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Abstract: Chronic inflammatory respiratory diseases, such as asthma, chronic obstructive pulmonary
disease (COPD), and cystic fibrosis, present ongoing challenges in terms of effective treatment and
management. These diseases are characterized by persistent inflammation in the airways, leading to
structural changes and compromised lung function. There are several treatments available for them,
such as bronchodilators, immunomodulators, and oxygen therapy. However, there are still some
shortcomings in the effectiveness and side effects of drugs. To achieve optimal therapeutic outcomes
while minimizing systemic side effects, targeted therapies and precise drug delivery systems are
crucial to the management of these diseases. This comprehensive review focuses on the role of drug
delivery systems in chronic inflammatory respiratory diseases, particularly nanoparticle-based drug
delivery systems, inhaled corticosteroids (ICSs), novel biologicals, gene therapy, and personalized
medicine. By examining the latest advancements and strategies in these areas, we aim to provide
a thorough understanding of the current landscape and future prospects for improving treatment
outcomes in these challenging conditions.

Keywords: drug delivery; chronic inflammatory respiratory diseases; nanoparticle-based drug
delivery systems; inhaled corticosteroids; novel biologicals; gene therapy; personalized medicine

1. Introduction

Chronic inflammatory respiratory diseases, such as asthma and chronic obstructive
pulmonary disease (COPD), affect millions of people worldwide and are a leading cause
for the increase in lung disease morbidity and mortality [1]. Asthma, as a heterogeneous
clinical syndrome, affects over 300 million people worldwide [2]. COPD, a disease mainly
associated with long-term smoking, became the third leading cause of death globally in
2020 [3]. Although there are several existing treatments, limited efficacy, side effects, and
individual variability still cannot be ignored [4–6]. In recent years, there has been a growing
interest in the development of targeted drug delivery systems for the treatment of these
diseases [7–9]. Nanoparticle-based drug delivery systems, inhaled corticosteroids (ICSs),
novel biologicals, gene therapy, and personalized medicine have emerged as promising
approaches to deliver drugs more effectively and with fewer side effects.

Currently, the development of new nanoparticle-based drug delivery systems that
can target specific cells such as lung epithelial cells and macrophages, while minimizing
systemic side effects, have received significant attention [10]. These systems utilize nanopar-
ticles, which are tiny particles ranging from 1 to 100 nanometers in size, to encapsulate
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and deliver drugs directly to the affected areas of the lungs [11]. By modifying the surface
properties of nanoparticles, researchers can enhance their ability to selectively bind to
specific cell types in the lungs, thereby improving drug delivery efficiency and reducing
off-target effects [12]. Furthermore, nanoparticle-based drug delivery systems can protect
the drugs from degradation and enhance their stability, ensuring sustained release and
prolonged therapeutic effects [13].

In addition to nanoparticle-based systems, inhaled corticosteroids (ICSs) have long
been used as a standard treatment for chronic inflammatory respiratory diseases [14,15].
ICSs work by reducing inflammation in the airways, thus alleviating symptoms and pre-
venting exacerbation. Researchers are also exploring novel biological targets and innovative
methods for delivering biologicals to the lungs. Gene therapy approaches, including viral-
vector-based delivery systems and CRISPR–Cas9 technology, represent another exciting
frontier in the treatment of chronic inflammatory respiratory diseases [16,17]. Moreover,
personalized medicine approaches take into account an individual’s unique characteris-
tics, such as genetics, biomarkers, and lifestyle factors, to tailor treatments to their specific
needs [8,18]. By utilizing advanced diagnostic tools like genomic sequencing and biomarker
analysis, healthcare providers can identify patient subgroups who are more likely to re-
spond to a particular therapy, thus optimizing treatment outcomes [19,20]. However,
several challenges remain, including optimizing delivery efficiency, ensuring safety, and
addressing ethical considerations.

The purpose of this review is to provide an overview of the current research progress
in nanoparticle-based drug delivery systems, ICS, novel biologicals, gene therapy, and
personalized medicine for the treatment of chronic inflammatory respiratory diseases. In
this review, we examine recent advancements, discuss limitations, and explore future
directions for each of these therapeutic approaches.

2. Nanoparticle-Based Drug Delivery Systems

The application of nanotechnology continues to provide effective strategies in treating
various chronic diseases and improving treatment outcomes. Using nanocarrier systems
such as liposomes, micelles, and nanoparticles for pulmonary drug delivery has been
proven to be a promising noninvasive treatment strategy for achieving drug deposition
and controlled release in the lungs [10] (Figure 1). These systems involve the use of
engineered particles with dimensions on the nanometer scale to deliver drugs directly to
target cells in the lungs [21]. Nanoparticles have several advantages over conventional drug
delivery methods, including improved bioavailability, enhanced targeting, and reduced
toxicity [22,23].
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Liposomes are spherical vesicles composed of lipid bilayers that can encapsulate both
hydrophilic and hydrophobic drugs [24]. The size, surface charge, and lipid composition
of lipid nanoparticles (LNPs) can be tailored to enhance drug stability, prolong circula-
tion time, and improve biocompatibility [25]. Furthermore, conjugating small-molecule
ligands, peptides [26], or monoclonal antibodies [27] to the surface of an LNP can endow it
with targeting ability. For example, folate receptors are often found to be overexpressed
on macrophages, which makes folate-coupled LNP a great option for delivering anti-
inflammatory drugs [28]. There are many factors that can affect the release of cargo carried
by LNPs, including temperature, changes in pH values, enzymes, light, etc. Among them,
the mechanism of pH change is the most studied, and can cause LNPs to undergo phase
transition and achieve higher membrane permeability [29].

In addition to LNPs, there are also some other nanoparticles that have their own
characteristics (Table 1). Micelles are another kind of nanoparticle consisting of amphiphilic
molecules that form a core-shell structure [30]. Their great solubility allows them to
easily penetrate the increased alveolar fluid barrier present in chronic inflammatory lung
diseases. A new kind of stabilized phospholipid nanomicelles (SSMs) can reach deep
lung tissue and successfully extend the half-life of budesonide in the lung to 18–20 h [31].
Magnetic nanoparticles (MNPs) developed using the magnetofection technique have wide-
ranging applications in the fields of biological research and medicine, including drug and
gene therapy, magnetic targeting (such as in cancer therapies), and diagnostic imaging
as contrast enhancers [32,33]. A representative example is the superparamagnetic iron
oxide nanoparticle (SPION), a type of nanoparticle with special magnetism that can be
guided through an external magnetic field to locations within the body [34]. They can
accurately transport the drugs coated on their surface, mainly some inflammation-related
molecular antibodies like IL4Rα and ST2, to the site of the inflammatory lesion [35,36]. A
kind of selective organ targeting (SORT) nanoparticle was designed to release its cargo
in a controlled manner; it can target the site of inflammation in the lungs and elsewhere
while minimizing exposure of healthy tissue in other parts of the body [37]. This targeted
drug delivery approach has the potential to reduce drug toxicity and improve patient
outcomes [38]. Recently, a growing number of hybrid nanoparticles (HNPs) have emerged
that can simultaneously possess the characteristics of different nanoparticles [39]. This has
sparked a trend of exploring different combinations of nanoparticles.

Table 1. Therapeutic applications of nanoparticles in chronic inflammatory respiratory diseases.

Diseases Type of
Nanoparticles Drugs Target Ligands Targets References

Asthma

SPION None IL4Rα monoclonal
antibody ASMs [35]

SPION None Anti-ST2 blocking
antibodies

Inflammatory lung
tissue [36]

PLGA-based
nanoparticles Smart silencer of Dnmt3aos Exosome membrane of M2

macrophages M2 macrophages [40]

LNP Polyinosinic-polycytidylic acid None Lung epithelial
cells [41]

COPD HNP siRNA against SCNN1A and
SCNN1B None Lung epithelial

cells [42]

LNP siRNA against TNF-α None None [43]

IPF LNP siRNA against IL-11 None MLFs [44]

CF LNP Plasmid DNA
ICAM-1
targeting
peptide

Lung epithelial
cells [45]

Abbreviations: SPION: Superparamagnetic iron oxide nanoparticle; IL4Rα: Interleukin-4 receptor alpha; ASM:
Airway smooth muscle cell; ST2: Grow stimulation expressed gene 2; PLGA: Polylactic-co-glycolic acid; LNP:
Lipid nanoparticle; HNP: Hybrid nanoparticle; SCNN1A: Sodium channel non-alpha subunit 1A; SCNN1B:
Sodium channel non-alpha subunit 1B; TNF-α: Tumor necrosis factor alpha; IL-11: Interleukin-11; MLFs: Mouse
lymphatic fibroblasts; ICAM-1: Intercellular adhesion molecule-1.
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Despite the promise of nanoparticle-based drug delivery, there are still several research
challenges that need to be addressed. For example, there is a need to develop nanoparti-
cles with optimal physicochemical properties, such as particle size, surface charge, and
stability, to ensure effective drug delivery [46]. Recent research has reported that the
structure of mesoporous silica nanoparticles (MSNs) can be well controlled with several
parameters such as pH, surfactant, silica precursor, and temperature. For instance, Pan
et al. prepared a series of size-controlled MSNs with a range of 25–105 nm by simply
changing the amount of the basic catalyst triethanolamine (TEA) added [47]. So, it is
believed that MSNs have significant potential to serve as nanocarriers for pulmonary drug
delivery [48]. Additionally, researchers need to carefully evaluate the safety and toxicity
of nanoparticle-based drug delivery systems. While some studies have shown promising
results, others have raised concerns about the potential for long-term toxicity and negative
environmental impacts of nanoparticle-based drug delivery [49,50]. Currently, it is widely
believed that the cytotoxicity of nanoparticles is mainly related to their large surface area
and small size [51]. Yuan et al. concluded through their study on the effects of 20, 30, and
40 nm zinc oxide nanoparticles on human embryonic lung fibroblasts that cytotoxicity is
concentration-dependent, therefore calling for the minimum therapeutic concentration [52].
Other researchers found that the surface charge and solubility are also associated with the
cytotoxicity of nanoparticles [53,54].

Moving forward, researchers are exploring several future directions for nanoparticle-
based drug delivery systems. For example, considering that there is a large amount of
mucus oozing out of the lungs during chronic inflammatory diseases, researchers are
developing new mucus-penetrating nanoparticles (MPPs). Uptake mechanism studies
revealed that caveolae-mediated endocytosis and macropinocytosis contributed to the
absorption of MPPs [55]. In vivo research results showed a more than five-fold increase in
drug bioavailability [56]. Others are investigating new methods for optimizing nanoparticle
design and surface modification to improve targeting and drug release [40,57]. Additionally,
some researchers are investigating the potential of combining nanoparticles with other
treatment modalities such as gene therapy or immunotherapy [46,58]. Finally, there is
growing interest in developing personalized nanoparticle-based drug delivery approaches
that can be tailored to individual patients based on their unique disease characteristics and
genetic profiles [59].

Through targeted drug delivery, nanoparticles have the potential to improve thera-
peutic efficacy and reduce systemic side effects. Overall, nanoparticle-based drug delivery
systems hold great promise for the treatment of chronic inflammatory respiratory diseases.

3. Inhaled Corticosteroids (ICSs)

Inhaled corticosteroids (ICSs) are widely used as a treatment option for chronic respi-
ratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). These
medications work by reducing the production of inflammatory mediators in the airways,
which helps prevent or reduce inflammation, bronchoconstriction, and mucus production.
According to the Global Initiative for Asthma (GINA) report [1], ICSs have been shown to
improve lung function, reduce exacerbation, and improve quality of life in patients with
chronic respiratory diseases.

However, there are some current challenges with ICS delivery that limit their efficacy.
One major challenge is achieving the optimal distribution of the medication throughout
the lungs. ICS particles can become trapped in the mouth or throat, reducing their effec-
tiveness in the lower airways [60]. Patients may also have difficulty using their inhaler
correctly, leading to reduced medication delivery and efficacy [61]. Moreover, selecting
the appropriate ICS dose for each patient can be challenging, as individual needs can vary
significantly [62].

To optimize ICS delivery and improve its efficacy, several methods have been devel-
oped. One approach involves the use of spacer devices, which help to slow down the speed
of medication delivery and improve medication deposition in the lungs [63]. Another
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approach is the development of more efficient ICS formulations, such as fine-particle ICSs,
which have shown improved efficacy compared with conventional ICS formulations [64].
Fine-particle ICSs have greater deposition in the small airways compared with conventional
ICSs [65]. According to a meta-analysis, fine-particle ICSs have significantly higher odds
of achieving asthma control [66]. The combination of ICSs and other drugs is also worth
further optimization (Figure 2). Additionally, research advancements have explored smart
inhalers that can monitor medication adherence and provide feedback to patients [67].
Nowadays, four kinds of inhalers (nebulizers, dry powder inhalers (DPIs), pressurized
metered-dose inhalers (pMDIs), and soft mist inhalers (SMIs)) are widely used (Table 2).
Recently, artificial intelligence (AI)-based intelligent inhalers have attracted much atten-
tion, as they can enable real-time regulation of inhalation plans. For example, intelligent
dry powder inhalers (DPIs) constructed based on artificial neural networks (ANNs) have
effectively improved the bioavailability of drugs [68], but additional data are still needed
to train more advanced models to output better drug delivery plans [69].
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Figure 2. The ECOPD rate reduction from ICSs combined with other drug regimens reported by some
published studies [70–75]. Abbreviations: ECOPD: Exacerbation of chronic obstructive pulmonary
disease; ICS: Inhaled corticosteroid; LAMA: Long-acting muscarinic antagonist; LABA: Long-acting
beta2-adrenergic agonist.
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Table 2. Different kinds of ICS inhalers.

Type of Inhaler Subtype Characteristics Advantages Limitations References

Nebulizers

Jet (or pneumatic)

Use compressed air or
oxygen to convert

liquid medication into a
fine mist for inhalation.

Versatile and suitable
for all ages.

Longer administration
times, produce noise and
vibration, require power
sources, and need regular

maintenance.

[76]

Ultrasonic

Use high-frequency
vibrations to convert

liquid medication into a
fine mist for inhalation.

Portable and
compact, have faster
administration times,

operate quietly.

Not suitable for
medications that are

heat-sensitive or contain
suspensions.

[77]

Mesh

Use a vibrating mesh or
perforated plate to

generate a fine aerosol
mist from liquid

medication.

Portable, lightweight,
and operate silently

with faster
administration times.

Have limitations in
delivering higher viscosity

medications or large
medication volumes.

[78]

Dry powder inhalers
(DPIs)

Single- and
multi-unit doses

Deliver medication
directly to the lungs in

a powdered form.

Breath-activated,
portable, and do not
require coordination
between inhalation

and device
activation.

Require adequate
inspiratory flow for optimal
drug delivery, and can be

used only with specific
types of dry powder

medications.

[79]

Pressurized
metered-dose inhalers

(pMDIs)

Single and combined
drugs

Deliver medication in a
pressurized aerosol

form using propellants.

Deliver a consistent
dose, require

minimal
preparation time.

The presence of propellants
and the inability to assess

remaining medication
levels easily.

[80]

Soft mist inhalers
(SMIs) None

Deliver medication as a
slow-moving
aerosol mist.

Provide consistent
and precise dosing,

generate a
slow-moving mist

suitable for patients
with diverse

inspiratory abilities,
and are equipped

with dose counters to
monitor

medication levels.

Potential clogging if not
used properly, higher cost

compared with other
inhalers, and limited

availability of medications
in soft mist formulation.

[81]

While there have been notable advancements, it is important to acknowledge that there
are still existing limitations concerning the use of ICSs that necessitate careful consideration
and remediation. For example, some studies have suggested that long-term use of ICSs may
increase the risk of pneumonia and cataracts [82,83]. Moreover, further research is needed
to determine the optimal ICS dose and duration of treatment for individual patients [84].

Future directions for research in ICS delivery are focused on several areas. Personal-
ized ICS dosing strategies based on individual patient characteristics and disease severity
are being explored [85]. Investigations are currently underway to explore new ICS formu-
lations that utilize innovative drug delivery technologies, including nanotechnology and
microencapsulation [86].

Thus, ICSs remain an effective treatment option for chronic respiratory diseases, but
proper delivery optimization is crucial to their efficacy and safety.

4. Novel Biologicals

Biologicals are a class of drugs that are produced using living cells or organisms and
have revolutionized the treatment of many respiratory diseases such as asthma, chronic
obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Biologicals
target specific proteins and immune cells involved in the inflammation and damage of the
airways and lungs, offering a more precise and effective treatment option compared with
traditional medications [87].

Research is ongoing to identify new biological targets for the treatment of respira-
tory diseases. For example, interleukin-33 (IL-33) is a protein that has been shown to
promote allergic inflammation in asthma and may be a potential target for biologicals [88].
Other targets include prostaglandin D2 (PGD2) and its receptor, chemoattractant receptor-



Pharmaceutics 2023, 15, 2151 7 of 18

homologous molecule expressed on T-helper type-2 cells (CRTH2), which are involved in
airway smooth muscle contraction and inflammation [89], and the protein periostin, which
plays a role in lung tissue remodeling in asthma and IPF [90]. These novel targets offer the
potential for more personalized and targeted therapies for respiratory diseases (Table 3).

Effective delivery of biologicals to the lungs is critical for their efficacy. Various inno-
vative methods have been developed to improve drug delivery, including nebulizers, dry
powder inhalers, and intravenous infusions [104]. Additionally, recent advancements in
nanotechnology have opened up new possibilities for targeted drug delivery to specific ar-
eas of the lungs [105]. For example, a new exosome membrane–modified M2 macrophages
targeted nanomedicine has been proved to be effective for allergic asthma in vivo [40]. The
progress of these delivery methods provides the potential for achieving the specific action
of biopharmaceuticals at the organ level.

Research on biologicals for respiratory diseases has made significant advancements
in recent years. For example, studies have shown the efficacy of biologicals targeting
interleukin-5 (IL-5) and interleukin-4/13 (IL-4/13) in asthma [106] and the effectiveness of
nintedanib, a tyrosine kinase inhibitor, in slowing the progression of IPF [107]. However,
there are also limitations to biological therapy, including high costs and the risk of adverse
effects such as allergic reactions and infections [108].

Table 3. Novel biological targets of chronic inflammatory respiratory diseases.

Chronic Inflammatory
Respiratory Diseases Targets Mechanism/Effect/Receptor Research Progress References

Asthma

IL-33

When IL-33 binds to its
receptor ST2, it can trigger
inflammation and airway

hyperresponsiveness.

The knockdown of P2Y13-R can
regulate the release of IL-33 and
prevent experimental asthma.

[88]

TSLP
A cytokine involved in

regulating the
immune system.

TSLP can promote the activation
of ILC2 and induce congenital

allergic inflammation.
[91]

CRTH2 A receptor mainly expressed
on Th2 cells.

A CRTH2 antagonist (OC000459)
can effectively reduce the

increase in eosinophils and
swelling of nasal mucosa.

CRTH2 and TP antagonists have
been registered for clinical use

in asthma.

[92]

IL-4/IL-13
Two cytokines involved in

regulating immune
responses.

IL-4/IL-13 stimulate CCL-11
production to alleviate
HDM-induced asthma.

[93]

IL-25
Also known as IL-17E, a

cytokine primarily expressed
in respiratory epithelial cells.

IL-25 induces excessive
production of ROS through

AMPK-related mitochondrial
autophagy, leading to airway
inflammation and remodeling

in asthma.

[94]

OX40
A co-stimulatory molecule

that plays an important role
in T-cell activation.

OX40-deficient mice exhibit
reduced lung inflammation and

weakened airway
hyperresponsiveness

[95]

S1P

A physiologically active lipid
molecule that plays an
important role in the

immune system.

Bronchial specimens harvested
from S1P-overexpressing mice

showed overexpression of
EMT-related markers and

bronchial hyperresponsiveness.

[96]
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Table 3. Cont.

Chronic Inflammatory
Respiratory Diseases Targets Mechanism/Effect/Receptor Research Progress References

IPF

TGF-β

An important growth factor
that plays an important role
in the pathological process

of IPF.

Nestin knockdown inhibited
TGF-β signaling by suppressing

the recycling of TβRI to the
cell surface.

[97]

IL-11

IL-11 activates multiple
signal transduction

pathways by binding to its
receptor, IL-11Rα, thereby

promoting the activation and
proliferation of fibroblasts.

An inhalable and
mucus-penetrative nanoparticle

(NP) system incorporating
siRNA against IL11

(siIL11@PPGC NPs) hindered
fibroblast differentiation and
reduced ECM deposition via

inhibition of ERK and SMAD2.

[44]

PDGF

A cell growth factor that is
involved in fibrocyte

proliferation, inflammatory
response, and the occurrence

of IPF.

Nintedanib, a potent
small-molecule inhibitor of the
receptor tyrosine kinases PDGF
receptor, has shown consistent

anti-fibrotic and
anti-inflammatory activity in

animal models of lung fibrosis.

[98]

Wnt/β-catenin

An important signaling
pathway involved in

biological processes such as
cell proliferation and

differentiation.

Activation of Wnt/β-catenin led
to a significant increase in IL-1β

and IL-6 in mice.
[99]

MMPs
MMPs are involved in the

process of lung tissue
remodeling and fibrosis.

Clinical research reports show a
significant increase in MMP

levels in blood and lung samples
from patients with IPF. Most

MMPs can promote the
development of IPF in

mouse models.

[100]

CF CFTR

The CFTR protein forms a
channel on the cell

membrane that primarily
regulates chloride ion (Cl−)

transport, maintaining water
and salt balance. When the
CFTR gene mutates, it can
affect the production and

excretion of mucus.

Currently available CFTR
modulators: ivacaftor,

lumacaftor, Orkambi (a
combination of lumacaftor

and ivacaftor).

[101–103]

Abbreviations: IL-33: Interleukin-33; ST2: Grow stimulation expressed gene 2; P2Y13-R: P2Y purinoceptor 13
receptor; TSLP: Thymic stromal lymphopoietin; ILC2: Type 2 innate lymphoid cell; CRTH2: Chemoattrac-
tant receptor-homologous molecule expressed on T-helper type-2 cells; TP: thromboxane receptor; IL-4/IL-13:
Interleukin-4/interleukin-13; CCL-11: C-C motif chemokine ligand 11; HDM: House dust mite; IL-25: Interleukin-
25; IL-17E: Interleukin-17E; ROS: Reactive oxygen species; AMPK: Adenosine 5′-monophosphate (AMP)-activated
protein kinase; OX40 (Tnfrsf4): Tumor necrosis factor receptor superfamily, member 4; S1P: Sphingosine-1-
phosphate; EMT: Epithelial–mesenchymal transition; TGF-β: Transforming growth factor-beta; TβRI: Transform-
ing growth factor-beta receptor I; IL-11: Interleukin-11; IL-11Rα: Interleukin-11 receptor alpha; ECM: Extracellular
matrix; ERK: Extracellular signal-regulated kinase; SMAD2: Small mothers against decapentaplegic family
member 2; PDGF: Platelet-derived growth factor; IL-1β: Interleukin-1β; IL-6: Interleukin-6; MMPs: Matrix
metalloproteinases; CF: Cystic fibrosis; CFTR: Cystic fibrosis transmembrane conductance regulator.

Developing personalized biological therapies and improving drug delivery methods
will undoubtedly be the main trends in the future. For example, studies have explored
the use of biomarkers to identify patients who may benefit from specific biologicals and
the development of smart inhalers that can monitor adherence and provide feedback to
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patients [109]. Additionally, research is ongoing to develop new biologicals that target
novel pathways and cells involved in respiratory diseases [110].

So far, biologicals have transformed the treatment of respiratory diseases, offering more
precise and targeted therapies. Three anti-IL-5 biologicals and one anti-IL-4R biological
have recently emerged as promising treatments for type 2 (T2) asthma [111]. There is also
evidence that itepekimab could reduce the annualized exacerbation rate and improve lung
function in former smokers with COPD [112]. Further research is needed to optimize the
efficacy, safety, and cost-effectiveness of these treatments.

5. Gene Therapy

Gene therapy is a promising approach for the treatment of respiratory diseases, includ-
ing asthma, cystic fibrosis, alpha-1 antitrypsin deficiency, and pulmonary hypertension.
This therapeutic approach involves the delivery of genetic material to replace or sup-
plement faulty genes, prevent the expression of harmful genes, or introduce new genes
to cells [113]. Gene therapy offers the potential for long-lasting effects compared with
traditional pharmacological treatments.

Several gene therapy approaches have been developed for respiratory diseases, in-
cluding viral-vector-based delivery systems and clustered regularly interspaced short
palindromic repeats–CRISPR-associated protein 9 (CRISPR–Cas9) technology. Viral vectors,
such as adeno-associated viruses (AAVs) and lentiviruses, are commonly used to deliver
the therapeutic gene to target cells. AAVs have shown promise in clinical trials for cystic
fibrosis and other genetic lung diseases [114]. CRISPR–Cas9 technology allows precise
editing of defective genes in living cells and has been used to correct mutations in animal
models of cystic fibrosis and alpha-1 antitrypsin deficiency [115] (Table 4). However, there
are still limitations to these approaches, such as immune responses to viral vectors and
potential off-target effects of genome editing.

In recent years, research on gene therapy for respiratory diseases has achieved remark-
able advancements. For example, clinical trials of AAV gene therapy targeting CFTR for
cystic fibrosis have shown significant improvements in the lung function and quality of
life in patients [124]. Additionally, promising results have been seen in preclinical studies
using CRISPR–Cas9 gene editing for cystic fibrosis and other respiratory diseases [125].
However, it is important to acknowledge that there are still problems in this field, including
the necessity for enhanced delivery techniques and thorough investigation of the potential
risks linked to genome editing. Further research and development are imperative to answer
these questions [126].

Gene therapy approaches for respiratory diseases remain to be optimized. This in-
cludes the development of more efficient and targeted delivery methods such as aerosolized
nanoparticles for lung-specific delivery [127]. The natural wrapping property of exosomes
can protect genetic material from degradation and attack by the immune system, making
it an excellent carrier [128]. Additionally, research is exploring the use of gene therapy
in combination with other therapies, such as stem cell therapy, to enhance therapeutic
efficacy [129]. Furthermore, ethical considerations surrounding genome editing, includ-
ing potential unintended effects and the need for informed consent, require continued
discussion and investigation.

Gene therapy offers the potential for long-lasting effects compared with traditional
pharmacological treatments. Ongoing research is needed to optimize the safety and efficacy
of gene therapy approaches and to address the limitations and ethical concerns associated
with this promising therapeutic approach.
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Table 4. Treatments based on gene therapy for chronic inflammatory respiratory diseases.

Chronic Inflammatory
Diseases Gene Research Progress References

Asthma

IL-12

Overexpression of single chain IL-12 (scIL-12) through
rAAV vector significantly suppressed the total number
of cells and eosinophil infiltration as well as the mucus

secretion in mice.

[116]

CTNNAL1
Airway hyperresponsiveness and inflammation were
significantly attenuated in mice pretransduced with

AAV-miR-511-3p.
[117]

MIF
Intratracheal adeno-associated virus (AAV) vector

(MIF-mutant AAV57) could reduce airway remodeling
in asthmatic mice.

[118]

SNP rs12946510 CRISPR–Cas9 genome editing demonstrated that the
SNP of rs12946510 was associated with asthma. [119]

AATD
(An important cause of COPD)

SERPINA1

The systemic delivery of AAV8-CRISPR, targeting
exon 2 of hSERPINA1, and the AAV, which provided
the donor template to correct the Z mutation, could
both restore modest levels of wildtype AAT-M in a

mouse model of AATD.

[120]

rAAV-mediated SERPINA1 gene augmentation largely
preserved lung tissue elasticity and alveolar wall

integrity in mice models.
[121]

The therapeutic application of CRISPR–Cas9 for
genome editing in a humanized mouse model

successfully mitigated the phenotype of AATD.
[122]

CF CFTR Complementing CFTR in CF pigs with AAV rescued
the anion transport defect in a large-animal CF model. [123]

Abbreviations: IL-12: Interleukin-12; rAAV: Recombinant adeno-associated virus; CTNNAL1: Catenin alpha-like
1; MIF: Macrophage migration inhibitory factor; SNP: Single nucleotide polymorphism; CRISPR–Cas9: Clus-
tered regularly interspaced short palindromic repeats/CRISPR-associated protein 9; AATD: Alpha-1-antitrypsin
deficiency; SERPINA1: Serpin family A member 1; CF: Cystic fibrosis; CFTR: Cystic fibrosis transmembrane
conductance regulator.

6. Personalized Medicine

Personalized medicine is an approach to healthcare that considers individual vari-
ability in genes, environment, and lifestyle for the prevention, diagnosis, and treatment
of diseases. In the context of respiratory diseases, personalized medicine aims to tailor
treatment strategies to the unique needs of patients based on their genetic and molecu-
lar characteristics as well as other clinical and environmental factors [8]. Implementing
this approach has the power not only to enhance patient outcomes but also to alleviate
healthcare costs.

Personalized medicine has several advantages for patients with chronic inflammatory
respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD).
By identifying biomarkers and other factors (like serum immunoglobulins, sputum mi-
crobiome, and prognostic imaging biomarkers) that contribute to disease progression and
exacerbation, physicians can develop more targeted treatment plans that minimize side
effects and maximize efficacy [130]. For example, some patients with severe asthma may
benefit from biological therapies targeting specific cytokines or immune cells. Addition-
ally, personalized medicine may enable early identification of patients at risk for disease
progression or exacerbation, allowing proactive interventions to prevent severe symptoms
and hospitalizations.

Current research in personalized medicine for respiratory diseases is focused on
identifying biomarkers and developing diagnostic tools to better classify patients based on
their underlying disease mechanisms. For example, studies have identified gene expression



Pharmaceutics 2023, 15, 2151 11 of 18

profiles associated with different subtypes of asthma and COPD [131,132]. Additionally,
researchers are exploring the use of wearable sensors and other technologies to monitor
patient symptoms and disease activity in real time, enabling more timely interventions and
adjustments to treatment plans.

The latest advancements in personalized medicine for respiratory diseases have ex-
hibited promising outcomes, showcasing improved patient well-being and the capacity
for cost savings within the healthcare system. For example, a study of biomarker-guided
asthma management found significant reductions in asthma exacerbation and healthcare
utilization compared with standard care [133]. However, there are still limitations to the
implementation of personalized medicine in clinical practice, such as the cost and availabil-
ity of diagnostic tests and therapies, as well as ethical considerations surrounding the use
of genetic information in treatment decisions [134].

Improving the accuracy and accessibility of diagnostic tests and expanding the range
of targeted therapies available to patients are key points of personalized medicine for
respiratory diseases. For example, researchers are exploring the use of artificial intelligence
and machine learning algorithms to better predict patient outcomes and identify optimal
treatment strategies [135]. Additionally, studies are investigating the potential benefits
of combining multiple targeted therapies for patients with complex disease mechanisms.
Furthermore, ongoing discussions around ethical and regulatory issues will continue to
shape the development and implementation of personalized medicine in clinical practice.

In conclusion, personalized medicine allows treatment plans to be more targeted,
effective, and tailored to individual patient needs. Ongoing research is needed to address
the limitations and ethical considerations associated with this approach and to optimize the
accuracy and accessibility of diagnostic tests and therapies. Due to its high heterogeneity,
personalized healthcare needs to be organically combined with various other therapies to
revitalize the lungs of patients with chronic inflammatory diseases (Figure 3).
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7. Conclusions

Targeted drug delivery systems, including nanoparticle-based systems, ICSs, novel
biologicals, gene therapy, and personalized medicine, hold great promise for the treatment
of chronic inflammatory respiratory diseases. Ongoing research focuses on developing
new delivery systems that can specifically target lung cells while minimizing systemic
side effects. Furthermore, novel biological targets and innovative methods for delivering
biologicals to the lungs are also being explored. Gene therapy approaches, including viral-
vector-based delivery systems and CRISPR–Cas9 technology, show potential for treating
respiratory diseases. Personalized medicine approaches could improve treatment outcomes
by tailoring therapies to individuals based on their unique characteristics. Finally, combin-
ing different drug delivery systems, such as using organ-specific nanoparticles to deliver
gene-targeting drugs according to disease subtypes, can further enhance drug efficacy. The
utilization of an exosome-based vector system, which efficiently and specifically delivers
mRNA or CRISPR–Cas9 plasmids to target cells, also holds promise for targeted gene
therapy both in vitro and in vivo.

The clinical implications of these advancements are significant, as targeted drug
delivery systems have the potential to improve patient outcomes and reduce healthcare
costs. Healthcare professionals should consider integrating these approaches into their
practice as they become more widely available. However, there is still a considerable journey
from the laboratory bench to clinical application. Hence, additional research is needed to
refine and optimize these approaches for maximum effectiveness. It is important to address
safety concerns related to nanoparticle-based delivery systems and gene therapy as well as
to develop improved methods for delivering biologicals to the lungs. Moreover, identifying
optimal personalized medicine approaches is of paramount importance to ensure that
treatments align with the specific demands and characteristics of individual patients.

To sum up, the use of targeted drug delivery systems represents a promising ap-
proach to the treatment of chronic inflammatory respiratory diseases. Further research is
required to fine-tune and optimize these approaches as well as to identify the most effective
personalized medicine strategies. For instance, utilizing biological models that closely
resemble the human lung environment, such as lung organoids, can better reflect the effect
of new drug delivery systems. Given the clinical heterogeneity of chronic inflammatory
pulmonary disease, machine learning methods offer distinct advantages in calculating
personalized treatment plans and predicting treatment outcomes in advance, leveraging
the patient’s phenotype, subphenotype, and internal characteristics. Furthermore, defining
refined subtypes of chronic inflammatory lung diseases based on multiple omics features
can better capture the unique characteristics of each patient. Ultimately, the goal is to
improve patient outcomes and reduce healthcare costs by delivering treatments that are
tailored to individual patient needs.
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