria either commit themselves to the biofilm
irreversibly or revert back to their planktonic lifestyle [41,42].

In cases of conducive conditions for growth and differentiation, a biofilm develops into
spatially arranged 3D structures, interspersed with fluid-filled channels, where nutrients,
oxygen, and essential substances can diffuse and circulate in each individual microenvi-
ronment for the embedded microbial cells to undergo coordinated community growth
that leads to the formation of microcolonies [43]. In this way, bacteria display coordinated
group behavior (secretion of virulence factors, formation of biofilm), which is based on a
density-dependent signal called quorum sensing [44,45]. With the formation of biofilms,
bacterial cells now have distinct features as compared to their planktonic lifestyle, such as
the presence of an EPS matrix, increased nutrient supply, upregulated synthesis and secre-
tion of extracellular material, and chemical and/or electrical interactions [46]. However,
triggered by various environmental factors, the biofilm can lose its stability, either actively
or passively, thus dispersing into its surroundings via the detachment of either single cells
or large aggregates of cells [35,47,48], which can then land at new locations to initiate the
formation of a new colony [49].

Stages of Biofilm Development

(iii) Enzyme <

(ii) Structural protein <
(v) Lipid <—

(i) Exopolysaccharide 4~

(iv) Extra cellular-DNA —

e

Bacterial cell ‘.. p

——» Detached Aggregates

Detached Single cells

W/ \

Planktonlc
life style

Extracellular Polymenc
Substances (EPS) Matrix

Metabolically active
biofilm surface cells
Mutant cells
Persister cells

QS molecule

Metabolically less
active biofilm
core

(1) Adhesion (11) Microcolony (III) Biofilm development (IV ) Biofilm Detachment
to a surface formation & maturation and Dispersal

Figure 1. Stages of biofilm development: (I) Attachment of free-living bacteria to a compatible surface
using physical forces, cell appendages, and secreted adhesins. (II) Microcolony formation to maintain
surface attachment is accompanied by the initial production of Extracellular Polymeric Substances (EPS,
in light green). (III) Biofilm maturation is achieved through the establishment of a microenvironment
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suitable for cellular heterogeneity (depicted as red, blue, and yellow cells), the release of quorum
sensing molecules (pink triangles), and enhanced EPS matrix production to combat environmental
stress. (IV) At the time of nutrient depletion and accumulation of toxic compounds, dispersal of
biofilm occurs. Cells can detach individually and in aggregates to start either planktonic life or
grow into new biofilms. Zoomed section. Composition of the EPS matrix: The EPS matrix contains
an array of biofunctional molecules such as (i) exopolysaccharides, essential for surface adhesion
and structural integrity of biofilms; (ii) structural proteins, which connect the cells to the EPS and
stabilize the biofilm architecture; and (iii) extracellular enzymes (mostly hydrolases and lyases) that
facilitate the degradation of EPS molecules into simpler products to be used by the biofilms as sources
of energy and carbon. The EPS degradation process is also important for biofilm dispersal and
the formation of new biofilms. (iv) eDNA acts as an intercellular connector in the matrix and as
a facilitator of Horizontal Gene Transfer (HGT). (v) Lipids are essential for bacterial adhesion to
hydrophobic surfaces. The figure is partially adapted from [49].

Quorum Sensing

Quorum sensing (QS) is defined as a density-dependent microbial signal system that
helps bacteria perceive and respond to temporal and contiguous environments (Figure 2).
Quorum sensing depends on a network of autoinducer synthases, autoinducers (Als),
partner autoinducer receptors, and downstream signal transduction components [50].
Als are innately produced at the basal level and gradually build up as microbial growth
continues, leading to a positive feedback loop [51]. With the accumulation of critical
concentrations of Als, specific receptors become activated to start a signaling cascade of
coordinated induction/repression of target genes within the bacterial population. This
occurs under various environmental incentives, such as morphogenesis, biofilm formation,
bioluminescence, drug resistance generation, regulation of the expression of virulence
factors, dormancy generation, immune escape, and others [52-54]. Furthermore, it is
important to consider that apart from quorum sensing as the determinant of cell density,
there are other environmental signals (e.g., temperature, pH, osmolarity, oxidative stress,
and nutrient deprivation) that bacteria must gather information about to determine their
survival strategy [55]. QS-mediated regulation of virulence determinants has been found
in both Gram-negative and Gram-positive bacteria [53,56].

The discovery of the first quorum sensing system dates back to the 1970s, when
Vibrio fischeri, a bioluminescent marine bacterium, was found to colonize, symbiotically, the
light organ of the Hawaiian squid Euprymna scolopes, establishing a positive correlation
between the bacterial population density and the expression of genes responsible for biolu-
minescence in the host [57,58]. For the first time in 1994, the concept of the production of
signal molecules by bacteria and their subsequent release into a specific environment was
proposed as quorum sensing [59]. QS plays the most important role in biofilms formed by
Salmonella spp., Escherichia coli, Campylobacter spp., Staphylococcus aureus, Listeria monocytogenes,
and Bacillus cereus [60]. About 80% of microbial infections have been found to be related to
QS-mediated biofilm formation [61].

There is great inter-population variation in the process of sensing signals, the type of
signal molecules, the receptor of signal molecules, the mechanism of signal transduction,
and the ultimate phenotype [62]. The Als produced during QS range from molecules of
low molecular weight to molecules of high molecular weight, such as oligopeptides [63].
Some examples of low molecular weight molecules involved in QS are N-acylhomoserine lac-
tone (AHL or AI-1) [64], furanosyl borate diester (AlI-2) [65], 4,5-dihydroxy-2,3-pentanedione
(DPD) [66], 3-hydroxypalmitic acid methyl ester (3OH-PAME) [67], cis-11methyl-2-dodecenoic
acid (diffusible signal factor, DSF) [68], 2-isocapryloyl-3R-hydroxymethyl-c-butyrolactone
(A-factor) [69], diketopiperazines (DKP) [70], 2-heptyl 3-hydroxy-4-quinolone [71], and
4-hydroxy 2-heptylquinoline (HHQ) [72].
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Figure 2. (Left): Quorum Sensing (QS) in Gram-negative Bacteria. Gram-negative bacteria follow the
LuxL-LuxR QS regulatory system. The autoinducer synthase (LuxI) secretes QS signaling molecules,
AHLs (pink circles), that, upon reaching the threshold concentrations, enter the cells and activate the
cognate AHL receptor (LuxR) and induce QS-regulated gene expression. (Right): Quorum Sensing
(QS) in Gram-positive Bacteria. Gram-positive bacteria, on the other hand, use autoinducer peptides
(AIPs) as signaling molecules. When they reach a certain concentration threshold, the autoinducers
bind to the receptor kinase, which undergoes autophosphorylation and passes the phosphate group
to the cytoplasmic response regulator. This activates the required genes in the quorum sensing
regulon. The figure is partially adapted from [73].

3. Mechanism through Which Biofilms Combat Antibiotics
3.1. Metabolic Activity Heterogeneity and Tolerance Acquisition

The rate of metabolic activity inside a biofilm can vary significantly due to differences
in the concentration of oxygen and nutrients that are available for the cells either at the
surface or in the deep region of the biofilm. The bacterial subpopulations that feature the
fastest growth rate are those residing on the surface of the biofilm, where oxygen availability
is higher, limiting oxygen penetration to the slow- or non-growing populations occupying
the inner zone of the biofilm. A study on the real-time detection of specific metabolites
through fluorescent tags has revealed that the cells in the center of the biofilm are less
active compared to the cells at the bulk liquid interface [74]. Another study focusing on the
measurement of oxygen distribution at varying depths of biofilm using microelectrodes
concluded that oxygen distribution strongly correlates with the biofilm structure and
that it is depleted by as much as 30-fold in the core of the biofilm [75]. This gradient
eventually leads to phenotypic and metabolic bacterial diversity, with a larger population
displaying varied gene expression and phenotypes (i.e., susceptible, resistant, and tolerant
cells) that co-evolve over time within the structure of the biofilm [76]. The low metabolic
activity of these bacterial cells can be translated into low antibiotic target production and
limited activity of such targets (i.e., enzymes involved in replication, protein formation, or
peptidoglycan production). Unlike resistant cells, which, through genetic changes, develop
long-term resistance to antibiotics, tolerant cells cannot grow or replicate during drug
exposure but resume their growth when the antibiotic is removed. These cells are called
persister cells, as they are able to outlive these unfavorable environmental conditions. This
persistence is a transient phenotypic state rather than a genetic trait, as the same cells in
planktonic form will become susceptible again. Persister cells are found in several human
pathogens, including Staphylococcus aureus, Mycobacterium tuberculosis, Escherichia coli,
Salmonella enterica subsp. enterica serovar Typhimurium, and Pseudomonas aeruginosa [77].

3.2. Adaptive Stress Responses

Biofilms are characterized by gradients of nutrients and oxygen that represent spatially
organized stress conditions for the bacterial population, which in turn trigger adaptive
responses such as the stringent response, the SOS response, and the general stress rpoS
response, impairing the efficacy of antimicrobials and contributing to overall antibiotic
tolerance [78]. Nutrient deficiency can also impact antimicrobial resistance as a consequence
of the activation of stress responses that promote resistance by recruiting mechanisms of
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antioxidant activity and biofilm resistance or by modifying the cell surface to prevent the
binding and entry of antimicrobials [79].

In stress conditions, when bacterial biofilms have populations with different growth
rates (fast-growing, non-growing, or slow-growing cells), the availability of antibiotic
targets is reduced in slow-growing cells. For example, (3-lactams are effective on dividing
bacterial cells only, which is evident in the large difference in minimum inhibitory con-
centration (MIC) and minimum biofilm inhibitory concentration (MBIC) of this antibiotic
(1000 fold) in Pseudomonas aeruginosa [80]. Several clinically important antibiotics interfere
with protein synthesis by binding at various functional centers of the ribosome, resulting
in either freezing the ribosome in a particular conformation or hindering the binding of
its ligands [81]. On slow-growing cells, antibiotics that bind the ribosome reversibly, such
as tetracycline, have a bacteriostatic effect, while antibiotics that bind the ribosome irre-
versibly, like aminoglycosides, have a bactericidal effect. This selective effect of drugs on
cells is due to cell growth’s dependence on ribosome abundance and protein synthesis [82].
DNA-binding quinolones are effective on non-growing cells but not as effective as on
fast-growing cells [83].

The stringent response in persister cells is initiated through activation of the alar-
mone guanosine-5'-(tri)diphosphate-3'-diphosphate ((p)ppGpp), altering cellular physi-
ology through transcriptional changes in populations with low metabolic activity, which
consequently relocate cellular resources and ensure the survival of the bacterium [84].
Most antibiotics target active metabolic processes, and with this immediate shut-down of
metabolism and growth, high levels of (p)ppGpp make bacteria insensitive to the actions
of antibiotics [85]. A stringent response makes Pseudomonas aeruginosa biofilms tolerant to
fluoroquinolones, meropenem, and gentamycin by preventing the accumulation of reactive
oxidative species (ROS), which is considered a common mechanism by which antibiotics
kill bacteria [86,87]. Polymyxins that target the membrane of Gram-negative bacteria are
effective on non-growing populations, but metabolically active populations show adap-
tive resistance, impairing the penetration of the antibiotic [88]. However, the synergistic
effect of combined antibiotics (tobramycin and colistin) was shown to successfully kill the
metabolically active population of Pseudomonas aeruginosa on the surface of biofilms and
the metabolically inactive population in the center of the biofilms, respectively [88,89].

Environmental stress also acts as a defining signal for recruitment of the multidrug
efflux system as a stress response in many bacteria [79]. For example, the temporary
activation of multidrug-resistant efflux pumps in Pseudomonas aeruginosa is triggered by
adverse environmental conditions such as exposure to ROS (MexXY-OprM) [90], nitrosative
stress (MexEF-Opr]) [91], or membrane-damaging agents (MDAs) [92]. An additional
example is the temporary induction of (3-lactamases and the activation of multidrug-
resistant efflux pumps in Pseudomonas aeruginosa biofilms, which occurs only in the presence
of B-lactam molecules. The induced [-lactamases are partially excreted by membrane
vesicles into the matrix, where they inactivate 3-lactam antibiotics before reaching cells [93].

The SOS response is a stress response to DNA damage that promotes tolerance to fluo-
roquinolones by inducing the expression of DNA repair mechanisms in Escherichia coli and
Pseudomonas aeruginosa [94]. Sometimes, the common mechanism of antibiotics also triggers
an SOS response in bacteria. For example, 3-lactams, fluoroquinolones, or aminoglycosides
all rely on the production of ROS. When ROS levels are not high enough, DNA oxidative
damage (mutations) can occur, accompanied by the activation of the SOS response, repair
of DNA damage, and the onset of antibiotic tolerance [95]. There is also selectivity in gene
expression in planktonic and biofilm cells [96,97].

3.3. Antibiotic Resistance

Bacteria living in biofilms can exhibit a 10- to 1000-fold increase in antibiotic resis-
tance as compared to similar bacteria living in planktonic states. For example, 100% of
Staphylococcus epidermidis isolates were susceptible to vancomycin in a planktonic state,
while 75% of the same bacteria were resistant when tested in a biofilm.
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Many challenges are encountered by the antibiotic when it tries to penetrate the sticky,
slimy membranes of the cells at the surface of biofilm. These are mostly represented by the
complex biofilm architecture as well as the extracellular proteins and eDNA, which prevent
the antibiotic from reaching its target. Meanwhile, the antibiotic may be deactivated even
before it reaches its target. At the level of the microenvironment, metabolic byproducts,
waste, and nutrients have started to accumulate, and oxygen supply from the surface
may be greatly reduced, creating an anaerobic environment. The combination of all these
factors can affect antibiotics in different ways, depending on their chemical structure and
mechanism. For example, low oxygen levels reduce the bactericidal effects of tobramycin
and ciprofloxacin, while pH changes can negatively influence aminoglycoside action.
In such a situation, the resistant cells deep inside the biofilm enter the dormant state
(persister cells), in which cell division is avoided. This preservation mechanism protects
bacteria from the action of antibiotics, which usually require cells to be actively dividing.
Interestingly, this dormancy is not permanent and reverses back to normal once cells are
released from the biofilm [49].

3.4. Horizontal Gene Transfer (HGT)

Inside biofilms, horizontal gene transfer (HGT) is one way of driving the spread of
antibiotic resistance genes (ARGs) due to the restricted motility of cells embedded in a
matrix and eDNA as a means of intercellular contact. Moreover, as compared to natu-
ral transformation (transfer of chromosomal DNA and non-conjugative plasmids) and
bacteriophage infection (transfer of bacteriophage genomic DNA), conjugation (transfer
of conjugative plasmids and of integrative and conjugative elements (ICEs)) is the most
common HGT mechanism in biofilms [98]. Due to their spatial organization, only those
cellular subpopulations that reside in the core of biofilm can undergo HGT. However,
biofilm growth promotes the persistence of plasmids carrying resistance genes. For exam-
ple, in Staphylococcus aureus biofilms, conjugative plasmids were found to be 1600 times
higher than in planktonic cultures. Another way of achieving HGT in Gram-negative bacte-
rial biofilms is through integron-mediated acquisition/exchange of antibiotic resistance
determinants by specific regulation of class 1 integron integrase [99,100].

3.5. Efflux Pumps in Biofilm Resistance

Efflux pumps are transport proteins involved in the removal of different metabolites,
including antibiotics and secondary metabolites, to avoid toxic accumulation. They are
thus implicated in antibiotic resistance and may promote biofilm antimicrobial resistance in
several bacterial species [101], including Burkholderia cenocepacia [102], Escherichia coli [103], and
Pseudomonas aeruginosa [104]. About twelve resistance-nodulation-division (RND) families of
efflux pumps have been identified in Pseudomonas aeruginosa, four of which mediate antibiotic
resistance [105]. MexAB-OprM, one of many efflux systems in bacteria, is most closely related
to carbapenem resistance in Pseudomonas aeruginosa [106]. The regulatory genes mexR, nalD,
and nalC14 negatively regulate the expression of MexAB-OprM, and any type of mutation in
them may lead to the upregulation of MexAB-OprM, resulting in increased drug resistance in
Pseudomonas aeruginosa [107].

4. Biofilm Disruption Strategies

Since biofilm formation contributes to bacterial pathogenicity and antibiotic resistance,
various strategies have been employed to deal with this problem encountered in biofilm-
infected tissues, tissue implants, and medical devices (Table 1).
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Table 1. Biofilm disruption strategies classified by mechanism of action.

Mechanism of Action and Target Mechanism

Approach/Molecule with
Antibiofilm Activity

Resulting Phenotype

Target Bacteria

Genetic engineering

Deletion/mutation of the UpaB gene

Blocks the super adhesion protein (UpaB) to
Inhibit biofilm formation

Escherichia coli (UTI infections) [108]

Enzyme activity inhibition

Myricetin (a flavonoid)

Inhibits Sortase A, an enzyme that catalyzes initial
adhesion between Streptococcus mutans surface protein
Pac and lectin, thus prohibiting surface adhesion

Streptococcus mutans [109]

Deactivation of adhesive protein

D-arabinose

Prevents the adhesion of oral bacteria to dental implant
surfaces through lectin

Streptococcus oralis, Fusobacterium
nucleatum, and Porphyromonas
gingivalis [110]

Peptide mimic of bacterial
a-helical peptide

Designed helical peptide GIIKK)3I-NH2 (G3)

Prevents biofilm formation by acting on bacterial surface
adhesion parameters; degrades eDNA to destabilize the
mature biofilm architecture

Streptococcus mutans
in tooth infections [111]

Competition for surface binding sites

Nanoparticles coated with the outer
membrane of Helicobacter pylori

Compete with bacteria for binding sites on host gastric
epithelial cells and inhibit bacterial adhesion

Helicobacter pylori [112]

Targeting adhesion strategy of bacteria

Inhibiting Multivalent Adhesion
Molecules (MAMs)

MAM?7-mimicking inhibitor

Competes with the pathogen for sites on the host to
initiate an infection

Mutidrug resistant and Pseudomonas
aeruginosa in burn wounds [113]

Medical devices with antiadhesive and
antimicrobial properties

Surface antiadhesion

Grafting 2-methacryloyloxyethyl phosphate
choline (MPC) onto medical devices

Prevents nonspecific adsorption of proteins and bacteria,
resulting in biofilm inhibition

Gram-negative and
Gram-positive bacteria [114]

Application of a surface coating called mPep
(mixed-charge polypeptide) in medical
catheters in vivo

Reduces bacterial adhesion

Methicillin-resistant
Staphylococcus aureus
and Pseudomonas aeruginosa [115]

Polydopamine-coated membranes with
integerated copper nanoparticles (CuNPs)

Decrease Escherichia coli viability by 76%

Escherichia coli [116]

Modifying the polypropylene surface by
reactive ion-etching technology

Reduce Escherichia coli adhesion on pp surfaces

Escherichia coli [117]
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Table 1. Cont.

Mechanism of Action and Target Mechanism

Approach/Molecule with
Antibiofilm Activity

Resulting Phenotype

Target Bacteria

Targeting Biofilm formation strategy

Deoxyribonuclease I (DNase I)

Degradation of eDNA, resulting
in the prevention of adhesion

Staphylococcus aureus and
Pseudomonas aeruginosa [118]

Alginate degradation results

PR Alginate lyase in the prevention of biofilm formation Pseudomonas aeruginosa [119]
Proteases Hydrolysis of matrix proteins and adhesins in EPS Staphylococcus aureus [120]
Cellulase Degrades EPS Burkholderia cepacia [121]
«-Amylase Mature biofilm degradation after EPS disruption Staphylococcus aureus [122]
Fabl derivatives Ink;zl;lllt lc(ﬁ;iorf fgggi?(iﬁii;ffi;ggﬁﬁ;& r;:l;rlisstes Pseudomonas aeruginosa [123]
Inhibition of QS Inhibitors of PgsD, a key enzyme of

signal molecule production

(2-nitrophenyl) methanol derivatives

signal molecule biosynthesis

Pseudomonas aeruginosa [124]

TNRHNPHHLHHYV (peptide)

Inhibits LuxS enzyme activity to
Inhibit AI-2 production

Streptococcus suis serotype 2 (S52)
[125]

Degradation of the QS Signaling
molecule

AHIL-lactonase AiiA

Degrades AHLs to prevent biofilm formation

Pseudomonas aeruginosa,
Vibrio cholerae,
and Enterobacter cloacae [126]

Boronic acid derivate SM23

Decreases the signaling molecules 3-oxo0-C12-HSL
and C4-HSL to reduce biofilm formation

Pseudomonas aeruginosa [127]

3-(dibromomethylene)
isobenzofuran-1(3H)-one derivatives

Inhibits biofilm formation through
the inhibition of AI-2 activity

Fusobacterium nucleatum,
Porphyromonas gingivalis,
and Tannerella forsythia [128]

Interferes with the activity of signal molecule synthase

Diketopiperazines Cepl, resulting in the prevention of biofilm formation Burkholderia cenocepacia [129]
. Inhibits QS activity by reducing AHL production . .
L-carvone (0.5 uL/mL) Hafnia alvei [130]
Acylase Cleaves the amide bond of AHLs Gram-negative bacteria [131]
Imidazole Degrades AI-2 Escherichia coli [132]

Epigallocatechin gallate

Interferes with AHL production and Al-2-mediated QS

Staphylococcus aureus, Burkholderia
cepacia, and Eikenella corrodens
[133-135]

Acyl-HSL analog J8-C8

Disturbs QS molecule C8-HSL synthesis
and affects biofilm formation

Burkholderia glumae [136]




Pharmaceutics 2023, 15, 2106

10 of 38

Table 1. Cont.

Mechanism of Action and Target Mechanism

Approach/Molecule with
Antibiofilm Activity

Resulting Phenotype

Target Bacteria

Targeting Biofilm formation strategy

3-Phenyllactic acid (PLA)

Binds with QS receptors RhIR and PqsR
involved in biofilm formation

Pseudomonas aeruginosa [137]

Furanones and synthetic furanones

Competes with the native autoinducers to bind to
the AHL receptors, decreasing virulence factor
production and biofilm formation

Pseudomonas aeruginosa [138,139]

Sesquiterpene lactone

Decreases the affinity of the CviR protein
to its receptor, LuxR

Chromobacterium violaceum [140]

Targeting QS Signaling Receptors Naringenin, Taxifolin, and Quercetin

4'-O-B-Dglucopyranoside

Inhibit QS-regulated gene expression. Reduce QS
via the vfr-mediated lasIR system

Pseudomonas aeruginosa [141]

N-(3-oxododecanoyl) homoserine lactone
derivatives

Block the binding site of the QS molecule, inhibiting
biofilm formation and increasing antibiotic sensitivity

Pseudomonas aeruginosa
clinical strains [142]

Flavonoids compounds

Reduce QS signal concentration

Yersinia enterocolitica [143]

A small peptide 5906

Prevents homodimer formation, inhibiting LuxS activity

Edwardsiella tarda [144]

D-galactose

Inhibit AI-2 activity

Periodontopathogens [145]

N-phenyl-4-(3-phenylthioureido)

Allosterically modifies the AI-3 receptor QseC, impedes

Escherichia coli (EAEC) O104:H4

benzenesulfonamide virulence expression, and promotes biofilm formation [146]
Savirin Targets AgrA to disrupt Agr operon-mediated QS Staphylococcus aureus [73]
Curcumin Inhibits QS-controlled protease and biofilm formation Pseudomonas aeruginosa PAO1 [147]

Blocking the QS Signaling Cascade
Efflux pump inhibitor PABN

Reduces the extracellular accumulation of QS signals
and diminishes the relative expression of the QS cascade
(pgsA, pgsR, lasl, lasR, rhll, and rhIR)

Pseudomonas aeruginosa
clinical isolate [148]

Targeting mature biofilm

Adenosine (ADO)

Activates ATP and GTP synthesis and promotes cell
respiration, thereby enhancing the killing of persistent
cells by antibiotics

Gram-negative and
Gram-positive bacteria [149]

Killing persister and dormant cells Dialylquinoline TMC207

Targets ATP synthase, thereby damaging the lipopeptide
of the bacterial membrane, including persistent cells,
and effectively improving the antibiotic treatment
success rate

Moycobacterium tuberculosis [150]

Lead compound X9

Inhibition of the RelMtb enzyme that is used to enter the
persister cell stage. Inhibition of this enzyme
kills the persister cells directly

Mycobacterium tuberculosis [151]
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4.1. Anti-Adhesion Strategies

Using anti-adhesion strategies, the exterior surface of the implanted medical device or
biomaterial is altered, either directly or with the aid of a coating, to create a barrier that
is not supportive of bacterial adhesion. Bacteria use cell appendages like pili or flagella
along with physical factors like van der Waal’s forces, Brownian motion, or electrostatic
interactions to adhere to biotic and abiotic surfaces. To colonize a host tissue surface,
bacteria can adhere to host-produced components like fibrinogen, fibronectin, collagen,
fibronectin-binding proteins (FnBPs), and fibrinogen-binding clumping factors (Clfs) [152].

Likewise, hydrophobic and non-polar surfaces also facilitate microbial binding. Coat-
ing the surfaces with antimicrobial agents such as metal-based nanoparticles, grafting the
surface with cationic polymers, fabricating bionic antibacterial surfaces with a nano-scale
structure, and using surfactants are good strategies to prevent bacterial adhesion on vari-
ous surfaces. The strategy of inhibiting bacterial adhesion has been helpful in preventing
biofilm-related infections on orthopedic implants [153]. Another study used glass, stainless
steel, and silicon surfaces pretreated with dicephalic quaternary ammonium salts (QAS)
to limit the adhesion of Staphylococcus epidermidis and Candida albicans cells [154]. Despite
remarkable developments, anti-adhesion surface approaches featuring long-term stability
need further investigation [153].

4.2. Quorum Quenching or Quorum Sensing Inhibition

QS regulates the expression of bacterial virulence factors, and therefore blocking QS
can curb the virulence of bacteria. Novel therapeutic approaches interfering with QS,
termed quorum sensing inhibition (QSI) or quorum quenching (QQ), have been intro-
duced [155]. QS inhibitors (QSIs) interact with QS signaling systems in several ways,
including (i) inhibition of synthesis; (ii) degradation; (iii) competition for receptor sites;
(iv) inhibition of gene expression; and (v) removal of Als. Since QSIs do not work through
bactericidal or bacteristatic mechanisms to reduce bacterial virulence and biofilm forma-
tion, they pose less pressure for resistance selection in bacteria [156]. QSIs and quorum
quenching (QQ) enzymes are the main QS inhibitors, and their functional targets include
QS signaling molecules, receptors, and downstream signaling cascade components [157].

4.2.1. Targeting QS Signaling Molecules

Blocking the synthesis of QS molecules (AHLs and AIPs) in Gram-positive and Gram-
negative bacteria or degrading them results in QS inhibition. AHL-lactonases, oxidoreduc-
tases, and antibodies are the major QS inhibitors. They target Al signaling molecules by
disabling the enzymes that are responsible for their synthesis.

AHL-lactonase and AHL-acylase hydrolyze the lactone ring of AHL or cleave the
acyl side chain of AHL in Gram-negative bacteria, which reduces AHL-LuxR binding
and thus curbs QS signaling [158]. In Gram-negative bacteria, N-acyl homoserine lactone
oxidoreductase, another QQ enzyme, modifies Als and hinders their specific binding to
receptors, resulting in reduced biofilm formation [138].

It has also been reported that antibodies play a role in the inhibition of QS signaling
molecules [138]. In this regard, AIPs, which are produced by Gram-positive bacteria, are
susceptible to antibody neutralization, as AHL bacterial molecules act as small-molecule
toxins in mammalian cells, resulting in apoptosis and modulating NF_kB activity. For
example, the XYD-11G2 antibody prevented the production of pyocyanin by Pseudomonas
aeruginosa and neutralized the 3-oxo-C12-HSL signal [159]. A study on AIP-4 produced
by Staphylococcus aureus observed its effective blocking by an anti-Al monoclonal antibody
(AP4-24 H11) [160]. In addition, several naturally occurring brominated furanones have
the ability to inhibit the LuxS enzyme in a concentration-dependent manner [161]. There
are many reviews on QS molecules as targets for biofilm disruption [162,163].
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4.2.2. Targeting Signaling Molecule Receptors

Inhibiting or competing for QS receptors is another strategy used by QS inhibitors.
LuxR-AHL is a significant Al receptor protein found in Gram-negative bacteria. Therefore,
disrupting the bond between signal receptors and AHLs with AHL analogs, structurally
independent AHLs, and naturally occurring QS inhibitors is an effective alternative strategy
for controlling QS. Several bulky groups have been added to the acyl side chain to create
AHL analogs in Pseudomonas aeruginosa, Agrobacterium tumefaciens, and Vibrio fischeri, respec-
tively, which have demonstrated the inhibition of LasR, TraR, and LuxR receptors [164].

Two types of naturally effective QS inhibitors are furanones and flavonoids, which
can bind to the receptors of many pathogenic bacteria. Furanones are produced by the
red alga Delisea pulchra and are known to regulate bacterial colonization and biofilm
development through interference with the acylated homoserine lactone regulatory system
in Gram-negative bacteria and the alternative Al-2 signaling system in Gram-negative and
Gram-positive bacteria. Many furanones are now known as competitive inhibitors of LuxR-
type receptors in Gram-negative bacteria by competing with AHL for binding to reduce
QS signaling. Natural furanone ascorbic acid (vitamin C) is known to be a potent inhibitor
of QS in Pseudomonas aeruginosa [165]. It has been shown to inhibit pyocyanin production,
which supports cellular respiration and energy generation in oxygen-deficient conditions
in Pseudomonas aeruginosa biofilms, thus affecting biofilm formation [166]. Libraries of
synthetic furanones have also been developed, as they are potent anti-infectives and inhibit
pathogenic phenotypes in Gram-negative and Gram-positive bacteria [167]. Flavonoids
(e.g.,quercetins) are other natural QS inhibtors that are found in various plant parts (flowers,
leaves, seeds) [168]. Quercetins are effective QS inhibitors in Pseudomonas aeruginosa, as
they can inhibit biofilm formation and initial bacterial adherence and reduce virulence
factor expression by competing with AHL for binding to the LasR receptor [169].

Another target for receptor binding competition is the competence stimulating pep-
tide (CSP)-mediated QS system in Streptococcus pneumoniae, which uses two main CSP
variants: CSP1 and CSP2, which bind to their corresponding histidine kinase receptors,
ComD1 and ComD?2, resulting in virulence and biofilm formation. Synthetic peptides like
dominant-negative competence-stimulating peptides (dnCSPs) that compete with CSP for
ComD binding have been used to reduce virulence factor expression in vitro and attenuate
pneumococcus infections in mice [170,171]. To target the AI-2 QS system in Gram-positive
bacteria, sulphone is among the many compounds that have shown an antagonistic effect
on LuxP receptors in Vibrio harveyi [172]. There is detailed discussion of inhibitors targeting
QS signal molecule receptors in several reviews [73,173,174].

4.2.3. Blocking the Signaling Cascade

Blocking the signaling cascade by deactivating the downstream response regulators
or other regulatory factors is another strategy for QS inhibition. For example, triggered
by upstream signaling, the downstream response regulator AgrA of Staphylococcus aureus
is activated to induce the expression of QS-related genes. In this regard, Savarin, a known
Staphylococcus aureus virulence inhibitor, can specifically target AgrA to stop the signaling
cascade [73].

Virstatin, a small molecule, represses the expression of AnoR, which positively
regulates LuxI-like synthase Anol in Acinetobacter nosocomialis. This results in a reduced
production of N-(3-hydroxy-dodecanoyl)-L-homoserine lactone (OH-dDHL), thus affect-
ing the signaling cascade and reducing biofilm formation and motility [175]. There are
several reviews on QS interfering mechanisms and their implications for bacterial
pathogenecity [157,173,176].

4.2 4. Targeting the EPS Chemical Composition and Structure

There are several ways to target EPS matrix formation, mostly related to the inhibition
of EPS production via the prevention of adhesin-mediated bacterial attachment to surfaces
or to the degradation of EPS matrix in mature biofilms using mutants of enzymes that are
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produced by the bacteria themselves [177]. Despite being considered biofilm virulence
factors, these enzymes can be engineered to initiate biofilm disassembly. Enzymes like
glucano-hydrolases and glycoside hydrolases disrupt the viscosity and elasticity of the
biofilms, which weakens biofilm cohesiveness and increases antibiotic penetration [178].

eDNA was found to play a vital role in the composition of bacterial biofilms in the
context of HGT, and this paved the way to targeting eDNA with DNases. Dnase-I destroys
eDNA through the hydrolysis of its phospholipid ester bonds [179]. Exogenous DNase I
has shown inhibition of biofilms of many Gram-negative and Gram-positive bacteria, but it
is more effective on young biofilms [179,180].

Bacteriophages have the ability to penetrate the tridimensional architecture of biofilms
and eradicate bacterial biofilm. The novel phage F15 produces a polysaccharide depoly-
merase that hydrolyzes the EPS of Pseudomonas putida and inhibits biofilm formation [181].
To maintain biofilm adhesion properties and stability, extracellular proteins like DNA-
binding proteins (DNABPs), functional amyloids/amyloid-like proteins (FA/ALPs), and
other biofilm-associated proteins (Baps) are crucial [182]. Hence, proteases (e.g., Purified
Esp [183], proteinase K [184], and cysteine proteases [185]) that can degrade EPS extracel-
lular proteins have the potential to disperse a massive biofilm [177]. Recent research has
proven curcumin, a distinctive yellow pigment and a major constituent of turmeric derived
from the Curcuma longa plant, to be a potent anti-QS agent in many pathogens as it inhibits
the production of QS-dependent factors such as exopolysaccharide and alginate [186]. In
general, the combination of EPS synthesis inhibitors or EPS-degrading enzymes, which
lack intrinsic antibacterial activity, with antimicrobial agents could be a good option for
biofilm removal [187]. Many reviews on EPS degradation and synthesis inhibition have
discussed this strategy in detail [188,189].

4.3. Targeting Persister Cells

There are several strategies to kill persister cells in biofilms: (1) the direct killing of
metabolically dormant persister cells; (2) awakening the persister cells from metabolically
inactive form to antibiotic-susceptible active form; (3) combining anti-persister drugs
with conventional antibiotics; and (4) other indirect approaches such as interfering with
the QS signaling circuit and genetic engineering of the metabolic pathways of persister
cells [190]. Anti-persister agents, such as cationic antimicrobial peptides (AMPs), make
pores on respiring cells as well as persister and dormant populations residing in the center
of biofilms. They change the membrane potential through electrostatic interactions with
oppositely charged cell membrane/wall components. A broad-spectrum antimicrobial
peptide, TM5, can reduce planktonic and persister cells in biofilms formed by both Gram-
positive and Gram-negative bacteria, but its in vivo clinical potency needs validation [191].
Arginine and tryptophan-containing cationic membrane-penetrating peptides have been
shown to destroy the negatively charged lipopolysaccharide of the persistent Escherichia coli
cell wall, resulting in membrane disruption and cell death [192]. Since AMPs have shown
more biofilm inhibition than eradication potency, they have now been used in combination
with antibiotics.

4.4. Targeting Efflux Pumps

Besides being a major factor in the development of antibiotic resistance, efflux pumps
can influence the functions of biofilms directly or indirectly [193]. Upon exposure to
tigecycline, Acinetobactor baumannii was shown to feature an attenuated tendency to form
biofilm due to the downregulation of the adeG gene encoding for efflux pumps [194]. Many
studies suggest that the bacterial QS mechanism is negatively affected if inhibitors hinder
the efflux pump activity [195]. Another study on Acinetobactor baumannii demonstrated that
with inhibition of the adeAB gene (for the MDR efflux pump belonging to the RND family)
expression or deletion, hindrance of biofilm and QS systems occurs [196]. Chetri et al. [197]
have thoroughly discussed the urgent need for improved efflux pump inhibitors.
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5. Light-Based Antibiofilm Strategies

Owing to the high spatio-temporal control with which a light stimulus can be delivered,
light-based strategies against bacterial proliferation and biofilm formation represent a
rapidly expanding field of science. Compared to traditional pharmacotherapy, this distinct
advantage makes light the perfect stimulus to confine the antibacterial action only when and
where it is needed. Interestingly, light-triggered approaches against bacterial proliferation
have been reported in the context of all developmental stages, starting from adhesion to
biofilm formation, initiation, and maturation.

5.1. Bacterial Adhesion: Light-Triggered Control of Bacterial Adhesion

Smart antibacterial surfaces have been investigated for decades due to their potential
to control bacterial attachment, biofilm formation, and dissolution. In 2018, Li and co-
authors published a comprehensive review focusing on the design of smart antibacterial
surfaces with antibiofouling and antimicrobial properties [28]. The idea behind the design
of a smart surface with antimicrobial properties is to reduce the development of drug-
resistant bacteria by means of a local and on-demand administration of the drug or to
avoid bacterial adhesion and therefore biofilm formation. Different stimuli have been
used to achieve controlled antimicrobial drug release, including pH, temperature, release
of chemicals, use of charged polymers, and nano- and microstructured surfaces with
biomimetic properties [198-202].

In this review, we make reference to those applications in which the antibacterial action
is triggered by light. In this regard, the light stimulus can be addressed to control surface
functionality, such as bacterial photolithography, or to control the bacteria’s adhesion
properties, such as in optogenetic approaches (Figure 3).

Bacterial photolithography allows the control of biofilm patterning at a distance as
small as 10 um [203]. For biotechnological applications or to study complex bacterial
communication circuits such as those involved in quorum sensing, the goal is the controlled
patterning of the biofilm rather than its total eradication. Indeed, obtaining patterned
biofilms on the microscale can allow the investigation of bacterial communication and
biofilm formation [204], the exploration of the use of biofilms as living biomaterials [205],
and the generation of more reliable results of drug tests due to the more controlled biofilm
geometries [206]. A bottom-up approach to control bacteria colonies has been proposed.
It involves a genetically-encoded biofilm patterning tool named “Biofilm Lithography”,
which is able to control the expression of membrane adhesion proteins that are responsible
for surface attachment [204]. This allowed the patterning of Escherichia coli biofilms with a
25-micrometer spatial resolution.

With the aim of patterning biofilm, Chen et al. [203] used a photolithography approach
with Escherichia coli bacteria. The surface was functionalized with a mannoside group
on a nonadhesive polyethylene glycol (PEG) coating (Figure 3, left-hand side). The «-D-
mannoside group is recognized by the FimH bacteria receptor, and bacteria can adhere
to this functionalized surface. The mannoside group is connected to the PEG coating by
means of a photocleavable 2-nitrobenzyl linker. Upon exposure to UV light, the linker is
cleaved, and the nonadhesive PEG becomes exposed. Photopatterning allows bacteria to
adhere in non-illuminated regions and prevents them from adhering in illuminated regions
and on bare PEG surfaces.

Sugar binding strategies were also used by Ma et al. [207], who developed a spiropyran-
and galactose-decorated nanoplatform. These interactions were developed to image bacte-
rial adhesion and eradicate the Pseudomonas aeruginosa biofilm from the surface.
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Figure 3. Light-triggered strategies against bacterial adhesion. (Left): the photolithography approach
to controlling bacteria adhesion [203]. The a-D-mannoside is immobilized on a PEG surface by means
of a photocleavable 2-nitrobenzyl linker. The adhesive protein FimH in Escherichia coli binds to the
sugar in dark conditions. Under UV light, the linker is cleaved, the sugar is released, and the surface
becomes antiadhesive for the bacteria. The patterning of illuminated and non-illuminated regions can
be as small as 10 um. (Right): the optogenetic approach to controlling bacterial adhesion. Escherichia coli
bacteria express on their surface a photoswitchable protein (pMag) that can heterodimerize with the
nMag protein immobilized on the surface under blue light (480 nm). In dark conditions, the binding
is impeded, and no bacterial adhesion can be obtained. Binding is reversible and can be repeated by
illumination and dark cycles. The scheme is adapted from Chen et al. [208].

Bacterial binding properties can be controlled with an optogenetic approach. This tech-
nology is well established in neuroscience and provides interesting opportunities to control
bacterial behavior at the cost of introducing genetic modifications in the pathogen [204,208-211].

Regarding the possibility of controlling bacterial adhesion and biofilm organization,
Chen et al. [208] proposed the use of photoresponsive proteins (nMag and pMag), which
heterodimerize under blue light (480 nm) and dissociate from each other in the dark. The
author expressed pMag on the surface of Escherichia coli. This protein can interact under
blue light with nMag immobilized on a glass substrate coated with PEG. In the dark, the
adhesion is reversible. This allowed for blue-light switchable bacterial adhesion with high
spatial and temporal resolution (Figure 3, right-hand side).

This optogenetic control has been recently scaled up from the surface of the material
to the dynamically controlled bacteria-bacteria adhesion [212]. The ability to control
photoswitchable adhesion between bacteria is important to regulate multicellular and
associated bacterial behaviors such as aggregation, quorum sensing, biofilm formation,
and metabolic processes. Chen et al. obtained this result by expressing pMag and nMag
proteins on the surface of Escherichia coli to obtain bacteria that cluster when illuminated
with blue light and disassemble in the dark.

Notably, in contrast to the photolithographic approach, which is not reversible as it involves
the photocleavage of the linker on the surface, the optogenetic approach allows a reversible
control on the bacterial adhesion since the adhesion can be repeatedly turned on and off.

5.2. Bacterial Communication: Photoswitchable Modulators of Quorum Sensing

As detailed in Section 2, quorum sensing is the communication system that bacteria use
to organize into communities and develop biofilms. QS has been considered a target for syn-
thetic biology strategies to control biofilm development [213]. In this regard, the possibility
of using light to control and interfere with this communication system is extremely appeal-
ing. A tool that is able to control QS offers the possibility to control bacteria group biology,
study QS circuits, inhibit biofilm formation, or promote biofilm dispersal on command,
if needed [214]. The Feringa group investigated the possibility of using photoswitchable
compounds to interfere with QS. Their molecular design relied on the modification of
autoinducer molecules via a light-sensitive moiety. The introduction of an azobenzene
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unit in the N-Acyl homoserine lactones (AHLs) led to a small library of photoswitchable
autoinducers for Gram-negative bacteria [215]. Their design, which was supported by
previous SAR data and computational pharmacophore models of the AHL [164], led to
the replacement of the alkyl chain of the lead compound with the azobenzene moiety.
By means of bioluminescence assays measuring the LasQS-controlled bioluminescence in
Escherichia coli, they obtained the opposite behavior for two of the tested molecules. Indeed,
one of the molecules acquired QS-inducing activity while the other lost its activity upon
trans-cis isomerization, proving that the photocontrol of the QS mechanism in bacteria is
possible and that the contradictory behavior under light illumination can be ascribed to the
geometry of the molecule. The active molecules have a more linear shape and therefore
a better interaction with the receptor binding pocket than the less active conformations,
which are more bent. Finally, by acting on the LasQS system, the authors were also able to
photocontrol the production of virulence genes in Pseudomonas aeruginosa [215]. The gene
expression of lasA was different for the irradiated and non-irradiated compounds, proving
that it was possible to control the expression of virulence genes with light.

A recent follow-up study from this group [216] led to the development of photoswitch-
able autoinducers in Pseudomonas aeruginosa based on N-3-(oxo-dodecanoyl)-L-homoserine
lactone (OdADHL) (Figure 4 on the top). In a bioluminescence assay in a QS reporter
Escherichia coli strain, the authors evaluated the agonist or antagonist character of a library
of photoswitchable compounds. One of the best-working compounds (AHL5) (Figure 4,
bottom) showed a remarkable 700-fold difference in activity between the two forms, with
a switching behavior between antagonist (non-irradiated) and agonist (irradiated with
365 nm) at 60 uM. This makes these compounds good candidates for QS studies.
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Figure 4. Photoswitchable modulators of bacterial communication. Top panel: native QS autoinducer
(OdDHL) and photoswitchable analogue design (AHLS5) in trans and cis conformation. Trans-AHL5
is the thermodynamically stable form of the molecule, which can be switched to cis-AHL5 by UV
light illumination (A; = 365 nm). A backward reaction from cis to trans can be obtained by exposure
to visible light (A;) or heat (A). Bottom panel: scheme of action of the autoinducer binding and
activating the LasR receptor that triggers QS (native OdDHL and cis-AHLS5) or acting as an antagonist
(trans-AHL5) and inhibiting the receptor [216].
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5.3. Biofilm Maturation and Planktonic Phase: Photocleavable and Photoswitchable Antibiotics

Two different strategies have been implemented to develop light-triggered antibiotics:
(i) photocaged compounds and (ii) photoswitchable compounds (Figure 5). The molecular
design is intrinsically different and has been recently reviewed [202]. In photocaged
compounds, a photolabile moiety is attached to the drug scaffold, hindering its interaction
with the biological target. This photolabile moiety is then removed by illumination, thus
letting the drug interact with the biological target.

Photocleavable Antibiotics .
Dark UV light: /0'\

Photocleavable ;
unit l

Caged inactive drug

Photo- released

: active drug

No binding with The active drug is bound
target protein to the target protein

Photoswitching Antibiotics
O UV light
éﬁ
vis light, A

Inactive drug Active drug

< @©

Active drug bound to
the target protein

No binding with
target protein

Figure 5. Mechanisms of action of photocleavable antibiotics (Right) and photoswitchable antibiotics
(Left). Photocleavable antibiotics consist of a drug molecule that is inhibited by the presence of a
photocleavable moiety. Upon light-triggered cleavage of the impeding unit, the free antibiotic can
interact with the target protein. Photoswitchable antibiotics feature a bistable form where only one of
the conformations can interact with the binding protein and exert the pharmacological action. This
strategy gives reversible control over the pharmacological action of the antibiotic, which can also be
deactivated by switching back the molecule to its inactive form, either spontaneously with time or by
using an appropriate wavelength of light.

The design of photoswitchable antibiotics involves the inclusion of a photoswitchable unit
permanently attached to the antimicrobial drug. While, under dark conditions, the interaction
with the biological target is hindered, the photoswitching of the light-sensitive moiety produces a
conformational change that favors the interaction with the biological target. For photoswitchable
antibiotics, the presence of a photoswitching unit can cause a reduced interaction with the
biological target even in the case of the best performing isomer, thus decreasing drug potency.
On the contrary, the presence of a photolabile element in caged antibiotics allows the release of
the intact drug. However, the irreversibility of the photochemical reaction makes it impossible
to deactivate the action of those drugs once the caged unit has been released. Photoswitchable
antibiotics have, instead, the advantage that if the metastable form (i.e., the cis form) is the
pharmacologically active conformation of the compound, it will deactivate spontaneously after
the compound converts back to the thermally stable form (i.e., the trans form). This confers on
the photoswitchable antibiotic a lower impact on the environment and a lower risk of triggering
antibiotic resistance in bacteria.

The possible mechanisms of AMR development from photoswitchable drugs are
also being studied. A 2021 study [217] analyzed the development of resistance in the
Escherichia coli mutant strain CS51562 by the effect of trans/ cis-tetra-ortho-chloroazobenzene-
trimethoprim (TCAT) compounds. Both irradiated TCAT and thermally adapted TCAT
were analyzed and compared to the reference analog trimethoprim (TMP). Interestingly, the
photoswitchable compound had a different response to acquired resistance. The resistance
mechanism to the photoactive compound appears to hinder the entry of the molecule into
the cell, whereas the resistance to TMP involves changes in cell metabolism and alterations
in the expression levels of enzymes associated with the biosynthesis of folate.

Hou et al. [218] developed CONBE, a photolabile ciprofloxacin compound. Their
design strategy involved the conjugation of a photocleavable ortho-nitrobenzene to the
3-carbonyl of ciprofloxacin. After illumination with UV light (365 nm, 10 mW/ cmz),
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leading to the photochemical cleavage of the cage element, the conversion of CONBE to
ciprofloxacin was 91% efficient. The bactericidal activity obtained with this strategy was as
potent as that of the parent drug. A light-activatable caged antibiotic based on vancomycin
and cephalosporin was proposed by the Gademann group [219]. The photoreleased van-
comycin was active against Gram-positive strains, and the uncaged cephalosporin was
active against both Gram-positive and Gram-negative strains. To overcome the problem
of using phototoxic UV light, vis-NIR activatable cleavage groups can be used. Contrera-
Garcia et al. [220] proposed the design of a BODIPY photocage to protect quinolone-
based antimicrobial compounds. This design strategy allowed the authors to use green
(Amax = 520 nm), red (Amax = 635 nm), or far red (Amax = 730 nm) light for the photorelease.

Regarding photoswitchable antibiotics, their molecular design has been extensively
reviewed in recent times [202]. Light-sensitive analogues of natural compounds, cys-
tobactamids, have been proposed. Cystobactamids are active against a broad range of
Gram-negative and Gram-positive pathogens by targeting bacterial gyrase [221]. Due to
poor light penetration into biofilm colonies, the use of these compounds against the biofilm
state is still difficult, and most of the studies focus on planktonic life styles. Researchers are
exploring different chemical designs to gift azobenzenes with red and infrared absorption
to allow antibiotic activity with deeper penetration [222].

Photosensitive surfactants based on photoswitchable compounds such as AzoTAB have
been studied for their ability to perturb a lipid membrane and cause the disruption of vesi-
cles [223]. This strategy can provide engineered compounds to target the bacteria’s membrane.
This would produce photoswitchable antibiotic agents that reside in the membrane and, when
activated by light, can cause its disruption, thus leading to the death of the bacteria [224]. An
elegant evolution of this concept, albeit on cancer cells, has been proposed by Mutter et al. [225].
Fragaceatoxin (FraC) is a toxin able to form nanopores on the surface of sphingomyelin-rich
cells, causing cell death. FraC has been decorated with azobenzene molecules with the aim of
controlling the nanopore assembly with light. The authors obtained a system that is inactive in
the dark but active upon illumination, causing cell lysis.

Finally, new targets for photoswitchable compounds have been explored, such as bac-
terial motility and bacterial membrane potential. Duchesne et al. [226] applied photoswitch-
able compounds to control the speed of Escherichia coli with light. They obtained different
net effects (increase or decrease of speed) depending on the compound tested, proving that
the design of such optical tools is very promising. De Souza-Guerriero et al. [227] explored
the possibility of using a membrane-targeted azobenzene to photo-modulate the membrane
potential in Gram-positive cells (Bacillus subtilis). These studies open the way to the use of
optical tools to study bacteria spreading and biofilm electric signaling and develop new
light-triggered strategies for bacterial infections and antimicrobial resistance.

6. Light-Based Materials Strategies to Tackle Bacterial Infections

A promising approach to counteracting bacterial adhesion and growth relies on the
design of advanced functional materials, which may not only overcome some of the
limitations encountered with photo-pharmacology strategies but also allow for a thera-
peutic effect without further reinforcing AMR mechanisms. The so-called “nanobiotics”
harness the unique potential of their nanometric structure, shape, and tailorable surface
chemistry to actively hinder bacterial processes and interfere with biofilm formation and
adhesion [27,228]. Moreover, if loaded with bioactive compounds, such as bactericidal
drugs (i.e., antibiotics and antimicrobial peptides) or biofilm dispersants (i.e., EPS enzymes
and nitric oxide compound generators), the nanometric formulations grant a controlled
and localized delivery of the cargo molecules, thus reducing the toll of potentially negative
systemic side-effects [229].

Antibacterial materials are typically classified according to the stimulus that triggers
their response, which can be either endogenous or exogenous. Endogenous stimuli include
the acidic pH of the bacterial microenvironment and the secretion of bacteria metabolites
and enzymes (such as lipases, proteases, and matrix metalloproteinases), while exogenous
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starters are generally physical-based, such as light, temperature, electricity, magnetic field,
ion concentrations, and ultrasound [26,228]. Using light as a source of activation appears
to be one of the most promising strategies, as several classes of organic and inorganic
materials can respond to a broad spectrum of wavelengths. Moreover, light is not harmful
to both humans and the environment; it allows a non-invasive, on/off regulation of the
material’s properties and activity, and it can easily permit the control of the irradiation site
and dosage [26].

Various light-activated antibacterial mechanisms have been proposed in the literature,
encompassing permeation of the bacterial membrane, inhibition of enzyme activity, as well
as the generation of reactive oxygen species (ROS), which in turn are responsible for toxic
intracellular oxidation cascades, ultimately leading to DNA leakage, microorganism cell
lysis, and biofilm disruption (Figure 6) [27,228]. Overall, the antibacterial strengths of those
advanced, light-triggered material formulations reside in their ability to (i) respond on
demand upon a specific luminous trigger; (ii) potentially leverage on multiple stimuli and
activate distinct bacteriotoxic modus operandi; and (iii) physically breach crucial biological
processes. On the other hand, conventional drugs are designed to interfere at a molecular
scale but in a rather uncontrolled, systemic way, which, as a detrimental consequence, may
favor the establishment of AMR.

Antibacterial Nano-formulations
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Figure 6. Light-triggered formulations and their antibacterial effects. The photoactivation of an-
tibacterial functional materials can spark a series of mechanisms, such as localized and controlled
drug release, photodynamic effect, and photothermal effect, which can either act on each bacterial
cell individually (via DNA damage, enzyme inactivation, protein oxidation, and cell lysis) or on the
bacterial biofilm. Upon light stimulation, hybrid organic/inorganic composite formulations (here
depicted as composite hydrogel as an example) may degrade or modify their matrix properties and
release antibiotic cargos or photodynamic nanoparticles.

Depending on the targeted microorganisms or biomedical applications, a plethora
of antibacterial light-triggered functional materials have been developed [230], either in
the form of nanoformulations [26,229,231], functionalized surfaces [28,232], or hydrogel or
polymer-based formulations [25,29].
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6.1. Light-Triggered Nano-Formulations

Depending on the intended microorganisms or biomedical applications, a plethora
of antibacterial light-triggered functional nanoformulations have been developed, such
as micelles [233], liposomes [234], carbon quantum dots [235,236], silver- and gold-based
nanoparticles [237], mesoporous silica particles [238,239], metallo-organic frameworks
(MOFs), metal oxide-based nanostructures [240], up-conversion nanoparticles [241,242],
and polymeric nanoparticles [243], either loaded with antimicrobial drugs or presenting at
their surfaces an optically active compound. Table 2 reports an overview of some of the
most recent studies, showing the material constituents, the light stimuli that trigger their
mechanisms of action, as well as the targeted microorganisms and applications.

Table 2. Light-triggered anti-bacterial nano-formulations.

Materials Formulation Light Mechanism . Target . Application
Microorganism
NP internalization,
" . photoinduced interfacial
ZnO-based and squaramne Nanoparticles NIR electron transfer, and ROS Staphylococcus aureus artificial implants
nanohybrids . . [240]
generation to disrupt
bacterial biofilm
Incorporation of nitrosothiol
Au core in shell-based groups (.-SNO) witha
e . heat-liable linker, NO release Staphylococcus aureus
mesoporous silica Nanoparticles NIR - )
. upon photothermal stimulation, [239]
nanoparticles . . .
and antimicrobial Levofloxacin
to disrupt bacterial biofilm
Acidic infection environment, clinical chronic
PEGb-p LAMA/pAAPBA- . borate ester linkage cleavage, Pseudomonas infections in
b-pDPA NPs loaded with Nanoparticles NIR . . .
. . NP shelling, hyperpyrexia, and aeruginosa [243] pulmonary
indocyanine green 4 .
ROS generation alveoli
hos E;ifialigl}i)line . Photothermal and antibiotic
phosp o4 . synergy, penetration into Pseudomonas
betainylate cholesterol Liposomes NIR o .
. . biofilm channels, and aeruginosa [233]
micelles loaded with thermal-triggered drug release
Cypate and Tobramycin 8 &
Under NIR light, the core SZ;E tz;;il(:icsus
Core-shell upconversion UCNPs emit UV light, which Por hgromo;ms
nanoparticles and Nanoparticles NIR and UV triggers the photodynamic inpivyalis and periodontitis
TiO,(UCNPs@TiO,) function of the shell gpusi P
via energy transfer e [
Graphene GO absorbs light and generates
. P . . heat; hyaluronidase-triggered Staphylococcus aureus
oxide—Hyaluronic Nanoparticles NIR
- photothermal platform and [244]
acid—Ag NPs .
ROS generation
2-nitrobenzaldehyde- UV—hght (365 nm.)-respon.swe in  Staphylococcus aureus
modified zeolitic situ production of acid, and
. Nanoparticles uv pH-dependent degradation of Methicillin-resistant wound healing
imidazolate mesoporous h lite f
NPSl nibanpicis the zeolite framework, Staphylococcus aureus
antibiotic release [245]
Nitric oxide-releasing visible light irradiation,
micelles, Nanomicell Visibl fluorescence turn-on, enabling Pseudomonas
PEO-b-polyCouNO + anorniceties sibie in situ self-reporting NO release aeruginosa [246]
Ciprofloxacin fluorescence turn-on (>185-fold)
ROS generation after enhanced
photocatalytic effect via Staphylococcus aureus "
Ag3PQ4 s St Nanorods NIR photoactive nanoparticles and and Escherichia coli o.rthopedlc
BiyS3 nanorods . implants
semiconductor [247]
heterojunction coating
Intracellular ROS generation is Staphl
enhanced by photocatalytic taphylococcus aureus
Ag-Cu,O/PANI Nanoparticles Visible and Pseudomonas

particles and
conductive polymer

aeruginosa [248]
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Table 2. Cont.

Target

Materials Formulation Light Mechanism . . Application
Microorganism
Black phosphorus quantum Hyperthermia, light-trigger Methicillin-resistant
dots + vancomycin Liposomes NIR liposome disruption, and Staphylococcus aureus skin infections
in a liposome release of its antibiotic cargo [234]
Mesoporous polydopamine
NPs w1th the Nanoparticles NIR Photothermal /photodynamic Staphylococcus aureus bone implants
photosensitizer therapy [249]
Indocyanine Green
. Staphylococcus aureus
MoSe; /TiO; Nanorod Nanorods NIR e lolvan and Escherichia coli bone implants
therapy [250]
2,2'-(ethylenedioxy)bis
(ethylamine) functionalized Nanodots Visible Breakage of the EPS matrix Bacillus subtilis [235]
Carbon Nanodots
Staphylococcus
Halogen/nitrogen-doped epidermidis,
polymeric graphene Quantum dots LED ROS generation Staphylococcus aureus, ~ wound healing
quantum dots and Pseudomonas
aeruginosa [251]
CuS nanoparticles + Intramolecular photoreaction, Staphylococcus aureus
1P Nanoparticles Visible pH decrease, and and Escherichia coli
photoacid generator . ..
peroxidase activity [252]
Chitosan-coated silver NPs Pseudomonas
and graphene nanoribbon Nanoparticles NIR Photothermal therapy 5 medical patches
. aeruginosa [253]
nanowires
Graphene quantum dots + Singlet oxygen production, Staphylococcus aureus
erytromycin + mesoporous Nanoparticles LED photodynamic therapy, and Escherichia coli wound healing
silica NPs and drug release [238]
e O Photocatalytic nanostructures medical
ZnFe,O4/ AgCl@EDTA—Ag Nanoparticles Visible and ROS generation Escherichia coli [254] disinfection
composites
Poly(selenoviologen)- Photothermal and Methicillin-resistant
Assembled Upconversion Nanoparticles NIR photodynamic therapy and Staphylococcus aureus  infected wounds
Nanoparticles ROS generation [242]
Carbon nanodots + Visible and Phototh(?rmal LG Staphylococcys aureus
. Nanodots photodynamic therapy and and Escherichia coli
curcumin NIR .
ROS generation [236]
. . - Nanostructure clusterization o .
Au plasmonic NPs Nanoparticles Visible and photothermal effect Escherichia coli [237]
Polydopamine-Fe,O3 NPs
with NONOates and 5 Photothermal therapy and Stuphylococcys fureus
o Nanoparticles NIR and Escherichia coli
dendritic controlled NO release [255]
poly(amidoamine) :

What makes nano-formulations more versatile compared to traditional drugs or novel
photo-pharmaceuticals is the different types of light sources that can be employed to prompt
a specific antimicrobial mechanism, which span from near-infrared (NIR, 750-950 nm) to UV
light (290400 nm), passing through visible light (400-750 nm), and LED or laser sources. The
light stimulus may either activate a nanoparticle photoactive core or trigger the plasmonic
photothermal effect, which eventually leads to the generation of heat, a temperature increase
at the nano-formulation surface and within its surroundings, and a necrotic cascade in the
adjacent bacterial cells.

The plenitude of light-based stimuli may favor applicability in different settings, from
the clinical /surgical environment to the point-of-care, personalized system. The presence of a
high superficial area allows surface functionalization with photosensitizers able to enhance
light absorption as well as chemical modification with targeting moieties useful for enzyme
recognition or bacterial membrane/biofilm penetration. Moreover, the assorted shapes and
sizes that can be easily obtained with the nanostructures can be leveraged to further widen
the field of applications or the fabrication of multiple-responsive systems [256].
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For example, Zhao and colleagues [233] developed NIR-activated liposomes com-
posed of a thermosensitive phospholipid, distearoyl phosphatidylcholine (DSPC), and a
quaternized cholesterol molecule, which were loaded with Tobramycin and functionalized
with a cyanine dye (Cypate). Upon irradiation with NIR, the susceptible dye generated
a temperature increase; when reaching 45 °C, the structure of the micelle was partially
disrupted, and a localized antibiotic release of up to 80% could be obtained. Moreover, the
heat generation mediated by the Cypate molecule induced enzyme denaturation, leading
to cell death. The synergistic action between the photothermal therapy and the on-demand
drug release caused a 7- to 8-fold increment in biofilm dispersion rate relative to the con-
ventional, free antibiotic therapy. The photothermal effect (Figure 7), which is based on the
absorption of light by electrons at the surface of conductive or thermo-responsive materials
and on the consequent energy dissipation in the surroundings as heat, is widely used to
liberate bioactive molecules from their vehicles or to cause permanent DNA damage via
hyperthermia and bacterial cell lysis [228,241].

Several antibacterial nanostrategies are based on the use of metal oxide nanoparticles
as photocatalytic agents to trigger extracellular and intracellular oxidation reactions. Bagchi
and co-workers [240] presented a hybrid nanosystem composed of ZnO nanoparticles
decorated with a photosensitive dye (squaraine, SQ) as an antibacterial coating for artificial
implants. The well-known antimicrobial activity of ZnO nanostructures resides in the
light-mediated electron transfer from the valence band to the conduction band of the
material and the consequent generation of electron-hole pairs. These react with oxygen
molecules in the surroundings and generate reactive oxygen species (ROS) such as hydroxyl
radicals (¢OH), superoxide anions (O, ™), and singlet oxygen (10,), which spark oxidation
cascades, intracellular protein oxidation, bacterial membrane permeation, and genetic
material leakage (Figure 7) [236,257]. The use of SQ in the hybrid construct is responsible
for the interfacial electron transfer and more intense ROS generation (with treatment for
3 h at a NP concentration of 140 nM). Thanks to their nanometric size (~24 nm), SQ-ZnO
NPs can be internalized in Staphylococcus aureus cells, disrupting the bacterial membrane
and reducing biofilm adhesion. Nano-formulations that present dual photodynamic and
photothermal effects to enhance their antimicrobial action have been extensively proposed
in the literature (Table 3) [236,242,249,250].

Table 3. Light-triggered anti-bacterial polymer-based or composite formulations.

Target

and embedded in PVP

[262]

Materials Formulation Light Mechanism . . Application
Microorganism
PVA-Prussian blue nanoparticle Nanoparticles in NIR Localized photothermal Pseudomonas
hydrogel films hydrogels therapy aeruginosa [258]
Sodium alginate hydrogel N ticles i Hydrogel crosslinking, Sé‘;?g Zeyrlfcc}?l ;cgjl?uretés, tooth whitening
loaded with Cu,0 and anoparees i NIR film formation, and ROS - and biofilm
. hydrogels . Streptococcus mutans
Bi1,017Cl, NPs generation [250] removal
Upconversion nanoparticles
(UCNPs) and porphyrinic . L
MOFs (PCN-224) NPs doped Nanoparticles in ROS generation and nitric  Staphylococcus aureus .
: L . NIR oxide-assisted and Pseudomonas wound healing
v L giluilue aine. aolilye hotodynamic thera aeruginosa [260]
incorporated in PVDF P y Py 8
electrospun fibers
Upconversion nanoparticles Nanoparticles in Staphylococcus aureus
(UCNPs) incorporated in PVDF par NIR ROS generation and Escherichia coli wound healing
) nanofibers
electrospun fibers [261]
PVA microneedles with a Photothermal conversion
metal-organic framework and . and Staphylococcus aureus .
multifunctional porphyrin-like Microneedles NIR nanozyme/peroxidase [260] wound healing
metal center NPs properties of NPs
Iodophilic MOF UiO-66
- . . Staphylococcus aureus .
containing Au nanorods Nanoparticles in . . g . nosocomial
1 as ) NIR Photoactive nanoparticles and Escherichia coli . .
coated with SiO, films infections
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Table 3. Cont.

Materials Formulation Light Mechanism . Target . Application
Microorganism
Ag-sodium lignin
sulfonate NPs and Nanoparticles in Photothermal activity Staphylococcus aureus
polypyrrole-polydopamine NPs h Iero ols NIR and antibacterial and Escherichia coli wound dressings
in poly(ethylene glycol) yarog Ag ion release [263]
diacrylate hydrogel
Controlled matrix
degradation and Escherichia coli and
PLGA];I;EeLEi?::?ylene Nanofibers Visible photosensitizer release, Streptococcus mutans
photodynamic therapy, [264]
and ROS generation
Conjugated polymer NPs + -
cell-penetrating peptides Nanoparticles in White and Synerglst"lc StapZquc; CCUS AUTES, P .
embedded in polyisocyanides hydrogels NIR photodynamic and Esc erichia cpll, and clinical infections
hydrogel photothermal therapy Aspergillus niger [248]
Light-responsive TiO, . . Staphylococcus aureus
nanotubes and Functlpnahzed uv ROS generation and Escherichia coli anti-adhesion
. composite surface
thermo-responsive copolymer [265]
Porphyrin photosensitizer and
PEG};\-e rl19c apsulated bEGF Staphylococcus aureus
. Nanoparticles in _ Photodynamic and
nanospheres embedded in hvdrogel Visible h h MDR-Staphyl burn wounds
carboxymethy] ydrogels chemotherapy -Staphylococcus
chitosan-sodium alginate aureus [266]
ZnO incorporated with Ag NPs, N ticles i Ag and Zn ions are Staphylococcus aureus
embedded in carboxymethyl arlllozz;r 1cele sm Visible released and ROS and Escherichia coli
cellulose hydrogel ydrogels generation occurs [267]
Porphyrin-based porous Nanoparticles . Photothermal effect and Methicillin-resistant .
. g Visible . Staphylococcus aureus wound healing
organic polymers in films ROS generation [268]
. . . . Functionalized . . Pseudomonas
Riboflavin-modified PVC film . Blue light ROS generation .
composite surface aeruginosa [269]
Hydrogel of polyvinyl alcohol o _
modified with chitosan, . . Peroxyn{trlte (ONOO™)
olvdopamine, and NO release Functionalized NIR generation, controlled MDR-Staphylococcus bone implants
p }(; np ¢ /red i hosohor composite surface release, and aureus [270] p
onot/red pRosphorous hyperthermia
nanofilm
PPy-poly dopamine NPs Nanoparticles in Iﬁggijneglgggirt:;?:ie Staphylococcus aureus
embedded in NIPAm/acrylic h Ic):l 1 NIR y dg dhesi d and Escherichia coli wound healing
acid hydrogel ydrogels and adhesion an [271]
photothermal therapy
Light-triggered drug
Ciprofloxacin-loaded release and Staphylococcus aureus ]
PEG hydrogel ezl uv photo-cleavable [272] U s
molecular cage
Dibenzaldehyde-grafted poly r];i{(e;:st:rﬁggeer;iil;li
(ethylene glycol), lauric . . ) ' hYP Staphylococcus aureus
. . . Nanoparticles in with cellular component ST .
acid-terminated chitosan, and NIR . R and Escherichia coli wound healing
. hydrogels leakage, and disruption
curcumin-loaded mesoporous ? the bacterial [273]
polydopamine NPs ot the bacteria
membrane
Polysacc}}arlde hydrogel Nanoparticles in Hy_perthe%rmla and Staphylococcus aureus .
encapsulating ferric tannate h NIR light-triggered wound healing
. ydrogels [274]
NPs and vancomycin drug release
Prussian blue and tannic Staphylococcus aureus
acid-loaded polyacrylamide Hydrogel NIR Photothermal therapy Py [275] wound healing
Hydrogel )
Curcumin-based metal-organic . . Bacterial capturing,
) Nanoparticles in . Staphylococcus aureus .
framework + vancomycin, NIR Zn ions, and wound healing
5 hydrogels AL [276]
and chitosan antibiotic release
Functionalized Hyperthermia, ROS Staphylococcus aureus
TiO, nanorod array NIR generation, and bacterial and Escherichia coli bone implants

composite surface

membrane puncture

[277]
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Table 3. Cont.

Materials Formulation Light Mechanism Mi Target . Application
icroorganism
ChltOSf':ll’l microspheres loaded Nanoparticles in Visible and Photothermal and Stuphylococcys aurens .
with rose bengal and hvdrogel NIR hotod ic th and Escherichia coli wound healing
polypyrrole in PVA hydrogel yarogels photodynamic therapy [278]
Aloe-Emodin/Carbon . . . Staphylococcus aureus
Nanoparticle Hybrid PEG Nanoparticles in NIR ROS generation and drug and Escherichia coli wound healing
hvd 1 hydrogels release 279
ydroge [279]
PVA-(GS—L1nker—MREG) . . NIR-UV conversion and
hydrogel loaded with Nanoparticles in : . Staphylococcus aureus .
o NIR light-triggered infected wounds
Cy3/Cyb5-silica NPs hydrogels antibiotic release [280]
and UCNPs
Ros.e bengal/gra}phene Nanoparticles in Visible and Photothermal therapy Staphylococcys aurens .
oxide/PVA /chitosan hvdrosels NIR and ROS generation and Escherichia coli wound healing
hybrid hydrogel yearog & [281]
Photochromic low-MW Light-triggered hydrogel
supramolecular hydrogel, Hydrogel Visible dissolution and Escherichia coli [282]
drug loaded drug release
Catechol-conjugated Staphylococcus aureus
poly(vinylpyrrolidone) Polymer coating NIR Photothermal therapy and Escherichia coli
sulfobetaine /polyaniline [283]
. Photocatalytic
Pectin—Ag (AgCl/.ZnO Nanoparticles in B nanostructures, ROS Stuphylococcys aureus
plasmonic hybrid h Visible . and Escherichia coli
. ydrogels generation, and Zn and
nanocomposites Ao [284]
g ion release
. Light-triggered drug
microal ]:Slzzgfx methvl release, ROS generation, Methicillin-resistant
08 . ymety Hydrogel Visible QS downregulation, and  Staphylococcus aureus  infected wounds
chitosan/sodium alginate I
hvdrogel inhibition and [285]
ydroge destruction of the biofilm
Chlorinated e6-methacrylated . . Staphylococcus aureus .
silk fibroin Film UV and NIR Photodynamic therapy [286] surgical wounds
Dopamine-folic acid hydrogel Photothermal therapy, S
. o . . - . ' taphylococcus aureus
loaded with transition metal Nanoparticles in Visible and ROS generation, Zn ion nd Escherichia coli wound healin.
ions + carbon quantum hydrogels NIR release, and bacteria wall & [287] ou caung
dot-decorated ZnO NPs penetration
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Figure 7. Principal mechanisms involved in light-triggered formulations antibacterial action. The
photodynamic process relies on the use of photosensitizers to produce cytotoxic ROS under visible,
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UV, or NIR light sources and in the presence of O, (schematic liberally inspired from Wang et al. [231].
Upon light irradiation, electrons are promoted from the valence band to the conductive band, leaving
positive holes behind. Both charge carriers can undergo energy transfer reactions with either water
molecules or molecular O in their surroundings. The photothermal effect occurs as a result of NIR
light absorption by atoms at the surface of conductive nanostructures, which convert the energy into
heat, ultimately causing bacterial cell death. Photo-induced NO oxidation antibacterial mechanisms
include extracellular and intracellular nitrosative stresses as a consequence of the production of
HOONO, N,O3, and NO,*, which eventually lead to DNA cleavage, membrane lipid peroxidation,
and membrane protein nitration (schematic adapted from Carpenter and Schoenfisch [288]). When
released upon NIR stimulation from a photosensitizer precursor, nitric oxide has been shown to
interfere with the quorum sensing system, promoting biofilm dispersal (schematic adapted from
Zhao et al. [289]).

Another interesting mechanism of biofilm disruption is based upon the photo-induced
release of nitric oxide (NO) and its derivatives in the EPS microenvironment [239,246,255,289].
Self-assembled micelles were formed with a diblock copolymer of poly-ethylene glycol and
N-nitrosamine fragments, functionalized with a coumarin chromophore (PEO-b-PCouNO),
and loaded with Ciprofloxacin [246]. The micelles were synthesized to respond to a visible
light stimulus and simultaneously release the antibiotic compound and NO molecules to
synergistically disperse Pseudomonas aeruginosa biofilm and kill the bacterial cells. The NO-
antibacterial action is known to be multiple (Figure 7): (i) NO® can move across the bacterial
membrane and initiate extra- and intracellular nitrosative stress cascades with the generation of
oxidative by-products, lipid peroxidation, and nitration of membrane-bound proteins, which
ultimately lead to RNA and DNA damage; (ii) NO can interfere with the quorum sensing
pathway at a molecular level via nitrosylation of transcriptional regulators and enzymes
(i.e., LasR, RhIR, Mv{R, PgsD, and PgsE) [289] and, consequently, disperse bacterial biofilm.

6.2. Light-Responsive Hydrogels and Polymeric Composite Structures

Polymeric and hydrogel-based composite structures are promising antibacterial sys-
tems in applications such as wound healing, surgical sutures, tissue engineering, and
dental procedures where good compliance is needed at the material and the tissue/organ
interface. The light responsiveness of macromolecule-based materials may be due either to
the presence of light-responsive moieties within the polymeric chain or to the integration
of photoactivatable agents in the polymeric matrix. Table 3 reports a representative list of
the most recent literature on the subject.

Hydrogels are defined as three-dimensionally cross-linked macromolecular networks
able to swell as a result of intense water absorption. Depending on their mechanism of
action, hydrogels may present intrinsic antibacterial properties (i.e., if formulated with
antimicrobial peptides or with cationic polymers such as chitosan), or they can acquire
a bactericidal effect when loaded with antibiotics, metal nanoparticles, or metal-organic
frameworks (MOFs) [25,29,259,262,276]. The combination of active agents (either organic or
inorganic) with a polymer- or hydrogel-like matrix appears to be the most interesting route,
as it provides a tailorable platform with multi-functionality potential. Photo-activated
antibacterial hydrogels exert their function upon irradiation under a specific wavelength
that excites a photosensitizer (or a chromophore compound) embedded in the 3D network,
which in turn triggers an oxidation cascade in the materials surrounding ROS generation
(Figure 7) [29]. In parallel, the hydrogel matrix may undergo a photo-induced change in
its mechanical properties and degrade or dissolve, thus slowly leaching out additional
antibiotic cargos that perpetrate the antimicrobial action [271,272].

Qiao and colleagues [280] proposed a smart hydrogel with the dual purpose of mon-
itoring the bacterial infection in wounds by means of a fluorescent light and releasing
an antibiotic compound on demand upon NIR stimulation. The matrix of the hydrogel
was constituted of polyvinyl alcohol (PVA) and an UV-cleavable polyprodrug (GS-Linker-
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MPEG); within this 3D network, multifunctionalities were included: (i) Cy3 and Cy5-
modified silica nanoparticles (SNP-Cy3/Cy5) as sensing agents for bacterial infection; and
(ii) up-conversion nanoparticles (UCNP) responsible for the prodrug UV-cleavage. Upon
NIR irradiation, UCNPs were able to convert NIR light into UV light to activate the release
of the GS drug from the polymeric network. In a different study, Feng et al. [271] developed
a N-isopropylacrylamide and acrylic acid hydrogel that was able to tune its adhesion and
deformation when subjected to NIR illumination. The hydrogel contained conductive
polypyrrole and polydopamine PPy-PDA nanoparticles that can transfer NIR light energy
into heat, reaching temperatures up to 58.7 °C within 10 min of stimulation and demon-
strating photothermal converting ability. Moreover, as a consequence of the increased
temperature in the material, water molecules rearrange within the 3D network while
inter-polymer chain associations and hydrophobic interactions take place, thus causing an
asymmetric shrinkage of the hydrogel and its self-deformation.

As a different mechanism of action, Hu and co-workers [285] targeted the biofilm
QS of Methicillin-resistant Staphylococcus aureus (MRSA) with a composite hydrogel of
microalgae Spirulina platensis and carboxymethyl chitosan/sodium alginate, loaded with
berberine, a bioactive molecule known for its antibacterial effect and its ability to slow
down some of the QS-associated processes. The berberine-loaded hydrogel promoted ROS
formation in the wound microenvironment while suppressing biofilm formation and, more
interestingly, down-regulating the expression of multi-resistant virulence.

The NIR-induced antimicrobial photothermal effect has also been widely documented
in the literature for hydrogel-based systems, either alone or in combination with the
photodynamic effect [231,275,283,287].

Table 3 reports other examples of light-triggered composite materials, such as mi-
croneedles [260], electrospun fibers [260,264], and functional coatings [270,283]. The range
of shapes and 3D arrangements easily obtained when working with polymeric substrates
enables the realization of multi-functional antibacterial strategies with spatial and temporal
control of the photoactivation. Future developments must converge into hybrid approaches
based on the combination of an organic matrix and inorganic compounds, which can benefit
from the use of a broad spectrum of wavelengths to tackle the growth of microorganisms
and the formation of biofilm.

7. Conclusions

The use of light to fight bacterial spreading and antimicrobial resistance can pro-
vide several advantages, such as: (i) the targeted action conferred by the light stimulus;
(ii) the controlled release of drug action (both from photoswitchable molecules or light-
responsive materials) in terms of dosing and timing without the risk of overusing antimi-
crobials or the risk of systemic effects associated with traditional antibiotic therapies; and
(iii) a reduced risk of antimicrobial resistance occurrence since the photoswitchable drugs
can be spread in their inactive form with a reduced environmental impact. Finally, light-
triggered approaches can be coupled with other therapeutic strategies (i.e., conventional
antibiotics) to provide a combination therapy approach to tackle the complex problem of
bacterial infections and biofilm spreading.

However, there are also several challenges associated with the use of light-activated
compounds for antimicrobial applications. One of the main challenges relates to the optimal
delivery of compounds to the biofilm [290]. Biofilms are complex and heterogeneous struc-
tures, and the matrix that surrounds the bacteria can limit the penetration of compounds.
To this end, the use of nanoparticles or other delivery systems can be of great help. Another
challenge lies in the optimization of the activation process. UV light has a cytotoxic effect
and should be avoided as a trigger for photosensitive compounds. Therefore, researchers
are working to provide switchable compounds and materials that can be addressed with
less harmful light triggers (i.e., near-infrared NIR light). Toxicity of light towards cells may
happen in photothermal therapy, where the NIR light stimulation leads to an increase in the
temperature of the material and, consequently, of its surroundings, causing necrotic effects
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within bacterial cells. When in contact with human/patient tissue, this can be a potential
issue, which could be limited by developing strategies to localize the NIR illumination onto
the light-responsive material or by decorating the light-responsive materials with targeting
moieties for biofilm adhesion and penetration. Moreover, the light trigger needs to be
tuned according to the chemical structure of the light-sensitive system, and the intensity
and duration of light exposure may also need to be carefully tuned. Hence, it is important
to develop methods for precisely controlling the activation of the compounds within the
biofilm. Furthermore, the development of resistance to light-activated compounds is a
potential concern. Bacteria may evolve mechanisms to avoid or resist the effects of such
compounds, and it is therefore important to understand and address these mechanisms
to ensure the long-term effectiveness of photopharmacological approaches. Finally, there
are regulatory and safety considerations that need to be addressed when developing pho-
topharmacological strategies for bacterial biofilm control. The safety of light-activated
compounds and their potential impact on non-target organisms and the environment must
be carefully evaluated.

In summary, the challenges of photopharmacology for bacterial biofilm control include
optimizing the delivery and activation of the light-sensitive compounds, addressing the
potential for resistance, and ensuring that regulatory and safety considerations are met.

As of today, the main drawbacks of light-triggered materials are related to their
potential cytotoxicity, hemolysis, metabolic toxicity, and difficult body/tissue clearance
when administered, for example, to human patients. Such safety issues may limit their
applications in the biomedical field and should be overcome in order to implement nan-
otherapeutic strategies to efficiently battle microbial infections and bacterial resistance in
clinical settings [26,236].
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