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Abstract: Dental tissues are composed of multiple tissues with complex organization, such as dentin,
gingiva, periodontal ligament, and alveolar bone. These tissues have different mechanical and
biological properties that are essential for their functions. Therefore, dental diseases and injuries pose
significant challenges for restorative dentistry, as they require innovative strategies to regenerate
damaged or missing dental tissues. Biomimetic bioconstructs that can effectively integrate with
native tissues and restore their functionalities are desirable for dental tissue regeneration. However,
fabricating such bioconstructs is challenging due to the diversity and complexity of dental tissues.
This review provides a comprehensive overview of the recent developments in polymer-based tissue
engineering and three-dimensional (3D) printing technologies for dental tissue regeneration. It also
discusses the current state-of-the-art, focusing on key techniques, such as polymeric biomaterials and
3D printing with or without cells, used in tissue engineering for dental tissues. Moreover, the final
section of this paper identifies the challenges and future directions of this promising research field.
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1. Introduction

The field of tissue engineering has witnessed remarkable progress in recent years,
offering new avenues for regenerative medicine [1,2]. In dentistry, tissue engineering holds
immense potential for the restoration and regeneration of dental tissues, revolutionizing
conventional approaches to dental treatments [3–6]. Dental tissue engineering aims to
overcome the limitations associated with traditional restorative techniques by promoting
the growth and regeneration of dental tissues, including dentin, cementum, and periodontal
ligaments cultured on various scaffolds [7].

The regeneration of dental tissues poses significant challenges because of their complex
hierarchical structures, functional requirements, and innate regenerative limitations [8].
Advancements in biomaterials, cell-based therapies, and tissue engineering strategies have
provided innovative solutions to these challenges [9–11]. Dental tissue engineering endeav-
ors to replicate the natural regenerative processes that occur during tooth development
and repair. It involves the use of biocompatible scaffolds, growth factors, and stem cells to
create an optimal microenvironment that supports cell adhesion, proliferation, and differ-
entiation [12,13]. Scaffolds act as three-dimensional (3D) frameworks, providing structural
support and guiding the growth and organization of cultured cells. By mimicking the
composition of the extracellular matrix (ECM) and architecture of dental tissues, these
scaffolds facilitate the formation of functional tissue constructs [14].

A variety of polymer-based biomaterials have recently been explored for scaffold
fabrication in dental tissue engineering, including the biodegradable polymers poly(lactic-
co-glycolic acid) (PLGA) [15,16], polycaprolactone (PCL) [17], and collagen-based materi-
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als [18]. These biomaterials have demonstrated favorable properties, including biocompati-
bility, tunable degradation rates, and mechanical integrity. Furthermore, the incorporation
of bioactive molecules, including growth factors, peptides, and nanomaterials, into these
scaffolds has shown promising results in enhancing cell behavior, tissue regeneration, and
mineralization [19–21].

In recent years, the emergence of 3D bioprinting has revolutionized the fabrication of
complex scaffolds for dental tissue engineering [22]. This additive manufacturing technique
enables precise control over scaffold architecture, porosity, and spatial distribution of
cells and bioactive factors. By employing computer-aided design software and a layer-
by-layer deposition of biomaterials, 3D bioprinting allows for the creation of patient-
specific scaffolds with tailored mechanical and biological properties [23]. Furthermore, the
incorporation of multiple cell types within these constructs has shown potential for the
regeneration of multi-tissue interfaces, including the dentin-pulp or periodontal ligament-
bone complex [24].

The future of dental tissue engineering holds great promise. Advancements in bio-
materials, scaffold design, stem cell research, and biofabrication techniques have enabled
the development of efficient and effective strategies for dental tissue regeneration. The
integration of innovative technologies, including gene editing, tissue-on-a-chip systems,
and in vitro organogenesis, is likely to further augment the regenerative capabilities of
dental tissue engineering approaches.

In this review, we aim to explore the current state-of-the-art in dental tissue engineer-
ing, particularly highlighting polymeric biomaterials employed for the regeneration of
dental tissues and the emerging role of 3D bioprinting in polymeric scaffold fabrication.
By elucidating the current progress in, and prospects of, dental tissue engineering, this
review aims to inspire further research and foster the development of novel strategies for
successful dental tissue regeneration.

2. Conformation of Dental Tissues and Polymeric Scaffolds

There are three main types of dental tissues: enamel, dentin, and cementum. Enamel,
known as the crown, is the outermost layer and covers the visible part of the tooth. It is
primarily composed of hydroxyapatite crystals, which provide its hardness and strength; it
does not contain living cells and cannot regenerate once it is formed. The main functions of
the enamel are to protect the underlying dentin and provide a smooth surface for chewing
and speaking. Dentin lies beneath the enamel and cementum, makes up the majority
of the tooth structure, and is a mineralized tissue that contains hydroxyapatite crystals,
collagen fibers, and fluid-filled tubules (Figure 1). Dentin is not as hard as enamel but
can provide support and strength to the tooth. Unlike enamel, dentin contains living cells
called odontoblasts, which are found at the interface between the dentin and the pulp
cavity. Odontoblasts play a role in dentin formation and secrete new dentin in response
to various stimuli, including tooth decay or trauma [25,26]. Various signaling molecules,
such as transforming growth factor beta 1 (TGF-β1), dentin matrix acidic phosphoprotein
1 (DMP1), bone morphogenetic proteins (BMP), tumor necrosis factor alpha (TNFα), and
fibroblast growth factor (FGF), can modulate different signaling pathways that regulate
cellular activities, such as cell proliferation, migration, and differentiation [27–29]. For
example, a previous study reported that DMP-1 and TNFα are critical components for
mineralization and odontogenesis [30], while TGF-β1 can stimulate dentinogenesis through
Wnt/β-catenin signaling [31]. Furthermore, BMP can enhance the osteogenic activities of
cells [32], while FGF can induce pro-angiogenic effects [33].

Cementum covers the root of the tooth and helps anchor the tooth to the surrounding
alveolar bone through the periodontal ligament. It is a mineralized connective tissue con-
taining collagen fibers, hydroxyapatite crystals, and living cells known as cementocytes [34].
Cementum is not as hard as dentin or enamel but plays a crucial role in tooth stability and
supports the periodontal ligament fibers. Similar to dentin, cementum has a limited ability
to repair itself by forming new layers in response to external factors.
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Figure 1. A schematic representation delineating the tissue engineering approach for the regeneration
of periodontal tissues, which were obtained using 3D bioprinted scaffolds, diverse stem cells, and
signaling molecules.

Among these dental tissues, dentin tissue has been investigated using scaffold-based
tissue regeneration approaches with synthetic polymers, including poly(lactic acid) (PLA),
poly(glycolic acid), PCL, and natural polymers (collagen, gelatin, chitosan, alginate, and
hyaluronic acid). Furthermore, a combination of synthetic polymer and natural biopoly-
mers or hydroxyapatite nanoparticles can enhance the mechanical strength and bioactivity
of the scaffold, promoting dentin regeneration [35,36]. Specifically, dentin tissue engi-
neering often focuses on utilizing polymeric scaffolds to promote the proliferation and
differentiation of odontoblast-like cells. Polymeric scaffolds facilitate the regeneration of
dentin-like tissues by providing a suitable environment for odontoblast-like cells.

Generally, polymeric scaffolds used in dentin tissue engineering are designed to
have a porous structure, allowing the infiltration of cells and exchange of nutrients and
waste products [37]. In addition to providing a physical scaffold, polymeric materials
can be functionalized with bioactive molecules, growth factors, or signaling molecules
to enhance cell attachment, proliferation, and differentiation [38,39]. These bioactive
cues can mimic natural signaling pathways involved in dentin formation and guide the
development of new tissues. As shown in Figure 1, by combining polymeric scaffolds with
appropriate cells (dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth,
periodontal ligament stem cells (PDLSCs), and dental follicle progenitor cells) and signaling
molecules (TGF-β, BMPs, insulin-like growth factor, and platelet-derived growth factor),
several researchers have investigated the feasibility and effectiveness of regenerating dentin-
like tissue in vitro and potentially developed new strategies for dental tissue repair and
regeneration.

3. Bioprinting for Dental Tissue Engineering

Advances in tissue engineering have led to the emergence of 3D bioprinting as a
promising technique for fabricating complex dental structures [40]. Three-dimensional
bioprinting enables the precise spatial organization of cells, biomaterials, and growth
factors, allowing the creation of patient-specific and functional dental tissues. In this
section, we explore various 3D bioprinting technologies used in dental tissue engineering.

Inkjet-based bioprinting is a non-contact printing technique that utilizes thermal,
piezoelectric, or microvalve processes to dispense droplets of dilute solutions (Figure 2a).
It operates similarly to traditional inkjet printing, but uses bioinks containing cells and
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biomaterials [41]. This technology allows for a high spatial resolution, ranging from 50
to 300 µm [42], but the presence of cell aggregation within the bioink can affect droplet
formation and trajectory, leading to a decrease in print quality [43]. Rider et al. utilized
a reactive inkjet printing method to obtain high-resolution nanosized hydroxyapatite-
incorporated silk fibroin membranes [44]. However, the use of low-concentration solutions
can limit the construction of 3D structures for dental tissue engineering.
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(b) sterolithography [45]; (c) digital light processing [46]; and (d) extrusion-based fabrication
method [47].

Laser-assisted bioprinting utilizes the power of laser beams to achieve the meticulous
deposition of bioink substances onto a substrate. Stereolithography apparatus (SLA)
is an example of laser-assisted 3D printing. Son’s team (2021) used SLA 3D printing
to fabricate interim crowns for dental implantation (Figure 2b) [45]. Through localized
pressure generated by the laser, the bio-ink was propelled in the form of droplets onto
a designated target area. This cutting-edge technology offers the ability to achieve high-
resolution printing, surpassing the threshold of 20 µm [48].

Such precision allows for the accurate placement of cells and biomaterials, thereby
promoting intricate biological constructs. To ensure a successful process, the precursor ma-
terial should be a hydrogel with a viscosity within a moderate range [49]. Furthermore, this
method has demonstrated the potential to enable precise multicell positioning and facilitate
intricate cellular arrangements [50]. However, the complexity involved in selecting the
optimal printing conditions, such as gelation time and laser fluence, poses challenges, po-
tentially resulting in a compromised cell viability. The requirement for expensive apparatus
further complicates the widespread adoption of this technique [51].

Operating on a principle such as the SLA, the direct light processing (DLP) fabrication
method utilizes localized light to solidify a photocross-linkable liquid to obtain 3D struc-
tures. DLP fabrication methods are regularly used to convert 3D models into 3D structures
for dental implants (Figure 2c). Furthermore, DLP can polymerize each layer of resin much
more rapidly compared to SLA, which is a preferable process [46].
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Extrusion bioprinting is driven by a piston, screw, or pneumatic pressure mechanisms
such that highly viscous bioinks can be printed through micronozzles [52]. Conventional
extrusion-based printing systems are regularly used to fabricate scaffolds for guided dental
regeneration. For instance, Figure 2d illustrates the incorporation of salt microparticles
in biopolymers (PCL), as recently investigated in 2023 [47]. The subsequent leaching of
salt particles after fabrication allows for the formation of micro/macroporous scaffolds
for dental tissue engineering. This technique is versatile and compatible with a wide
range of biomaterials including hydrogels and biopolymers. In particular, for cell-laden
structures, this technique enables the printing of very high cell densities with a fast rate
of fabrication [53,54]. However, there are potential cell apoptotic effects induced dur-
ing and after printing owing to the pressure drop associated with extrusion through a
micronozzle [51,55].

Bioprinting can be used in the regeneration of intricate dental structures with the pre-
cise spatial organization of diverse tissues. This facilitates the regeneration of vascularized
pulp-like tissue and the formation of mineralized tissue within stem cell constructs by
employing DPSCs and stem cells from the apical papilla [56]. Bioprinting also plays a role
in the regeneration of integrated cementum on the surface of the roots of a human tooth.
This was achieved by utilizing growth-factor-releasing scaffolds containing PDLSCs, which
were incorporated into 3D-printed PCL scaffolds. The research team (2017) has further
enhanced the scaffold with PLGA microspheres encapsulating connective tissue growth
factor, BMP-2, or BMP-7 [57].

The application of 3D bioprinting in dental tissue engineering offers great potential
for personalized dental treatment and the rapid prototyping of dental structures. Although
some challenges remain, including the scalability of the technique, optimization of bioink
formulations, and long-term functionality of printed tissues, 3D bioprinting is a rapidly
evolving field that holds extensive promise.

4. Polymeric Materials and Their Printed Scaffolds for Dental Tissue Engineering

The choice of scaffold material is critical for dental tissue engineering, as it affects the
cellular activities and the tissue regeneration. Both biological and mechanical properties
are important factors for dental tissue regeneration. The biological properties influence
the bioactivities of the cells, while the mechanical properties ensure structural stability
under dynamic loadings. Generally, natural polymers can provide suitable biochemical
cues, thus enhancing the bioactivities of cells, whereas synthetic polymers can provide
adequate mechanical properties. This section of the review discusses various studies that
use natural, synthetic, and hybrid polymers for dental tissue engineering.

4.1. Natural Polymers

Natural scaffold materials derived from biological sources offer several advantages,
including biocompatibility, biodegradability, and the ability to mimic the composition
and structure of native ECM. Commonly used natural scaffold materials in dental tissue
engineering include collagen, gelatin, chitosan, hyaluronic acid, fibrin, and decellularized
ECM (dECM).

Collagen, derived from several sources, including bovine, porcine, or human tissues,
is a versatile scaffold material that supports cell adhesion and promotes the regeneration
of dental tissues, including dentin, periodontal ligament, and gingiva. This is due to
its anatomically similar structure and chemical properties to the predominant structural
proteins existing in the ECM of dental tissues [58,59].

Although collagen has high tensile strength and can be used in fibrous forms and
load-bearing applications, it lacks sufficient mechanical strength for pulp regeneration [60].
Crosslinking collagen with glutaraldehyde or genipin enhances its mechanical properties.
The combination of a collagen scaffold, DPSCs, and DMP1 improved the formation of ECM
in pulp tissue [61], while Pandya et al. incorporated erythropoietin (EPO), a glycoprotein
hormone that stimulates red blood cell production, into collagen scaffolds in 2021 [62].
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They compared this with a commercially available BioOss inorganic bovine bone xenograft
to investigate its potential for alveolar ridge augmentation. The incorporation of EPO
into the collagen scaffold resulted in a two-fold increase in blood vessel formation and im-
provements in the deposition of ECM. Recently, Chang’s research team (2023) investigated
a novel injectable cell-laden hydrogel consisting of collagen and riboflavin for the treat-
ment of periodontal defects. They implemented a dental light-emitting diode crosslinking
method to reinforce the injected hydrogel [63].

Gelatin, a derivative of collagen, possesses a porous structure that allows for cellu-
lar infiltration, making it suitable for regenerating dentin, periodontal tissues, and oral
mucosa. Gelatin has been extensively used in both preclinical and clinical settings [64,65].
Gelatin offers distinct advantages over collagen, including reduced immune responses,
more controllable physical properties, and a lower risk of unpredictable pathogen trans-
mission. Importantly, gelatin exhibits favorable engineering properties, including ease of
fabrication and the ability to control its mechanical properties during crosslinking [66,67].
Consequently, gelatin materials are increasingly considered in the application of advanced
tissue engineering, particularly for manufacturing highly porous scaffolds that facilitate
tissue repair and regeneration [68].

Alginate, a polysaccharide produced by a wide variety of brown seaweeds, is an effec-
tive cell carrier, scaffold, and delivery system for growth factors and bioactive materials
used in regenerative endodontics. For example, Dobie et al. (2002) reported that TGF1
can upregulate the matrix secretion of dentin-pulp ECM, while the alginate polymeric
matrix can serve as a delivery platform for various growth factors and bioactive compo-
nents [69]. Zhang et al. (2020) fabricated alginate/laponite hydrogel microspheres that
encapsulated DPSCs and vascular endothelial growth factor (VEGF) to develop injectable
cell-laden microspheres for endodontic regeneration. The injection of these biomicrospheres
induced vascularization after the subcutaneous implantation of tooth slices in nude mice.
Additionally, the upregulation of odontogenic-related genes was observed [70].

Hyaluronic acid, a glycosaminoglycan found in the ECM presents hydration and
lubrication properties. It has been widely used in scaffolds for cell adhesion and has
shown promising results for regenerating periodontal tissues and oral mucosa. Park et al.
(2003) has demonstrated that hyaluronic acid hydrogel modified with arginine–glycine–
aspartic acid (RGD) has exhibited significant potential in promoting cell attachment and
proliferation [71]. This highlights the favorable effects of RGD-modified hyaluronic acid
hydrogels on cellular processes. Furthermore, the injectable nature of hyaluronic acid
hydrogel allows it to penetrate narrow canals, making it highly suitable for applications in
endodontics and pulp regeneration.

Fibrin, a structural component of blood clots, serves as a 3D framework that supports
cell attachment, migration, and tissue formation. Compared to other natural polymers
such as collagen, fibrin exhibits superior properties in terms of cell adhesion, biocom-
patibility, and immune response. However, it also possesses disadvantages, including
high shrinkage rates, rapid degradation, and low mechanical strength [72]. To address
these limitations, composite scaffolds comprising fibrin and biocompatible reinforcements,
including hyaluronic acid, calcium phosphate, and polyurethane, significantly enhanced
the mechanical properties of fibrin [73].

The use of fibrin as a biomaterial has several advantages. First, fibrinogen within
its structure undergoes TGF-β transformation, leading to collagen formation [74]. Fibrin
also provides a suitable environment for angiogenesis, exhibits the potential to control the
release of proangiogenic growth factors [75], and offers injectability and the capacity to
construct 3D structures. Because of these advantages, Zhang et al. (2020) utilized fibrin-
based hydrogels as a delivery system for extracellular vesicles extracted from mesenchymal
stromal cells to investigate the angiogenic effects in dental pulp regeneration [76] and
observed favorable ECM deposition and a high angiogenic response.

dECM scaffolds are prepared by removing cellular components from natural tissues
while preserving the structure and composition of the ECM. These scaffolds provide a
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biomimetic environment for tissue regeneration, and dental tissue-specific dECM scaffolds
have been used to guide the regeneration of dental tissues. They provide structural support,
promote cellular activity, and guide the regeneration of specific dental tissues, contributing
to advancements in dental regenerative therapies. Various natural polymers have been
used in dental tissue engineering, as summarized in Table 1.

Table 1. Polymeric biomaterials for dental tissue regeneration (natural, synthetic, and hybrid polymer,
and polymer-based composites).

Type Polymeric
Materials

Culturing Cells &
Growth Factors Dental Tissue Outcomes Limitations Ref.

Natural
polymers Collagen

• Erythropoietin.
• Vascular

endothelial
growth factor
(VEGF).

Alveolar ridge
augmentation

• Enhanced
alveolar bone
regeneration.

• Enhanced
vascularization.

• Acellular
implantation.

[62]

• Collagen sponge. Periodontal ligament

• Larger blood
vessel area.

• Higher
regenerated
periodontal
ligament
compared to
defect.

• Insufficient tissue
integration.

• Insufficient
mechanical
properties.

[77]

• Human
periodontal
ligament
fibroblasts.

• Riboflavin.

Periodontal ligament

• Enhanced
periodontal
tissue
regeneration in
rat model.

• Epithelial and
connective tissue
regeneration.

• Appropriate
cellular
alignment

• Insufficient
mechanical
properties.

[63]

• Collagen sponge. Alveolar bone

• Increased cell
attachment and
alkaline
phosphatase
(ALP) activities
compared to
poly(glycolic
acid) (PGA)
scaffold.

• After 25 weeks
implantation,
complex dentin
and
cementum-like
tissues formed.

• Insufficient
mechanical
properties.

• Long
regeneration
duration.

[78]

• Polyphosphate
(cross-linking
agent).

• Bone marrow
mesenchymal
cells.

Alveolar bone

• Enhanced
mechanical
strength.

• Improved
bleeding control.

• Increased
alveolar bone
regeneration.

• Toxic
post-crosslinking
required.

[79]
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Table 1. Cont.

Type Polymeric
Materials

Culturing Cells &
Growth Factors Dental Tissue Outcomes Limitations Ref.

Natural
polymers

Collagen

• Dental Pulp Stem
Cells (DPSCs).

• Dentin Matrix
Protein 1.

Dentin

• Scaffold
containing
DPSCs, dentin
matrix acidic
phosphoprotein 1
(DMP1) and
collagen
significantly
promotes dentin
regeneration.

• Enhanced
differentiation of
DPSCs into
odontoblast-like
cells.

• Insufficient
mechanical
properties.

• Lack comparison
with Sham model
to verify the
findings.

[80]

Alginate

• TGF-β1. Dental pulp

• Upregulation of
dentin matrix
secretion.

• Induced
differentiation of
odontoblast-like
cells.

• Enhanced
natural
regenerative
capacity of
dental pulp.

• Complex three-
dimensional (3D)
structures cannot
be formed.

• Insufficient
mechanical
properties.

• Difficulties in
deployment of
alginate/TGF-
β1.

• Alginate
polymeric matrix
limits bioactivity.

[69]

• Laponite.
• DPSCs.
• VEGF.

Dental pulp

• Injectable
microspheres
allowed
controlled release
of VEGF and
laponite.

• Enhanced
deposition of
fibronectin and
collagen type 1.

• Upregulation of
new microvessel
formation.

• Lack of positive
and negative
controls to verify
the findings.

• During injection
process, large
(~200 µm)
microsphere may
fragment due to
low mechanical
properties.

[70]

Fibrin

• DPSC-derived
extracellular
vesicles
(DPSC-EC).

Dental pulp

• Increased VEGF
release.

• Enhanced
vascularization
of dental pulp
tissue.

• Insufficient
in vivo data to
verify in vitro
findings.

• Extraction of
DPSC-EC is
costly with low
yield.

[76]

Hyaluronic
acid (HA)

• Odontoblastic
cell line (KN-3
cells).

• Hyaluronic acid
sponge.

Dental pulp

• Lower granulated
leukocytes
compared to
collagen scaffold
suggesting lower
immune
response.

• Gene expressions
of IL-6 and
TNF-α in KN-3
was similar in
HA and collagen
scaffolds.

[81]

• Human bone
marrow
mesenchymal
stem cell
(hMSCs).

Dental pulp

• Enhanced os-
teo/odonogenic
activities of
hMSCs cultured
in HA compared
to mitrigel.

• Lack of in vivo
results to
validate in vitro
findings.

[82]
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Table 1. Cont.

Type Polymeric
Materials

Culturing Cells &
Growth Factors Dental Tissue Outcomes Limitations Ref.

Natural
polymers Chitosan • TGF-β. Dental pulp capping

• Sustained release
of TGF-β
elevated cellular
proliferation of
odontoblast.

• 3~6-fold
enhanced dentin
formation
compared to
natural healing.

• Concentration of
TGF-β
containing
microsphere is
not optimized.

• Limited
angiogenic
properties.

[83]

Synthetic
polymer

polycaprolactone
(PCL)

•
Nanohydroxyapatite.

• DPSCs.
Dentin tissue

•
Osteo/odontogenic
activities (ALP
and ARS
expressions).

• Increased
hydrophilicity.

• Enhanced
cellular
proliferation.

• Upregulation of
BMP-2, RUNX2,
and DSPP.

• Difficulties in
fabricating 3D
geometries of
dentin.

• Lack of in vivo
results to
validate in vitro
findings.

[17]

• Mesenchymal
stem cells.

• Platelet-rich
plasma.

• β tricalcium
phosphate.

Mandibular tissue

• Enhanced bone
regeneration
around dental
implants
(increased
bone-implant
contact ratio and
new bone height
formation).

• Insignificant
difference in new
bone area
between groups.

[84]

Poly(lactic
acid) (PLA)

• Human
periapical cyst
mesenchymal
stem cells
(hPCMSCs).

• Dicalcium
phosphate
dihydrate
(DCPD).

• Hydraulic
calcium silicate.

Periapical and alveolar
bone

• 2.5-fold DMP-1
expression to
pristine PLA
scaffold.

• Adequate
mechanical
properties.

• Acidic
degradation of
PLA.

• Lack of in vivo
results to
validate in vitro
findings.

[85]

Poly(lactic-
co-glycolic

acid) (PLGA)

• Minocycline.
• Osteoblasts

extracted from
cranial bone of
Newborn
Sprague–Dawley
rats.

alveolar bone

• Improved
hydrophilicity
via
electrospinning
fabrication
method.

• Promote
attachment of
osteoblasts.

• Complex 3D
geometries
cannot be
fabricated.

[15]

• -- Alveolar bone

• Enhanced
lamellar bone
formation in
alveolar tissue.

• Insufficient
comparative data
(no positive and
negative control).

• Complex 3D
geometries
cannot be
fabricated.

• Acidic
degradation of
PLA.

[16]
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Table 1. Cont.

Type Polymeric
Materials

Culturing Cells &
Growth Factors Dental Tissue Outcomes Limitations Ref.

Hybrid
polymer

Chitosan/
fibrin • hDPCS Dental pulp

• Incorporation of
chitosan
enhanced
antibacterial
effects without
affecting cellular
activities.

• Can provide
endodontic space
disinfection.

• Lack of in vivo
results to
validate in vitro
findings.

[86]

Gelatin/
fibrin • hDPCS Dental pulp

• Fibrin
incorporation to
gelatin enhances
biomineraliza-
tion.

• Enhanced
biomineraliza-
tion can increase
mechanical
properties.

• Upregulation of
os-
teo/odontogenic
related genes.

• Lack of in vivo
results to
validate in vitro
findings.

[87]

Poly-γ-
glutamic

acid/glycerol/
gellan gum

• MG 63. Alveolar bone

• Careful selection
of crosslinking
ratio allowed
strengthening of
the polymeric
matrix.

• Improved
cellular
proliferation and
osteogenesis of
MG 63.

• In vitro cellular
evaluation using
MG 63 may not
provide accurate
results of guided
alveolar bone
regeneration.

• Lack of in vivo
results to
validate in vitro
findings.

[88]

Chitosan-
collagen

• Bone
morphogenetic
protein (BMP-7).

• Plasmid.
• hDPSCs.

Dental pulp

• Controlled
BMP-7 release in
experimental
group improved
ALP activities
and calcium
deposition of
hDPSCs.

• Upregulation of
OCN, BSP, DSPP,
and DMP-1.

• Lack of in vivo
results to validate
in vitro findings.

• Complex microar-
chitectures cannot
be formed.

• Insufficient
positive and
negative control
comparison to
determine the
regenerative
efficacy.

[89]

chitosan–
gelatin

• Bone marrow
mesenchymal
stem cells.

Alveolar bone

• Significant
improvements in
new bone
formation.

• Increased neovas-
cularization.

• High
inflammation
reaction at early
stages of
implantation (day 5).

• Insufficient
positive and
negative control
comparison to
determine the
regenerative
efficacy.

• Complex microar-
chitectures cannot
be formed.

[90]
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Table 1. Cont.

Type Polymeric
Materials

Culturing Cells &
Growth Factors Dental Tissue Outcomes Limitations Ref.

Hybrid
polymer

chitosan–
gelatin • hDPCs. Alveolar bone

• Increased
concentration of
glutaraldehyde
crosslinking
agent prolonged
the scaffold
degradation.

• Enhanced
osteo/odontogenesis-
related genes
(DSPP, BMP-2,
IBSP, BGLAP,
Osterix, and
ALP).

• Improved
mineralization.

• Insignificant
cellular
proliferation rate
compared to
control.

• Subcutaneous
in vivo results
may not reflect
the regeneration
of alveolar bone.

• Complex mi-
croarchitectures
cannot be
formed.

[91]

PCL/PEG • Rat BMSCs Periodontium

• Aligned
electrospun
PCL/poly(ethylene
glycol) (PEG)
fibers improved
mechanical
properties and
provided contact
guidance to cells.

• Upregulation of
Col I, Col III,
Postn, S100a4,
ALP, and BGLAP
gene expressions
in aligned
construct.

• Unable to
fabricate precise
3D construct.

• Requires
complex
post-fabrication
procedures.

[92]

hPLFs (human periodontal ligament fibroblasts); bMSCs (bone marrow mesenchymal cells); DPSCs (dental pulp
stem cells); PCMSCs (periapical cyst mesenchymal stem cells); VEGF (vascular endothelial growth factor); (ALP)
(alkaline phosphatase); (DMP) (dentin matrix acidic phosphoprotein); BMP (bone morphogenetic protein); IL6
(interleukin 6); TNF (tumor necrosis factor); TGF (transforming growth factor); DSPP (dentin sialophosphoprotein);
IBSP (integrin binding sialoprotein); OCN (osteocalcin); OPN (osteopontin); Runx (runt-related transcription
factor); BGLAP (bone gamma-carboxyglutamate protein); Col (collagen); Postn (periostin); S100a4 (S100 calcium
binding protein A4).

4.2. Synthetic Polymers

Synthetic polymers, including PLGA, PLA, and PCL, are widely used for dental tissue
engineering. These polymers exhibit tailorable mechanical properties, degradation rates,
and biocompatibility. They can be fabricated in various forms, including films, fibers, and
porous scaffolds, using multiple techniques, including electrospinning, solvent casting, and
3D printing. Synthetic polymer scaffolds have been utilized for the regeneration of several
dental tissues, including dentin, periodontal ligament, and alveolar bone.

In 2021, alveolar bone regeneration was investigated through the incorporation of
β-tricalcium phosphate (β-TCP) and platelet-rich plasma (PRP) into a PCL scaffold. Sub-
sequently, bone marrow stem cells (bMSCs) were seeded onto a scaffold and implanted
into mandibular bony defects in miniature pigs [84]. The incorporation of bMSCs and
PRP into the PCL-TCP scaffold significantly increased the bone–implant contact ratio, the
height of newly formed bone, and new bone formation, compared with the conventional
PCL-TCP scaffold. Similarly, Li et al. demonstrated that the incorporation of PRP into PCL
scaffolds can induce substantial osteogenic activity in DPSCs, in an experiment conducted
in 2017 (Figure 3a) [93]. Tatullo et al. (2019) evaluated the osteo/odontogenic properties of
a PLA scaffold modified with dicalcium phosphate dihydrate and/or hydraulic calcium
silicate [85]. Human periapical cyst-derived mesenchymal stem cells (MSCs) cultured on
the scaffold exhibited a 2.5-fold upregulation of DMP-1 gene expression compared to those
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cultured on pristine scaffold. However, the authors noted that the acidic degradation of
PLA could hinder regeneration efficacy. Park et al. (2017) utilized an extrusion-based
3D printing system to fabricate PCL/β-TCP scaffolds [94]. Owing to the osteoinductive
properties of β-TCP, significantly superior osteogenic properties were observed in MSCs
lines than in pristine PCL. In 2018, implantation of the scaffold into alveolar defects in rats
resulted in the improved formation of new bone (Figure 3b) [95].
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Through the utilization of highly porous polymeric scaffolds, researchers have suc-
cessfully regenerated dental tissues, including dentin and pulp tissues, in preclinical trials 
[98,99]. Additionally, the incorporation of drug-loaded polymeric scaffolds holds great 
promise in controlling the rates of release of gene vectors, proteins, and growth factors, 
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Figure 3. Application of polymeric materials used for dental tissue engineering. (a) Effects of
platelet-rich plasma (PRP)-coated polycaprolactone (PCL) scaffold in osteogenesis of human dental
stem cells (* p < 0.05 and ** p < 0.005) [93]; (b) implantation of β-TCP/PCL scaffold to alveolar
defect in rats and Masson’s Trichrome (MT) staining results [95]; (c) SEM and ARS images of den-
tine incorporated PCL scaffold, cellular proliferation and alkaline phosphatase (ALP) activities of
human dental pulp stem cells [96] (* p < 0.05); (d) incorporation of mineral trioxide aggregate to
photo-crosslinkable methacrylated gelatin scaffolds (a, b, and ab, represents statistically significant
differences (p < 0.05)) [97].
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Through the utilization of highly porous polymeric scaffolds, researchers have suc-
cessfully regenerated dental tissues, including dentin and pulp tissues, in preclinical
trials [98,99]. Additionally, the incorporation of drug-loaded polymeric scaffolds holds
great promise in controlling the rates of release of gene vectors, proteins, and growth factors,
and in creating spatiotemporal microenvironments that support tissue growth and regulate
cell activities, including differentiation, proliferation, and migration [100]. For instance, in
2018, biodentine (an FDA-approved drug used for dentin repair) was incorporated with
PCL to develop bioactive scaffolds for dental/bone regeneration [96]. The incorporation
of biodentine significantly improves the cellular proliferation and osteogenic activities of
human dental pulp cells (Figure 3c). However, a key challenge in dental tissue engineering
is the development of strategic approaches to optimize tissue formation using complex
micron-scale geometries and biodegradable polymeric materials [101,102]. Thus, there is
significant demand for customized or flexible methodologies that employ biopolymers to
address complex geometries or non-standardized and unpredictable defects in the field of
periodontal tissue engineering.

Synthetic hydrogels, including poly(ethylene glycol) (PEG) and poly(vinyl alcohol),
consist of hydrophilic polymers that form 3D networks that can retain significant amounts
of water and undergo mild biodegradation. These hydrogels create a hydrated environment
similar to the native tissues, enabling cell encapsulation, nutrient diffusion, and growth
factor distribution. Through chemical modifications, synthetic hydrogels can incorporate
bioactive signals to enhance cell adhesion, proliferation, and differentiation. In dental
tissue engineering, these hydrogels have found applications in regeneration of dental pulp
and periodontal tissue engineering. Notably, RGD peptide-modified PEG hydrogels have
demonstrated elevated cell adhesion and proliferation, while modifications in the molecular
weight and photocross-linking of PEG have improved its mechanical properties without
detrimental effects on encapsulated cells [103–105].

One noteworthy example involves fibrin-loaded PEG hydrogels, which exhibit signifi-
cant potential as scaffolds for the growth and proliferation of DPSCs and PDLSCs. These
hydrogels combined the mechanical support and angiogenic properties of PEG with the
benefits of fibrin hydrogels [105]. The multiple applications of synthetic polymers in dental
tissue engineering are summarized in Table 1.

4.3. Polymer-Based Hybrid or Composite Materials

Composite scaffolds combine the advantages of multiple materials to achieve synergis-
tic effects. In dental tissue engineering, composite scaffolds often comprise a combination
of natural and synthetic materials. For example, a composite scaffold can be formed by
incorporating natural polymers, including collagen or chitosan, in synthetic polymers,
including PLGA or PCL. These hybrid scaffolds offer improved mechanical properties,
enhanced biocompatibility, and controlled degradation. Composite scaffolds have been
utilized for the regeneration of several dental tissues, including enamel, dentin, periodontal
ligaments, and bone. Ducret et al. (2019) incorporated chitosan into a fibrin polymeric
matrix to prevent the growth of endodontic bacteria and promote the regeneration of
dental pulp tissue [86]. The authors stated that chitosan-incorporated fibrin polymeric
hydrogels could be injected into the endodontic space for antibacterial effects. Furthermore,
chitosan–gelatin composite hydrogels have been investigated for alveolar bone regener-
ation. The implantation of bone MSCs seeded with chitosan–gelatin scaffolds into tooth
sockets in rats resulted in significant improvements in new bone formation and neovas-
cularization [91]. Yu et al. investigated the effects of 3D-printed alginate/gelatin hybrid
scaffolds using human dental pulp cells. Owing to the improved printability of the hybrid
bioink, complex 3D geometries were successfully fabricated, while the cellular proliferation
and osteo/odontogenic activities of human dental pulp cells were elevated.

Bioactive ceramics, including hydroxyapatite, tricalcium phosphate, and bioglass have
been widely used in endodontic applications because of their similarity to the mineral
components of natural dental tissues and their high bioactivity [106]. Hybrid scaffolds are
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created by combining bioactive ceramics with synthetic polymers or natural scaffolds. The
combination of bioactive ceramics with polymers enhances the mechanical properties and
provides a favorable environment for cell attachment, proliferation, and mineralization [107,
108]. Bioactive ceramic-based scaffolds have been employed for the regeneration of dental
tissues, including enamel, dentin, and alveolar bone. In 2012, improved characteristics
were demonstrated in an alginate scaffold incorporated with a nano-bioglass ceramic [109].
The modified scaffold exhibited enhanced attachment, growth, and alkaline phosphatase
(ALP) activity in hPDLF. For example, the incorporation of calcium silicate and calcium
sulfate into PCL scaffolds greatly improves calcium deposition in human dental pulp cells,
as indicated by the more intense Alizarin Red S (ARS) expression, as recently demonstrated
in 2022 [110]. Similarly, Choi et al. (2022) incorporated calcium silicate cement into
photocross-linkable methacrylated gelatin (GelMA) to investigate the cellular activity of
human DPSCs [97]. As a result, Dentin Sialophosphoprotein (DSPP) and DMP-1 genes
were significantly upregulated, indicating the efficient odontogenic activity of the cells
(Figure 3d). Nejad et al. (2012) fabricated a 3D PCL/calcium sodium phosphoslicate
Bioglass (BG) composite and PCL/hydroxyapatite (HA) scaffold to investigate dentin and
pulp tissues [111]. The incorporation of BG greatly upregulated osteo/odontogenic-related
genes, including DSPP, osteocalcin (OCN), and DMP-1, compared to PCL/HA, indicating
the significant potential of BG in alveolar bone regeneration.

Nanocomposite scaffolds incorporate nanoscale materials, including nanoparticles
or nanofibers, into a scaffold matrix. These nanomaterials can be either natural (e.g.,
nanocellulose) or synthetic (e.g., carbon nanotubes). The integration of nanomaterials
imparts unique properties to scaffolds, including enhanced mechanical strength, improved
bioactivity, and controlled drug release. Nanocomposite scaffolds have shown promise in
dental tissue engineering for applications in dentin regeneration, enamel remineralization,
and drug delivery systems. Jiang et al. (2015) demonstrated the incorporation of electrospun
aligned PCL-PEG nanofibers into a porous chitosan scaffold to evaluate the regenerative
efficacy of periodontal ligaments. Two months after implantation into the periodontal defect
in rats, the significant formation of aligned periodontal ligaments was observed, owing to
the appropriate contact guidance for the cells [92]. In addition to these examples, various
combinations of polymeric composites have been reported for dental tissue engineering, as
summarized in Table 1.

5. Bioprinting Using Cell-Laden Hydrogel Bioinks in Dental Tissue Engineering

Multiple cell types, including DPSCs, odontoblasts, and periodontal ligament cells,
can be bioprinted in specific arrangements to create tooth-like structures. In addition, by
providing a supportive hydrogel and appropriate bioactive cues, this process can promote
the differentiation and maturation of these cells, ultimately leading to the regeneration of
functional tooth.

In particular, bioprinting allows for the precise fabrication of cell-laden constructs
using hydrogel bioinks with a controlled internal architecture and complex geometries.
Recently, cell constructs have been used for dental tissue engineering to mimic the natural
ECM of dental tissues, providing structural support and guiding cellular behavior. The
selection of polymeric hydrogels and their composition can influence the mechanical prop-
erties, rates of degradation, and bioactivity of cell constructs, thus affecting the outcomes
of tissue regeneration.

To evaluate these effects, numerous studies have demonstrated the formulation of
a dECM bioink (Figure 4a–e) [112–117]. Kim et al. (2022) investigated the odontogenic
activity of a bone-derived dECM, (Figure 4a) [112]. The composition of bone-dECM was
similar to that of a dentin-derived dECM. Significantly higher levels of expressions of
osteopontin (OPN) and DSPP were observed in cells encapsulated in bone-dECM than in
those encapsulated in collagen-based bioink. In 2021, human dentin-derived dECM cell
constructs can significantly improve osteogenic activity (Figure 4b), as indicated by the
more intense ARS staining of DPSCs cultured on fibrinogen–gelatin bioconstructs with
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demineralized dentin matrix particles [113]. Moreover, Buyuksungur et al. (2021) fabri-
cated hybrid structures composed of synthetic (PCL) and natural polymer (GelMA) [114].
They printed PCL and cell-laden GelMA in alternating patterns, resulting in significant
mechanical enhancements, suggesting the potential application in alveolar bone tissue
regeneration. To further improve the mechanical properties, Lee et al. (2021) bioprinted
hPDLSCs with collagen bioink onto 3D-printed titanium scaffolds (Figure 4c) [115]. The
H&E staining showed that the hPDLSCs were well-proliferated in the calvarial bone defects
after 6 weeks of implantation.
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Figure 4. The application of cell-printing and cell-laden structures for dental tissue regeneration.
(a) Application of bone decellularized extracellular matrix and β-tricalcium phosphate (β-TCP) for ac-
celerated osteo/odontogenic differentiation of human dental pulp stem cells [112]; (b) incorporation
of demineralized dentin matrix particles to fibronogen/gelatin/hyaluronic acid/glycerol to evoke
efficient odontogenic differentiation [113]; (c) mechanically enhanced titanium/collagen hybrid struc-
tures for dental implants [115]; (d) incorporation of nano-sized demineralized human dentin matrix
particles into alginate hydrogel for enhanced dental repair [116]; (e) top- and side-view photographic
images of the Col bio-ink/SrCS bi-layer structure, the proliferation of encapsulated human gingiva
fibroblasts (hGF), representative µCT images of osteoporotic rabbits’ cranial bone defect model after
being implanted for 12 weeks, and µCT-quantified histograms of bone volume/total volume (BV/TV)
and trabecular thickness (Tb.Th) (* indicates a significant difference (p < 0.05) compared to SrCS and
# indicates a significant difference (p < 0.05) compared to bi-layer) [117].
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Another type of periodontal tissue, PDL, has also been studied using bioprinted struc-
tures. The bioprinting of PDL tissue using a GelMA hydrogel and PDLCs investigated the
printability of different concentrations of the GelMA hydrogel as a bioink for constructing
cell-laden structures. Various printing parameters, including photoinitiator concentration,
UV exposure, pressure, and dispensing needle diameter, were evaluated to determine their
influence on the viability of encapsulated periodontal ligament cells (2019). This research
identified the most suitable printing conditions. By optimizing these printing parameters,
the researchers were able to fabricate cell-laden constructs with a high printing resolution,
dimensional stability, and favorable cell viability for periodontal ligament cells [118].

In recent years, dental tissue engineers have explored the use of cell-laden constructs
fabricated using bioprinting techniques, which can function as carriers for controlled drug
release. Targeted and sustained drug delivery can be achieved by incorporating bioactive
molecules, growth factors, or antimicrobial agents into polymeric scaffolds. This has the
potential to promote tissue regeneration, reduce inflammation, prevent infection, and
achieve additional specific therapeutic objectives.

The efficacy of drugs and growth factors in promoting the proliferation and differen-
tiation of various dental stem cells has been extensively demonstrated. For example, Liu
et al. (2021) used bioprinted hydrogels containing metformin nanocarriers to promote the
differentiation of human deciduous tooth stem cells into bone tissue while maintaining
cell viability [119]. In addition, bioprinted hydrogels incorporating nanometal particles
or bioactive molecules promote the differentiation of different oral stem cells into peri-
odontal and bone tissue [120,121]. Furthermore, one study conducted in 2019, utilized a
heparin-collagen gel containing BMP-2 supported by a bioprinted bioceramic scaffold. This
combination induced the osteogenesis of dental pulp MSCs in vitro and resulted in ectopic
bone formation in a rat model [14].

These studies collectively demonstrate the potential of cell-laden constructs fabricated
by bioprinting for controlled drug release in dental tissue engineering applications. By in-
corporating drugs, growth factors, or bioactive molecules, these constructs can promote the
tissue-specific differentiation of dental stem cells, leading to enhanced tissue regeneration
and potential future clinical applications.

Another typical example of cell constructs with a bioactive factor was demonstrated in
2020 by in vitro studies of human DPSCs cultured in a BMP-2 incorporated GelMA/hyaluronic
acid/glycerol bioconstruct [122]. As a result of the inclusion of BMP-2 growth factor, the ex-
pression of OCN and DSPP was significantly pronounced in human DPSCs. These bioactive
factors can easily be blended with bioinks for bioprinting. In 2019, a decellularized dentin
matrix that contains these bioactive factors was incorporated into an alginate hydrogel to
enhance the odontogenic activities of cells (Figure 4d) [116].

A multi-tissue cell-laden structure for periodontal regeneration was studied in 2021
(Figure 4e) [117], and the construct was comprised of gingival fibroblast cell-laden collagen
and strontium-doped calcium silicate. Using a bi-layered structure, in vitro experiments
were used to assess the effects of the construct on cellular regeneration. They observed
a significant increase in the secretion of fibroblast growth factor-2, BMP-2, and VEGF in
human gingival fibroblasts. The construct stimulated the secretion of ALP, bone sialoprotein,
and OCN. To evaluate the regenerative potential of the multicell-laden structure, animal
models of osteoporosis demonstrated the enhanced regeneration of osteoporotic bone
when the construct was utilized. These findings suggest that the multicell-laden structure
effectively induced osteogenesis and guided periodontal regeneration, thereby highlighting
the properties of a bi-layered cell-laden construct consisting of gingival fibroblast cell-laden
collagen and strontium-doped calcium silicate to promote periodontal regeneration and
facilitate efficient osteogenesis [117].

The applications of bioprinting using cell-laden bioinks in dental tissue engineering
include cell construct fabrication, dentin regeneration, periodontal ligament regeneration,
and drug (or growth factor) delivery systems. These applications highlight the versatil-
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ity and potential of bioprinting technology to advance dental treatments, regenerative
therapies, and personalized dental solutions.

6. Challenges and Future Perspectives

Developing new polymeric materials with suitable rheological properties, biocompati-
bility, bioactivity, and mechanical strength is a challenge in bioprinting. The complexity
lies in ensuring that the biomaterial can successfully maintain structural integrity during
printing and provide support for cell viability, proliferation, and differentiation, while
maintaining structural integrity during printing [123]. To address this issue, an appropriate
selection of polymeric biomaterials is required.

Achieving proper biomimetic tissue engineering in which printed constructs accurately
mimic the complexity of natural dental tissues is challenging. The further development of
the 3D bioprinting process is also necessary to improve resolution and printing technology.
This includes a rapid printing process that enables the fabrication of complex cell-guiding
micro/nanostructures and scaling-up of the technology to produce more biomimetic scaf-
folds [124]. Furthermore, by considering the complexity and adaptability of dental tissues
to the native tissue environment, four-dimensional (4D) bioprinting, which integrates 3D
printing with time, could be an alternative approach to enhancing the printing or com-
plex shape design capability of current 3D bioprinting, considering the complexity and
adaptability of dental tissues to the native tissue environment [125,126].

Stem cells pose another challenge in dental tissue engineering, as they are an inex-
haustible source of cells for human organ regeneration. An optimally selected bioprinting
process combined with undifferentiated cells (e.g., MSCs and induced pluripotent stem cells)
could provide a technical opportunity to fully regenerate an entire tooth. Although hDPSCs
are widely used in dental tissue engineering, adipose-derived stem cells are also a promis-
ing alternative source of abundant and available stem cells because they have the potential
to differentiate into dental pulp, dentin, cementum, and periodontal ligaments [127,128].

Another important challenge is the lack of vascularization within bioprinted constructs
for dental tissue engineering [129]. A proper blood supply is crucial for the survival,
nutrition, and integration of regenerated tissues. Therefore, several studies have focused
on developing strategies to promote the formation of functional blood vessels within
bioprinted constructs. Prior research has provided empirical evidence that the inclusion of
VEGF in bioconstructs containing DPSCs resulted in the modification of cellular phenotype
through the stimulation of endothelial differentiation [130].

Advancements in multi-material bioprinting techniques will enable the fabrication
of more complex dental constructs, including a whole tooth. For instance, in 2019, the
combination of heparin, collagen, and BMP-2 was determined to meaningfully upregulate
the odontogenic activities of DPSCs and formation of ectopic bone in rat model [14]. By
combining multiple polymers, cells, growth factors, and other bioactive agents within a
single-printed scaffold, it is possible to replicate the heterogeneity and functionality of nat-
ural dental tissues. Integrating bioprinting with other biofabrication technologies including
electrospinning or 3D biofabrication methods, including microfluidic systems, may enable
the creation of a more sophisticated dental tissue constructs. Complementary advantages
can be achieved by combining different techniques to address specific challenges in dental
tissue engineering.

Finally, the future of bioprinting in dental tissue engineering lies in personalized
medicine. Periodontal tissues may exhibit diverse injury and damage geometries, depend-
ing on the patient. Thus, bioprinting technologies, combined with advanced imaging
systems, can facilitate the generation of patient-specific dental constructs that match the
individual anatomical and functional needs. Moreover, the effective tissue integration of
the implanted 3D bioconstructs with the native periodontal tissue is a crucial factor to
consider. The use of autologous tissues derived from patients is considered an important
factor for the fabrication of dental constructs that are customized to individual anatomical
and functional needs. This involves the formation of vascular and nerve networks in dental
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pulp tissues, as well as the anchoring of the teeth within the alveolar bone by cementum
and periodontal ligament tissues [131].

7. Conclusions

Dental tissue regeneration holds significant promise in addressing the challenges
associated with dental tissue defects, injuries, and diseases. In this review, the current ad-
vances in biomaterials and bioprinting applications in dental tissue engineering have been
discussed. Through the integration of polymeric biomaterials and bioprinting, substantial
progress has been made in the regeneration of dental tissues, dental bone, periodontal
ligament, and dentin. However, there are several avenues available for future research
and development, including the integration of functional 3D bioprinting with advanced
imaging and autologous tissue implantation, to further advance this field and translate
innovative strategies into clinical practice. This review provides a comprehensive overview
of the current state of research on dental tissue regeneration, highlighting the importance
of understanding the utilization of various approaches, including stem cells, scaffold
materials, and bioprinting technologies.
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