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Abstract: Interspecies translation of monoclonal antibodies (mAbs) pharmacokinetics (PK) in pres-
ence of target-mediated drug disposition (TMDD) is particularly challenging. Incorporation of TMDD
in physiologically based PK (PBPK) modeling is recent and needs to be consolidated and generalized
to provide better prediction of TMDD regarding inter-species translation during preclinical and
clinical development steps of mAbs. The objective of this study was to develop a generic PBPK trans-
lational approach for mAbs using the open-source software (PK-Sim® and Mobi®). The translation of
bevacizumab based on data in non-human primates (NHP), healthy volunteers (HV), and cancer pa-
tients was used as a case example for model demonstration purpose. A PBPK model for bevacizumab
concentration-time data was developed using data from literature and the Open Systems Pharmacol-
ogy (OSP) Suite version 10. PK-sim® was used to build the linear part of bevacizumab PK (mainly
FcRn-mediated), whereas MoBi® was used to develop the target-mediated part. The model was first
developed for NHP and used for a priori PK prediction in HV. Then, the refined model obtained in HV
was used for a priori prediction in cancer patients. A priori predictions were within 2-fold prediction
error (predicted/observed) for both area under the concentration-time curve (AUC) and maximum
concentration (Cmax) and all the predicted concentrations were within 2-fold average fold error (AFE)
and average absolute fold error (AAFE). Sensitivity analysis showed that FcRn-mediated distribution
and elimination processes must be accounted for at all mAb concentration levels, whereas the lower
the mAb concentration, the more significant the target-mediated elimination. This project is the
first step to generalize the full PBPK translational approach in Model-Informed Drug Development
(MIDD) of mAbs using OSP Suite.

Keywords: translational PBPK; monoclonal antibody; bevacizumab; TMDD

1. Introduction

The use of pharmacokinetic (PK) modelling during drug development has markedly
increased, especially to predict the dose-concentration-response relationship in human
models based on animal studies and to anticipate doses that should be investigated in
upcoming clinical phases. Modelling methods and softwares were especially designed for
small molecules, with the implementation of mechanistic data regarding drug transporters
and metabolizing enzymes. However, many limitations remain in translational modelling
of therapeutic proteins such as monoclonal antibodies (mAbs). Due to their large molecular
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weight, the mAbs volume of distribution is limited to a few liters represented by the vascular
and interstitial spaces of highly perfused and leaky tissues, as antibody diffusion in tissues
is allowed by the convective transport through paracellular pores in vascular endothelial
cell membranes [1,2]. The non-specific elimination of mAbs consists in proteolysis in
lysosomes after either target-independent fluid-phase or receptor-mediated endocytosis.
The affinity of mAbs belonging to G-isotype immunoglobulins (IgG) to neonatal Fc receptor
(FcRn) is the main receptor-mediated endocytosis mechanism that protects them from
lysosomal degradation and explains their long elimination half-life in humans (11–30 days)
while FcRn-mediated transcytosis is also involved in mAbs tissue distribution. mAb PK
also depend on their interaction with target antigens (soluble and/or expressed on cell
membranes). This phenomenon refers to target-mediated drug disposition (TMDD) and is
responsible for non-linear PK profiles observed at lower concentrations when the target
antigen is not saturated. TMDD depends on several factors such as the binding affinity,
antigen turnover, elimination rate of the mAb-antigen complex, and finally on the mAb
concentration. In case of drug development, inclusion of TMDD processes in the model
could help in studying the PK/PD relationship that depends on antigen concentration in
target tissues and provides a better evaluation of doses for further preclinical and clinical
trials. However, the expression of target antigen is more complex than a simple one-
compartment turnover that is assumed in TMDD modeling [3]. PBPK has the advantage to
provide a more in-depth description of mAb biodistribution and may therefore account for
mAb-target interaction not only in blood, but also in tissues and organs [4]. In addition,
PBPK models consider the expression of FcRn in different tissues and mAb-FcRn binding
affinity [5].

Although several PBPK models for mAbs disposition in humans [6,7] or in animals [5,8]
have been reported in the literature, the methodology regarding the PK translation from
animal to human including TMDD using full PBPK modeling remains limited. Glassman
and Balthasar previously proposed a translational PBPK model including TMDD for
mAbs scaled up from non-human primate (NHP) to human in the ADAPT software [9].
Their model was developed for mAbs exhibiting TMDD both in animals and humans.
Nevertheless, not all mAbs show target-mediated profiles in animals and in such cases,
prediction of PK in humans is more challenging. In addition, first-in-human (FIH) studies
of mAbs can be also performed in healthy volunteers. Therefore, in the drug development
process, the PK of mAbs should be first scaled up from preclinical species to healthy
volunteers and then to patients. It could help to define the parameters related to TMDD in
human and better predict the PK/PD relationship to avoid administering subtherapeutic
doses in patients. In light of the above considerations, the objective of this study was
to develop a full translational PBPK modelling approach including a TMDD mechanism
for mAbs using the Open Systems Pharmacology (OSP) Suite. This modeling approach
demonstration was based on a bevacizumab case example, using data from the literature.
The model was used for a priori predictions of PK in human (healthy volunteers then
patients) using monkey data during a theoretical drug development process.

2. Material and Methods
2.1. PK Data

Bevacizumab was selected for this retrospective analysis as it shows non-linear PK
at very low doses due to TMDD and numerous PK studies in NHP, healthy volunteers
(HV), and adult cancer patients after intravenous doses are available in the literature.
Bevacizumab is a humanized monoclonal IgG1 antibody targeting vascular endothelial
growth factor (VEGF) which results in blocking the angiogenesis and is approved for the
treatment of several solid tumors [10]. Only complete PK profiles after intravenous doses
were selected for this study to exclude potential sources of variability in subcutaneous
absorption and to focus on drug distribution and elimination phases. Ten publications
were selected, and data are summarized in Table 1. The majority of the data consisted of
mean PK profiles (with or without standard deviation) although some individual profiles
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were also included. Data at 0.1 mg/kg dose from Gordon et al. [11] were excluded from
this retrospective analysis due to large variability in the individual PK parameters reported
in five patients (8- and 7-fold variation in clearance [CL] and area-under-the-concentration-
time curve [AUC], respectively) and absence of individual PK profiles. The majority of the
data were obtained in Caucasian populations, except for the study described by Li et al.
in a Chinese population [12]. PK data were digitalized using the WebPlotDigitizer tool
(https://apps.automeris.io/wpd/, accessed on 1 April 2022).

Table 1. Summary of digitalized PK bevacizumab data used for the PBPK model development.

Population Number of Subjects Bevacizumab Dose Study Description

Cynomolgus
monkey

2 (bevacizumab)
2 (xtend-bevacizumab)

4 mg/kg
Single dose

PK study in cynomolgus
monkey, Mean profiles

Zalevksy et al., 2010 [13]

HV 5 0.5 mg/kg
Single dose

PK study of bevacizumab,
Individual profiles in

Chinese HV
Li et al., 2017 [12]

HV 43 1 mg/kg
Single dose

Phase I study in HV,
Mean (sd) profiles
Wu et al., 2019 [14]

HV 30 1 mg/kg
Single dose

Phase I study in HV,
mean profiles

Hettema et al., 2017 [15]

HV 37 1 mg/kg
Single dose

Phase I study in HV,
Mean profiles

Hummel et al., 2022 [16]

HV 39 1 mg/kg
Single dose

Phase I study in HV, mean
profiles

Demarchi et al., 2021 [17]

HV 38 3 mg/kg
Single dose

Phase I study in HV,
Mean profiles

Sinn et al., 2022 [18]

HV 40 3 mg/kg
Single Dose

Phase I study in HV,
Mean (sd) profiles

Shin et al., 2020 [19]

Adult cancer
patients 5 subjects per dose 0.3, 1, 3, 10 mg/kg

Repeated dose

Phase I study in cancer
patients, Mean profiles
Gordon et al., 2001 [11]

Adult cancer
patients 61 5 mg/kg

Repeated dose

Biosimilar study in patients,
Mean profiles

Romera et al., 2018 [20]
HV, Healthy Volunteers, sd, standard deviation.

2.2. Software

PBPK modeling was performed using Open Systems Pharmacology (OSP) Suite ver-
sion 10 (http://www.opensystemspharmacology.org, accessed on 1 April 2022) including
the PBPK software PK-sim®. MoBi® was used to extend the PBPK model with the specific
TMDD process. Data processing and graph plotting were performed in R version 4.0.5
coupled with RStudio version 1.4.1.

2.3. PBPK Model Structure

The PBPK model for mAbs in PK-sim® was proposed by Niederalt et al. [21]. In this
analysis, the generic model was used without further modifications with physiological
values for NHP and humans implemented in the software [22–24]. The structure of the

https://apps.automeris.io/wpd/
http://www.opensystemspharmacology.org
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model consists of 15 compartments representing organs or tissues connected by blood and
lymph flows. Each compartment was further divided into vascular (plasma and blood
cells), endosomal, interstitial, and cellular spaces [21]. An additional compartment was
added to represent endosomes and lysosomes within vascular endothelial cells [21] to
account for the catabolism of the drug in the endosomal space and its binding to FcRn [7].
Schematic representation of the model is presented in Figure 1. The transcapillary exchange
of the drug between plasma and interstitial space by convection or diffusion in each organ
was described using a two-pores formalism [21]. The return of the drug from the interstitial
space to the blood compartment was described by organ-specific lymph flow.
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Since the PBPK model for proteins in PK-sim® does not describe parameters related to
the TMDD, the model was extended in Mobi® software. TMDD describes the reversible
binding of the drug with its receptor leading to internalization of the complex and its
elimination (Figure 2). In the modeling analysis, TMDD was described as follows:

dR
dt

= ksyn − kdeg × R− kon × D× R + ko f f × DR

dD
dt

= −kon × D× R + ko f f × DR

dDR
dt

= kon × D× R− ko f f × DR− kint × DR

With ksyn = kdeg × R0

kon =
ko f f

KD,target

where R is the receptor concentration, R0 is the receptor concentration at steady-state,
D is the drug concentration, DR is the drug-receptor complex concentration, ksyn is the
zero-order synthesis rate constant of the receptor, kdeg is the first-order elimination rate
constant of the receptor, kon is the first-order binding rate constant, koff is the first-order
dissociation rate constant, kint is the first-order internalization rate constant (elimination of
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the drug-receptor complex), and KD,target is the equilibrium constant dissociation of DR.
The TMDD mechanism was described in presence of the target in the extracellular space
(plasma and interstitial fluid).
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2.4. PBPK Modeling Approach

This retrospective PK analysis was performed using bevacizumab PK data from the
literature to represent different steps of a theoretical development of a therapeutic protein.
To evaluate the interest of this type of Model-Informed Drug Development (MIDD), the
approach was divided in several sequential steps. The PBPK model for bevacizumab
was first built for NHP, then refined based on observed PK data in NHP. The next step
consisted in a priori prediction of PK profiles in HV with the NHP model and then the
model was refined based on the observed data. Finally, the PBPK model in HV was used
for a priori prediction of PK profiles in cancer patients. At each step, the model predictive
performance was evaluated by comparing observed versus a priori predicted (obtained
with the model without refined parameters) AUC from the first until the last observed or
predicted concentration, and the maximal concentration (Cmax).

The values for each specific parameter used in the bevacizumab PBPK model in each
population are summarized in Table 2. They include equilibrium dissociation constant
with FcRn (KD-FcRn), KD,target (equilibrium constant dissociation of bevacizumab with
VEGF-A), VEGF-A concentration in each population, and parameters related to TMDD
(kdeg, kint, koff) in human.

Table 2. Bevacizumab PBPK model parameters.

Parameter

Cynomolgus Monkey Healthy Volunteers Adult Cancer Patients

Bevacizumab Xtend-
Bevacizumab

A Priori
Predicted Refined A Priori

Predicted Refined

KD-FcRn (nmol/L) 450 41 900 940 940 940

KD,target
a (nmol/L) 0.032 [25] 0.032 [25] 0.058 [26] 0.058 [26] 0.058 [26] 0.058 [26]

koff
a (day−1) 3.5 [25] 3.5 [25] 3.5 [26] 2.7 [26] 2.7 [26] 2.7 [26]

VEGF-A (nmol/L) 0 to 3
(min-max)

0 to 3
(min-max) 1.5 0.3 0.6 to 3

(min-max) 3.86

kdeg (day−1) - - - 0.18 0.18 0.18

kint (day−1) - - - 0.043 0.043 0.043

KD-FcRn, equilibrium dissociation constant of FcRn-bevacizumab complex; KD,target, equilibrium dissociation
constant of bevacizumab-VEGF-A complex; koff, first-order dissociation rate constant of bevacizumab-VEGF-A
complex; VEGF-A, concentration of VEGF-A; kdeg, first-order degradation rate constant of VEGF-A; kint, first-order
internalization rate constant of bevacizumab-VEGF-A complex. a Parameter fixed to the literature value.

2.4.1. Non-Human Primate

The PBPK model was first developed in NHP in order to characterize the linear part of
bevacizumab PK in a relevant species. The starting point of the model was to describe the
physiology of the cynomolgus monkey with parameters referenced in the software and the
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physicochemical characteristics of bevacizumab (MW: 150 kDa and hydrodynamic radius:
5.34 nm). At this step, the key parameter to optimize was the dissociation constant of the
IgG Fc portion with FcRn (KD-FcRn). This parameter was fitted in the model based on
the observed data in NHP. To verify if KD-FcRn value used in the model was consistent
and to confirm the PK prediction in NHP, the model was applied to PK data of xtend-
bevacizumab. Xtend-bevacizumab is a lead Fc variant (M428L/N434S) of bevacizumab
with greater affinity to human FcRn [13]. Values of KD-FcRn measured by Biacore in that
study were 2460 and 218 nmol/L for bevacizumab and xtend-bevacizumab, respectively,
which translates into an 11-fold higher affinity of xtend-bevacizumab to FcRn compared
to bevacizumab [13]. The parameters related to bevacizumab binding to NHP VEGF-A
were added in the model in order to consider the possible impact on its tissue distribution.
KD,target and koff values for NHP (0.032 nmol/L and 3.5 day−1, respectively) were obtained
from Ren et al. based on in vitro assays using a surface plasma resonance (SPR) Biacore
system with NHP VEGF-A [25]. Since no data about VEGF-A concentration in NHP are
available in the literature, it was assumed to be equivalent to that in human.

2.4.2. Healthy Volunteers

First, the model tested in NHP was used to predict PK profile in HV, considering
that bevacizumab PK in HV is linear and that no TMDD occurs at physiological values
of VEGF-A. Physiological characteristics were adapted to human using PK-Sim® refer-
ences. KD-FcRn was considered 2-fold higher in humans than in NHP as described in
the literature for IgG1 [27]. The KD,target and koff values for human (0.058 nmol/L and
2.7 day−1, respectively) were obtained from Papadopoulos et al. by in vitro assays using
the SPR Biacore system with human VEGF-A [26]. Different values of VEGF-A plasma
concentration in humans were reported in the literature (range: 0–3 nmol/L [28–32]). To
account for this uncertainty in the model, different values ranging from 0 to 3 nmol/L
were tested and evaluated in terms of best data fit. Large-scale gene expression data from
publicly available sources are implemented in the OSP suite to be used directly in PBPK
model building [33]. Expressed sequence tags (EST) is a gene expression database for
many antigens and proteins extracted from relevant files in the human section of UniGene
(National Center for Biotechnology Information) [34,35]. This EST gene database was used
for VEGF-A relative expression across different organs and tissues in the model.

Second, the observed PK data collected in HV were used to refine the model. In order
to characterize the non-linear profile observed in HV at very low doses (0.5 and 1 mg/kg),
a TMDD mechanism was implemented in the model as described in Figure 2 and in the
PBPK Model Structure Section. This mechanism was implemented in tissues and organs
where VEGF-A is expressed according to EST gene database (Figure S1 in Supplementary
Material). koff was fixed to an in vitro value (2.7 day−1 [26]), whereas kdeg and kint were
fitted based on observed data at 0.5 and 1 mg/kg doses, respectively.

Finally, the model was validated using data in HV (single administration of a 3 mg/kg
IV dose of bevacizumab) from the study by Liu et al. [36]. Observed data were compared
to simulated data and AAFE and AFE were calculated.

2.4.3. Adult Cancer Patients

The PBPK refined model in HV was used to predict PK profiles in adult cancer patients.
According to the literature, VEGF-A concentration in cancer patients is 2- to 10-fold higher
than in HV in several solid tumor patients including breast, prostate, and colorectal cancer
patients [29–31]. In the model for cancer patients, VEGF-A concentration was multiplied
by these factors (2- and 10-fold increase in VEGF-A concentration was tested) in each
tissue and organ where VEGF-A is expressed according to EST gene database (Figure S1 in
Supplementary Material). Other parameters were considered equivalent to those in HV. PK
data observed in adult cancer patients were used to refine the model. Estimated parameters
relative to the TMDD mechanism (kdeg, kint and VEGF-A concentrations) were adjusted to
obtain the final model.
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2.5. Model Evaluation

At each step, PK prediction obtained with the a priori model (i.e., PK prediction in HV
obtained with NHP model, PK prediction in cancer patients obtained with HV model) was
compared with the observed data. This allows to evaluate the predictive performance of this
approach in case of a prospective drug development when PK data in a specie/population
to which the PK was scaled is not yet available. The model evaluation was performed by
comparing graphically observed and predicted AUC from the time of the first to the last
observed or predicted concentration and the maximal plasma concentration (Cmax).

The overall predictability of the a priori model was also evaluated in terms of precision
using AAFE (average absolute fold error) and AFE (average fold error) according to the
following equations [37,38]:

AAFE = 10
1

N ∑ | log (
CPredicted
CObserved

)|

AFE = 10
1

N ∑ log (
CPredicted
CObserved

)

The model validation and verification criteria were based on the guidelines intended for
regulatory submissions (EMA and FDA) reported by Abduljalil et al. and Shebley et al. [39,40].
Predictions were considered as very accurate if they fell within the 0.80–1.25 error range,
acceptable if within 0.50/0.80–1.25/2.00, and inaccurate if outside the two-fold error range
(0.50–2.00).

2.6. Sensitivity Analysis

Sensitivity analysis was performed on parameters of interest (KD-FcRn, KD,target,
VEGF-A concentration, kdeg, kint, koff) using the PK-Sim® or Mobi® tool. Parameter sensi-
tivity was analyzed for AUC over the dosing interval at steady-state (AUCtau,ss) and Cmax
at steady-state (Cmax,ss). The sensitivity of the PK parameters (S) is calculated as the ratio of
the relative change of the PK parameter and the relative variation of the model parameter
(fixed at 10%) as follows:

S =
∆Po
∆pi

× pi
Po

where ∆Po
Po is the relative change of the PK parameter (AUCtau,ss or Cmax,ss) and ∆Pi

pi is the
relative variation of the model parameter.

3. Results
3.1. Non-Human Primate

Since no TMDD mechanism was necessary in the NHP model to fit the observed PK
data, the key parameter in the model was KD-FcRn describing the affinity of bevacizumab
to cynomolgus FcRn. This parameter was fitted to the observed data and the best fit was
obtained with KD-FcRn of 450 nmol/L. This value was coherent with values found in the
literature for IgG1 and bevacizumab in cynomolgus monkey [7,27]. Other parameters (such
as concentration of VEGF-A, KD,target and koff) were fixed to physiological or experimental
values (Table 2). Concentration-time data were satisfactorily described by the model
(Figure 3).

Then, the model was used to describe xtend-bevacizumab data. For that, the value
of KD-FcRn was divided by 11 in the model for xtend-bevacizumab in comparison to
bevacizumab (41 nmol/L, Table 2). The model adequately described xtend-bevacizumab
data as shown in Figure 3. The details of the model development steps in PK-Sim® are
presented in Supplementary Material S2.
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Figure 3. Observed and PBPK model-predicted concentrations in non-human primate: (a) 4 mg/kg
IV dose of bevacizumab, (b) 4 mg/kg IV dose of xtend-bevacizumab.

3.2. Healthy Volunteers

The PBPK model developed in NHP was used to predict PK in HV. A 2-fold higher
KD-FcRn value than that in NHP (i.e., 900 nmol/L) was used in the model which allowed
for adequate prediction of the observed data (Figure 4) [27]. The KD,target was fixed to
an in vitro value (0.058 nmol/L) [26]. The variation in VEGF-A concentration between 0
and 3 nmol/L had no impact on the predictions and was therefore fixed to a mid-range
value (1.5 nmol/L). The model showed good prediction of the linear part of the PK, that
is, at higher plasma concentrations (visible at 3 mg/kg and at the beginning of the curve
at 1 mg/kg, Figure 4). However, a slight overprediction of the terminal slope at 1 mg/kg
and of the entire PK profile at 0.5 mg/kg dose was observed. This overprediction was
due to TMDD which was not integrated in the model at this step. However, this a priori
PK prediction was quite good, with Cmax and AUC within the 2-fold error threshold
(except for one individual profile at 0.5 mg/kg dose in the Chinese population, Figure 5).
For all the evaluated doses, AAFE and AFE ranged from 1.30 to 1.94 and from 0.72 to
1.94, respectively (Table 3). These PK profiles were in the acceptable range of prediction,
with a slight overprediction trend for the 0.5 mg/kg dose. Parameter values are reported
in Table 2. The details of the model development steps in PK-Sim® are presented in
Supplementary Material S3.

Table 3. AFE and AAFE evaluation for a priori predictions of adult cancer patients and healthy
volunteers.

Population Dose (mg/kg) AFE AAFE

Adult Cancer Patients

0.3 0.89 1.38

1 0.75 1.39

3 0.86 1.27

5 1.04 1.17

10 0.85 1.23

Healthy Volunteers

0.5 1.94 1.94

1 1.05 1.30

3 0.72 1.39

AAFE: average absolute fold error. AFE: average fold error.
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In the next step, the model was refined to improve the fitting of observed HV PK pro-
files. The KD-FcRn was adjusted from 900 to 940 nmol/L (Table 2). Then, the TMDD mech-
anism was implemented in the model. kint and kdeg were fitted to the data at 0.043 day−1

and 0.18 day−1, respectively. The reference concentration of VEGF-A was adjusted to
0.3 nmol/L which allowed the description of TMDD Figure 4 (red profile). A slight overpre-
diction of the entire PK profile was observed at 0.5 mg/kg dose. Nevertheless, the TMDD
part of the model allowed a satisfactory description of these data.

The refined model was validated using data in HV (single administration of a 3 mg/kg
IV dose of bevacizumab) from the study of Liu et al. [36]. Observed data were well predicted
(Figure S2 in Supplementary Material) with AAFE and AFE of 1.24 and 1.23, respectively.

3.3. Adult Cancer Patients

The PBPK model refined using HV data was used to predict PK profiles in adult cancer
patients. The TMDD parameters kdeg, kint, and koff were assumed to be the same as in
HV but it was considered that cancer patients have 2- to 10-fold higher concentrations
of VEGF-A as described in the literature [29–31]. Therefore, different concentrations of
VEGF-A were tested in the model (values ranging from 0.6 to 3 nmol/L corresponding to
2- to 10-fold variation compared to HV value). Increasing VEGF-A concentration resulted
in higher bevacizumab CL and lower plasma concentrations. However, the impact of
VEGF-A concentration on PK profiles was only visible for low doses (0.3 and 1 mg/kg),
that is, in the presence of TMDD (Figure 6). The model showed good a priori predictive
performance when compared to the observed data both in the linear and non-linear (TMDD)
range of concentrations (especially when VEGF-A concentration was fixed to 3 nmol/L).
Comparison of a priori PK predictions with the observed data is presented in Figure 5 and
shows that the majority of the a priori predictions were within the 1.25-fold error threshold
range and all the predictions were within the 2-fold error threshold range. AAFE and AFE
ranged from 1.17 to 1.39 and from 0.75 to 1.04, respectively, for all the doses (Table 3). These
PK profiles were mainly in the very accurate range of prediction, and in the acceptable
range for 3 mg/kg Cmax. No trend of over- or underprediction could be observed.

Then, the observed data in adult cancer patients were used to fit TMDD model param-
eters to better describe the lowest observed concentrations which were overpredicted using
the a priori model. The only fitted parameter was VEGF-A concentration (3.86 nmol/L). It
allowed a better description of PK profiles regarding 1 and 3 mg/kg doses (Figure 6). This
value is 12-fold higher than that in HV which is consistent with higher VEGF-A concentra-
tions observed in cancer patients than in HV due to tumor burden and remains close to the
value described in the literature [29–31]. The final parameter values are reported in Table 2.

3.4. Sensitivity Analysis

Sensitivity analysis was performed for each fitted model and for each dose and the
results are presented in Figure 7. KD-FcRn is the most important parameter to fit the linear
part of the PK. Taking as an example the model in cancer patients and a 10 mg/kg dose, a
10% increase in KD-FcRn resulted in a decrease of 8% and 4.5% in AUCtau,ss and Cmax,ss,
respectively. Although the results show that KD-FcRn have an impact on PK profiles at each
dose, parameters relative to the TMDD mechanism became more significant at lower doses.
For a dose of 0.3 mg/kg in cancer patients, kdeg was the parameter with the highest impact
on AUCtau,ss and Cmax,ss, followed by KD-FcRn and VEGF-A concentration. At this dose,
an increase of 10% in kdeg induced a 16% decrease in AUCtau,ss, whereas a 10% increase
in VEGF-A concentration or KD-FcRn induced a decrease of 10% and 13% of AUCtau,ss,
respectively. For HV models in single dose, only KD-FcRn impacted AUCtau,ss with a
similar effect at each dose. An increase of 10% in KD-FcRn induced an 8% decrease of
AUCtau,ss.
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represents predictions obtained using refined model. Blue points are the observed data.
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4. Discussion

Translational PK of therapeutic proteins is usually performed using population ap-
proach when the drug shows only linear PK both in animal and in human [2]. However,
this translation becomes more complex in case of non-linearity in PK regardless of its origin
(e.g., TMDD, anti-drug antibodies [ADA], disease state). In such cases, more mechanistic
translational models are needed, such as full PBPK or quantitative system pharmacology
(QSP) models. Since this kind of translational tool is still little described in the literature,
the interest of this work was to develop a full translational PBPK modeling approach in an
open-source software (OSP Suite) based on literature data for bevacizumab.

The developed PBPK translational model showed good predictive performance at
all steps of a theoretical drug development process. Interestingly, TMDD was observable
in HV, especially at low doses. Since VEGF-A concentration is significantly lower in
HV than in patients, this TMDD mechanism was not necessarily expected. According
to the manufacturer label, bevacizumab PK is linear in HV for doses ranging from 1 to
10 mg/kg [10], although a slightly non-linear profile was visible at 1 mg/kg in several
studies [14–17]. In addition, Li et al. used a mixed zero- and first-order model to describe
elimination of bevacizumab at 0.5 mg/kg in HV as it provided better description of the data
than a linear PK model [12]. In this study, the use of HV data allowed to better anticipate
PK in cancer patients, mostly due to the description of TMDD processes. Although during
this theoretical MIDD, PK in patients could have been anticipated directly from NHP data,
no indication on kdeg and kint parameters would have been available which could have
limited model predictions. Therefore, this work supports the relevance of PK studies in HV
during mAbs development. Phase 1 trials in patients are still a standard approach in the
oncology field. However, as mAbs have a safer toxicity profile compared to conventional
anticancer chemotherapy, it is more and more discussed to perform FIH studies in HV in
the oncology field as well, which would help to avoid subtherapeutic doses in patients as
discussed by Tranter et al. [41].

Previously, Baxter et al. [42] and Davda et al. [43] described the scaling up of linear
mAbs PK using PBPK modeling. A platform PBPK model was also developed to describe
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the PK of mAbs including target-mediated elimination across several species by Shah
and Betts [44], but no simulations were performed to analyze the ability of the model to
predict PK in human. More recently, a catenary PBPK model developed by Chen and
Balthasar [45] was scaled up to monkey [46] then to cancer patients [9]. That model
showed good prediction of PK of four mAbs (cetuximab, dalotuzumab, figitumumab, and
trastuzumab) but did not account for data in HV. Since FIH studies of mAbs are usually
performed in HV, especially outside oncologic indications, the PK of mAbs in that case
should be first scaled up from preclinical species to HV and then to patients. It could
help to define the parameters related to TMDD in human and better predict the PK/PD
relationship, especially at lower doses.

Parameter values obtained in cancer patients in the refitted model are consistent
with those reported in the literature for bevacizumab using PBPK and population PK
approaches [7,47,48]. However, the VEGF-A elimination half-life (i.e., 3.95 days, calculated
as ln2/kdeg) was higher than the value previously described in the literature based on
in vitro assays (between 30 min and several hours [49–51]). Nevertheless, Papachristos et al.
and Panoilia et al. reported similar values of VEGF-A elimination half-life estimated using a
population approach in metastatic cancer patients (5.97 and 1.73 days, respectively) [47,48].
It could be explained by the fact that VEGF-A is largely bound to its receptor in the
membrane which could slow down its elimination [49].

In our model, endosomal kinetics of mAb–FcRn complex was described with non-
equilibrium differential equations as previously developed by Niederalt et al. [21] (details
on model equations are presented in Supplementary Material S1). This non-equilibrium
mAb-FcRn binding was already used in the catenary model by Chen and Balthasar [45].
Non-equilibrium mAb-FcRn binding predicts more modest changes in antibody elimina-
tion half-life due to modifications of the affinity to FcRn (KD-FcRn) than the equilibrium
model [4,45], for example, a <2.5-fold change in half-life for a 10-fold increase in binding
affinity [45]. We observed similar findings with our model, since the 11-fold increase in
FcRn binding affinity of xtend-bevacizumab compared to bevacizumab led to a 3-fold
decrease in elimination half-life, which is coherent with the observed data. Chen and
Balthasar speculated that non-equilibrium binding could explain the lack of a clear relation-
ship between equilibrium FcRn binding affinity at pH 6 and the observed in vivo half-life
of IgG antibodies [45]. Indeed, because of the slow rates of dissociation of mAb with FcRn,
the assumption that mAb–FcRn binding reaches equilibrium prior to endosomal sorting
seems incorrect.

Overall, the developed PBPK modeling framework showed good predictive perfor-
mance. All the a priori predictions were within a 2-fold threshold for PE, AAFE, and AFE
compared to the observed data. Only one data set was slightly overpredicted (1.58, 1.78,
1.94 and 1.94-fold PE for Cmax, AUC, AAFE and AFE respectively). It corresponded to
Chinese HV administered a 0.5 mg/kg dose (Figures 4 and 5). This overprediction seems
to be due to an inadequate description of the volume of distribution that could be related
to a physiological difference in this ethnic group. However, in a population PK analysis
by Han et al., the differences in bevacizumab PK between Asian and Caucasian patients
were described solely by the difference in body weight [52], which was considered in
our analysis. It suggests that there might be other ethnical differences in physiological
parameters between Caucasian and Asian populations which were not well accounted for
in the model.

Sensitivity analysis allowed to evaluate the importance of KD-FcRn and TMDD-related
parameters on model predictions for different doses and populations (NHP, HV and cancer
patients) and to understand which parameter needs to be optimized during development
of mAbs PBPK model. As expected, the variation of TMDD parameters had the highest
impact on PK profiles at the lowest doses (especially 0.3 mg/kg in cancer patients). Since
TMDD parameters are important to predict PK in FIH phase 1 trials, these parameters
should be obtained by in vitro assays and in vivo measurement of the target concentration
in preclinical species and target populations prior to PBPK model building. Concerning
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KD-FcRn, this parameter is the most important to determine the linear part of mAbs PK. It is
usually determined by in vitro assays prior to PBPK modelling. However, KD-FcRn found
in vitro does not necessarily correspond to the in vivo value. The in vitro value is used in
preclinical PBPK modelling as a starting point and the in vivo value is obtained by fitting
the observed data. To anticipate KD-FcRn in human, the in vitro/in vivo ratio determined
in animal and the in vitro value from SPR assays in human is used to develop a PBPK
model. PK translation of rozanolixizumab from preclinical to clinical stages described in
the study by Lledo-Garcia et al. is an example of this type of approach [53].

The translational PBPK modelling approach developed in this work could be extended
to other antibodies using the databases integrated in OSP Suite. The ease of use of the
OSP Suite for translational PBPK is the fact that the software requires limited number of
in vitro data to predict PK profiles. Therefore, it can help a more rapid screening of mAb
drug candidates as it is currently done for small molecule drugs. In addition, the use of
a comprehensive software tool for whole-body PBPK enables rapid access to all relevant
anatomical and physiological parameters for human and common laboratory animals
(mouse, rat, minipig, dog, monkey and rabbit) which are available from an integrated
database [54]. Also, the target expression in the PK-Sim® EST database allows to easily
develop linear or non-linear PK models for mAbs and to extrapolate inter-species PK with
a reduced number of experimental data and with accurate predictions as shown in this
example with bevacizumab. Finally, the PBPK model presented in this work can serve
as a platform to develop models for other mAbs with more complex PK properties such
as bi- or trispecific antibodies or antibody-drug conjugates (ADC). Indeed, in such cases,
conventional population PK approaches might not allow to study the TMDD processes
and PK-pharmacodynamic (PK/PD) relationship. Khot et al. used the example of T-
DM1 (trastuzumab emtansine) to develop a full PBPK modelling platform in ADAPT
software [55] whereas more recently, Zhang et al. described PK translation of a bispecific
antibody using full PBPK approach in GastroPlus® software [56]. Finally, translational
QSP models have been developed for CD3 bispecific molecules [57]. Prediction of drug
PK, efficacy and toxicity using mechanistic frameworks integrating in silico, in vitro and
in vivo data stands for the future in the drug development especially in biologics which
are more complex drugs than small molecules.

This study has several limitations. First, a prospective validation of this approach was
not possible because no prospective bevacizumab data set was available in our study. To
further validate and consolidate the use of this approach in MIDD of mAbs, other studies
with mAbs with more complex PK (e.g., ADC, bi- or trispecific antibodies) are needed.

Other host-related factors such as disease state, tumor burden, and presence of ADA
may impact on mAbs PK [1,2] and were not included in this analysis. Time-varying PK
has been observed for several mAbs such as nivolumab and pembrolizumab and has been
associated to changes in disease state (cachexia, inflammation) [58,59]. In addition, patients
who present ADA can have higher mAbs CL [2]. Prediction of mAbs PK in patients using
animal or HV data does not allow to take these factors into account which might result in a
wrong dose selection. Thus, further improvements should be performed in the translational
PBPK models in order to include these factors in PK predictions.

5. Conclusions

In this work, we report development of a PBPK modelling framework in OSP Suite
for PK translation from NHP to cancer patients for a mAb presenting TMDD. This project
is the first step to generalize this kind of approach in MIDD of mAbs using OSP suite.
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