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Abstract: Superparamagnetic iron oxide (SPIO) nanocrystals have been extensively studied as thera-
nostic nanoparticles to increase transverse (T2) relaxivity and enhance contrast in magnetic resonance
imaging (MRI). To improve the blood circulation time and enhance the diagnostic sensitivity of
MRI contrast agents, we developed an amphiphilic copolymer, PCPZL, to effectively encapsulate
SPIO nanocrystals. PCPZL was synthesized by crosslinking a polyethylene glycol (PEG)-based
homobifunctional linker with a hydrophobic star-like poly(ε-benzyloxycarbonyl-L-lysine) segment.
Consequently, it could self-assemble into shell-crosslinked micelles with enhanced colloidal stability
in bloodstream circulation. Notably, PCPZL could effectively load SPIO nanocrystals with a high
loading capacity of 66.0 ± 0.9%, forming SPIO nanoclusters with a diameter of approximately 100 nm,
a high cluster density, and an impressive T2 relaxivity value 5.5 times higher than that of Resovist®.
In vivo MRI measurements highlighted the rapid accumulation and contrast effects of SPIO-loaded
PCPZL micelles in the livers of both healthy mice and nude mice with an orthotopic hepatocellu-
lar carcinoma tumor model. Moreover, the magnetic micelles remarkably enhanced the relative
MRI signal difference between the tumor and normal liver tissues. Overall, our findings demon-
strate that PCPZL significantly improves the stability and magnetic properties of SPIO nanocrystals,
making SPIO-loaded PCPZL micelles promising MRI contrast agents for diagnosing liver diseases
and cancers.

Keywords: amphiphilic copolymer; superparamagnetic iron oxide; shell-crosslinked micelle; contrast
agent; magnetic resonance imaging

1. Introduction

Magnetic resonance imaging (MRI) is a noninvasive and nonradiative imaging tech-
nique used for molecular analysis and medical diagnosis [1–4]. It utilizes the differences
in magnetic susceptibility values between tissues, such as tumors and normal tissues, to
generate contrast. Several contrast agents have recently been developed to enhance the
diagnostic accuracy and sensitivity of MRI. For example, superparamagnetic iron oxide
(SPIO) nanocrystals are considered effective T2-weighted imaging contrast agents that
produce darker images against a bright background of water or tissue by causing protons in
their vicinity to undergo spin–spin relaxation [5–8]. However, common preparation meth-
ods frequently produce SPIO nanocrystals with a hydrophobic surfactant layer on their
surface, which reduces their dispersion in water and ultimately leads to rapid clearance
from the body and low sensitivity of MRI [9,10].
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To enhance the quality of MRI, researchers have proposed the use of amphiphilic
polymers to encapsulate hydrophobic SPIO nanocrystals and facilitate their dispersion
in aqueous solutions through micelle formation [2,11,12]. Moreover, several studies have
shown that these strategies have significant potential for improving the sensitivity of
MRI [13–15]. A significant enhancement in T2 relaxivity (r2) can be achieved using synergis-
tic magnetism through the encapsulation of multiple SPIO nanocrystals in the hydrophobic
core of micelles to form magnetic nanoclusters [16,17]. The aggregation state, including
cluster density and size, plays an important role in regulating the physical interactions
between the SPIO nanocrystals and their magnetization. While the r2 value increases with a
decrease in the interparticle spacing of the SPIO nanocrystals, a higher r2 value is typically
observed with an increase in the diameter of the SPIO nanoclusters. Both cluster density
and size can be tailored by adjusting the polymer-to-SPIO ratio of the SPIO-loaded mi-
celles [18,19]. The findings of previous studies suggest that the MRI effect of SPIO-loaded
micelles is highly dependent on the performance of the carriers, which is necessary to
achieve high drug-loading capacity and stability.

Inspired by these findings, we used a polyethylene glycol (PEG)-based homobifunc-
tional linker to crosslink the star-like hydrophobic block of poly(ε-benzyloxycarbonyl-L-
lysine) (PZL). Subsequently, we obtained a series of amphiphilic PEG-crosslinked PZL
(PCPZL) for SPIO nanocrystal loading. This polymer represented a promising copolymer
with molecular weights several orders of magnitude higher than those of small-molecular
amphiphiles, as well as potential carriers for forming polymeric micelles with enhanced
stability and drug loading capacity [20–22]. PCPZL is expected to be a high-performance
SPIO nanocrystal carrier for the formation of magnetic nanoclusters, thereby enhancing
T2 relaxivity in MRI and facilitating the diagnostic sensitivity of liver diseases or cancers,
as described below (Scheme 1): (1) the PEG-crosslinked amphiphiles may self-assemble
into polymeric micelles with a crosslinked PEG shell in an aqueous solution, ensuring
improved water solubility, colloidal stability, and long-term circulation via the “stealth
effect” [23]. (2) the amphiphilic structure of PCPZL may endow the carrier with not only
enhanced stability, but also a high drug-loading capacity [20–22], which may increase the
r2 value by facilitating the formation of SPIO nanoclusters and increasing the cluster size
in the micelle core. (3) The star-like PZL hydrophobic block with multiple but short side
chains may occupy less interparticle spacing of the SPIO nanocrystals than other linear but
long hydrophobic blocks, which is beneficial for increasing the SPIO cluster density and
consequently further enhancing the r2 value.



Pharmaceutics 2023, 15, 2205 3 of 16Pharmaceutics 2023, 15, x FOR PEER REVIEW 3 of 17 
 

 

 
Scheme 1. Schematic illustration of the structural differences between SPIO-loaded micelles based 
on the PCPZL and conventional linear amphiphilic copolymers to diagnose liver disease or cancer. 

2. Materials and Methods 
2.1. Materials 

Hyperbranched polyethylenimine (PEI, MW = 0.8 kDa) and bis(trichloromethyl) car-
bonate (triphosgene) were obtained from Sigma-Aldrich (St. Louis, MO, USA). ε-ben-
zyloxycarbonyl-L-lysine was supplied by GL Biochem (Shanghai, China) and used with-
out further purification. PEG (succinimidyl carboxymethyl ester)2 (SCM-PEG-SCM, 7.5 
kDa) was purchased from Beijing Jenkem Technology Co., Ltd. (Beijing, China). Oleic 
acid-coated SPIO nanocrystals (1 mg mL−1) prepared using co-precipitation were obtained 
from Nanjing Nanoeast Biotechnology Co., Ltd. (Nanjing, China). A dialysis tube (molec-
ular weight cut-off (MWCO) of 14 kDa) was obtained from Viskase (Darien, IL, USA). All 
other reagents were of analytical grade and were used as received. Analytically pure di-
methyl sulfoxide (DMSO), dichloromethane (DCM), ethyl acetate, acetone, and tetrahy-
drofuran (THF) were provided by Shantou Xilong Chemical Co., Ltd. (Shantou, China). 

2.2. Synthesis of Star-like Hydrophobic Copolymers PZL 
PZL copolymers with a PEI core and poly(ε-benzyloxycarbonyl-L-lysine) side chains 

were synthesized using ring-opening polymerization (ROP) of α-amino acid N-carboxy-
anhydride (NCA), as described in our previous study [24,25]. Briefly, ε-benzyloxycar-
bonyl-L-lysine N-carboxyanhydride (Lys(Z)-NCA) was prepared via the Fuchs–Farthing 
method using ε-benzyloxycarbonyl-L-lysine and triphosgene in anhydrous ethyl acetate 
[26]. Subsequently, Lys(Z)-NCA was dissolved in an anhydrous mixture of DMSO and 
DCM (1:5 volume ratio). An appropriate amount of PEI initiator solution in DMSO was 
then added, and the reaction was conducted at room temperature for 36 h. After removal 
of the DCM solvent via rotary evaporation, the sample was subjected to dialysis against 
ultrapure water (MWCO of 14 kDa) for four days followed by lyophilization to obtain the 
desired product. 
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2. Materials and Methods
2.1. Materials

Hyperbranched polyethylenimine (PEI, MW = 0.8 kDa) and bis(trichloromethyl)
carbonate (triphosgene) were obtained from Sigma-Aldrich (St. Louis, MO, USA). ε-
benzyloxycarbonyl-L-lysine was supplied by GL Biochem (Shanghai, China) and used
without further purification. PEG (succinimidyl carboxymethyl ester)2 (SCM-PEG-SCM,
7.5 kDa) was purchased from Beijing Jenkem Technology Co., Ltd. (Beijing, China). Oleic
acid-coated SPIO nanocrystals (1 mg mL−1) prepared using co-precipitation were obtained
from Nanjing Nanoeast Biotechnology Co., Ltd. (Nanjing, China). A dialysis tube (molec-
ular weight cut-off (MWCO) of 14 kDa) was obtained from Viskase (Darien, IL, USA).
All other reagents were of analytical grade and were used as received. Analytically pure
dimethyl sulfoxide (DMSO), dichloromethane (DCM), ethyl acetate, acetone, and tetrahy-
drofuran (THF) were provided by Shantou Xilong Chemical Co., Ltd. (Shantou, China).

2.2. Synthesis of Star-like Hydrophobic Copolymers PZL

PZL copolymers with a PEI core and poly(ε-benzyloxycarbonyl-L-lysine) side chains were
synthesized using ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydride
(NCA), as described in our previous study [24,25]. Briefly, ε-benzyloxycarbonyl-L-lysine
N-carboxyanhydride (Lys(Z)-NCA) was prepared via the Fuchs–Farthing method using ε-
benzyloxycarbonyl-L-lysine and triphosgene in anhydrous ethyl acetate [26]. Subsequently,
Lys(Z)-NCA was dissolved in an anhydrous mixture of DMSO and DCM (1:5 volume ratio).
An appropriate amount of PEI initiator solution in DMSO was then added, and the reaction
was conducted at room temperature for 36 h. After removal of the DCM solvent via rotary
evaporation, the sample was subjected to dialysis against ultrapure water (MWCO of
14 kDa) for four days followed by lyophilization to obtain the desired product.
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2.3. Synthesis of PEG-Crosslinked Amphiphilic Copolymers PCPZL

PZL (100 mg) was added to 300 mL of an anhydrous mixture of DMSO and DCM
(1:5 volume ratio) and stirred until it was fully dissolved. Subsequently, a solution of
SCM-PEG-SCM with a concentration of 0.2 g mL−1 was prepared by dissolving it in DCM
and then adding it dropwise at a rate of 100 µL min−1 into the PZL solution under vigorous
stirring conditions. After reacting for 36 h at 25 ◦C, the DCM was removed through rotatory
evaporation. The solution was then dialyzed against ultrapure water for four days using
a dialysis bag with an MWCO of 14 kDa, and the final products were obtained using
lyophilization.

2.4. Characterization of Various Copolymers

Proton nuclear magnetic resonance (1H NMR) spectra of PZL and PCPZL were col-
lected at room temperature using a Bruker DMX 400 MHz spectrometer (Bruker, Karlsruhe,
Germany) using deuterated dimethyl sulfoxide (DMSO-d6) as the solvent. The molecular
weight parameters of the polymers were analyzed using a gel permeation chromatography
(GPC) system from Waters (Milford, CT, USA), which consisted of a Waters 515 HPLC
pump and a Waters 2414 refractive index detector. The samples were analyzed using
dimethylformamide (DMF) as the eluent and linear poly(methyl methacrylate) (PMMA) as
the calibration standard.

2.5. Fabrication of SPIO-Loaded PCPZL Micelles

The SPIO-loaded magnetic micelles were prepared using an optimized ultrasonic
dialysis method. Briefly, oleic acid-coated SPIO nanocrystals containing 15 mg of iron
and 10 mg of PCPZL copolymers were co-dissolved in 0.2 mL of THF solvent through
continuous vortexing. Subsequently, 1.8 mL of acetone solution was added dropwise, and
the mixture was shaken for 1 h to completely dissolve the SPIO nanocrystals through the
hydrotropic action facilitated by PCPZL. This solution was slowly added dropwise (at a
rate of one drop every 10 s) to 4 mL of ultrapure water and subjected to sonication (40 kHz,
100 W). Sonication was continued for an additional 30 min after the complete addition
of the solution, followed by dialysis against water for 24 h to remove organic solvents,
including THF and acetone (MWCO = 14 kDa). Finally, the free SPIO nanoparticles that
were not loaded into the micelles were removed through two rounds of centrifugation at
3000 rpm for 10 min, and the resulting SPIO-loaded PCPZL magnetic micelles were then
stored at 4 ◦C for further investigation.

2.6. Characterization of SPIO-Loaded PCPZL Micelles
2.6.1. Loading Capacity and Loading Efficiency Characterizations

The loading capacity and loading efficiency of SPIO nanocrystals in the magnetic
micelles were determined by quantifying the Fe content using the phenanthroline spec-
trophotometric method [27]. Briefly, 50 µL of SPIO-loaded PCPZL micelle solution was
treated with two drops of concentrated HCL solution for 12 h to completely degrade the
SPIO-loaded micelles. Subsequently, 2.5 mL of acetic acid–sodium acetate buffer solution
was added and vortexed for 3 h, followed by the addition of another 1.25 mL of 1% (w/v)
hydroxylammonium chloride solution and 2.5 mL of 0.1% (w/v) 1,10-phenanthroline so-
lution. The solution was then diluted and mixed with ultrapure water in a volumetric
flask to obtain a final volume of 25 mL. After incubation for 10 min, the absorbance at a
wavelength of 510 nm was measured, and the SPIO concentration was determined based
on a previously established Fe2+ calibration curve.

The SPIO loading capacity was calculated using the following equation:

Loading capacity(%) =
Weight of encapsulated iron oxide

Weight of encapsulated iron oxide + Weight of initial PCPZL
× 100% (1)
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The SPIO loading efficiency was calculated using the following equation:

Loading efficiency(%) =
Weight of encapsulated iron oxide

Weight of initial iron oxide
× 100% (2)

2.6.2. Particle Sizes and Zeta Potential Characterizations

The particle sizes and zeta potential of the SPIO-loaded PCPZL micelles were recorded
using a Zetasizer Nano ZS90 (Malvern Instruments, Worcestershire, UK). The micelle solu-
tion was appropriately diluted with ultrapure water and introduced into the sample pool
to measure its diameter at a scattering angle of 90◦ at room temperature using a refractive
index of 1.590 and a medium viscosity of 0.887 cP. For the zeta potential measurement, the
sample was diluted with phosphate buffer (PBS) at pH 7.4 and subsequently determined
using the same instrument in a disposable folded capillary zeta cell at room temperature.

2.6.3. Morphological Studies

Transmission electron microscopy (TEM) was conducted at room temperature using a
JEM 2100F electron microscope operated at 200 kV. The samples were prepared by drying a
dispersion of nanoparticles on a copper grid coated with amorphous carbon. The diameter
distribution histograms of the SPIO nanocrystals and SPIO nanoclusters were fitted to a
peak model and visualized using Origin 9.1 (Origin Lab, Northampton, MA, USA).

2.6.4. Critical Micelle Concentration (CMC) Measurement

The CMC of PCPZL was determined using fluorescence, employing pyrene as the
probe molecule. Samples of micellar solution with concentrations ranging from 1 × 10−5

to 1 × 10−1 mg mL−1 were prepared and then left to equilibrate with a constant pyrene
concentration of 6 × 10−7 mol L−1 for 24 h. The excitation intensity of pyrene at 339
and 334 nm was obtained using a fluorescence spectrometer (PTI QM-TM, Horiba Jobin
Yvon Inc., Edison, NJ, USA) according to the scanning excitation spectrum between 300
and 360 nm by fixing the emission spectrum at 390 nm. The CMC value was determined
from the intersection points of the tangents corresponding to lower and higher polymer
concentrations.

2.7. Magnetization Measurement

Lyophilized samples of both SPIO nanocrystals and SPIO-loaded magnetic micelles
were weighed, and the magnetization data were determined using an MPMS XL-7 Quantum
Design SQUID magnetometer at room temperature. The applied magnetic field was varied
from 2 × 104 Oe to −2 × 104 Oe to generate hysteresis loops.

2.8. T2 Relaxivity Measurement

A Signa HDxt 1.5 T MRI scanner (GE Medical Systems, Milwaukee, WI, USA) was
used to measure the relaxivity of the SPIO magnetic micelle solution after the appropriate
dilution with ultrapure water at various Fe concentrations ranging from 0 to 20 µg mL−1.
For the T2-weighted fast spin-echo (FSE) sequence, the parameters were set as follows:
repetition time (TR) = 1000 ms and echo time (TE) = 8.6, 17.2, 25.8, 34.4, 43.0, 51.6, 60.3,
and 68.9 ms. The r2 value was determined from the slope of the transverse relaxation rate
(1/T2) versus the Fe concentration of the SPIO-loaded micelles.

2.9. In Vitro MRI

An in vitro MRI experiment was performed using a Trio Tim 3.0 T MRI instrument
(Siemens AG SI, Erlangen, Germany) at room temperature. T2-weighted images were
acquired using the turbo-spin echo (TSE) sequence with the following parameters: head sur-
face coil, axial scanning, TR = 5000 ms, and TE = 93 ms. The solutions of SPIO-loaded PCPZL
micelles containing different Fe concentrations (0, 0.625, 1.25, 2.5, 5, 10, and 20 µg mL−1)
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were prepared in ultrapure water and then placed in 1.5 mL centrifuge tubes for MRI
scanning.

2.10. In Vivo Mouse Liver and Liver Tumor Imaging

All animal procedures were performed according to the Guidelines for Care and
Use of Laboratory Animals of Shantou University Medical College, and the experiments
were approved by the Animal Ethics Committee of Shantou University Medical College
(SUMC2016-200). For in vivo mouse liver imaging, healthy Kunming mice weighing
21–25 g were anesthetized using intraperitoneal (i.p.) injection of pentobarbital sodium
and then intravenously injected with the SPIO contrast agent at a dose of 5 mg Fe/kg body
weight via the tail vein. MRI scanning was performed before and 3, 15, 30, and 60 min after
the administration of the magnetic micelles. T2-weighted TSE images were acquired using
a Trio Tim 3.0 T MRI instrument (Siemens AG SI, Germany) with the following scanning
parameters: TR/TE = 4000/92 ms and slice thickness = 3 mm. After scanning, the images
were transferred to an ADW4.4 workstation (GE Healthcare) to measure the MRI signal
intensities in the regions of interest.

For in vivo mouse liver tumor imaging, BALB/c nude mice weighing 20 ± 2 g were
used to establish a tumor model of orthotopic hepatocellular carcinoma [28–30]. The mice
were provided food and water ad libitum and acclimatized for 1 week before the start
of the experiment. After anesthesia and disinfection, a 1 cm incision was made in the
abdomen to expose the liver. Subsequently, a 0.03 mL suspension of human liver cancer
cells SMMC-7721 (1 × 108 cells per mL) was injected into the liver before it was sutured
and allowed to grow for 15 days. Subsequently, nude mice bearing human hepatocellular
carcinoma were anesthetized via i.p. injection of 1% pentobarbital sodium, and solutions
of the SPIO-loaded PCPZL micelles were injected into the nude mice via the tail vein at
a dose of 5 mg Fe/kg body weight. The animals were then scanned using a 3.0 T MR
scanner (Siemens Prisma, Erlangen, Germany) with a gradient strength up to 80 mT/m.
T2-weighted images were then acquired using a FSE sequence (TR = 6000 ms, TE = 20 ms).
The signal intensity values in the defined regions of interest were collected at 0, 5, 10, 30,
60, 120, 180, 480, 720, 960, and 1200 min.

3. Results and Discussion
3.1. Synthesis and Characterization of PEG-Crosslinked Amphiphilic Copolymers PCPZL

In this study, a PEG-crosslinked amphiphilic copolymer, PCPZL, was synthesized in
two steps (Figure 1) following an established and optimal protocol reported in our previous
research [22,24,25]. First, the star-like hydrophobic copolymers, PZL, were constructed by
grafting PEI with hydrophobic poly(ε-benzyloxycarbonyl-L-lysine) using a one-step ring-
opening polymerization method [25]. The polymerization of Lys(Z)-NCA was initiated
by the terminal amino groups of PEI, which had a molecular weight of 0.8 kDa and
approximately eight peripheral primary amines [31]. The degree of polymerization and
length of each poly(ε-benzyloxycarbonyl-L-lysine) side chain were easily controlled by
adjusting the feeding ratio of the Lys(Z)-NCA monomer to PEI. Therefore, we synthesized
two types of star-like copolymers, PZL1 and PZL2, which had a PEI (MW = 0.8 kDa) core
and eight poly(ε-benzyloxycarbonyl-L-lysine) chains with degrees of polymerization of
three and six, respectively.

Then, the homobifunctional linker SCM-PEG-SCM was employed to crosslink PZL
and obtain the amphiphilic copolymer PCPZL [22,24]. To achieve a mass ratio of approxi-
mately 1:1 between the hydrophilic block PEG and hydrophobic block PZL, we synthesized
PCPZL at feeding molar ratios of SCM-PEG-SCM to PZL1 and PZL2 of 1:1 (PCPZL1)
and 2:1 (PCPZL2), respectively. We calculated the actual molar ratio of PEG and the PZL
segment in the product by analyzing 1H NMR spectra of various polymers utilizing the
integration peaks at 3.4–3.7 ppm (corresponding to the methylene groups of the PEG
block, OCH2CH2O-) compared with the peaks at 5.0 ppm (corresponding to the methylene
groups of the poly(ε-benzyloxycarbonyl-L-lysine) block, -OCH2-C6H5) (Figure 2A,B and
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Table 1). As shown in Table 1, the measured molar ratio of PEG to the PZL segment in
both PCPZL1 and PCPZL2 closely approximated the feeding molar ratio of SCM-PEG-SCM
to PZL. Moreover, the mass ratio of PEG to the PZL segment in both copolymers was
approximately 1:1, which was considered to achieve an optimal hydrophilic–hydrophobic
balance for amphiphilic polymers [22].
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Table 1. Compositions and molecular weights of various copolymers.

Polymer
PEG: PZL in the Copolymer Molecular Weight

Calculated
Molar Ratio 1

Measured
Molar Ratio 2

Measured
Mass Ratio 2 Mn (kDa) PDI

PZL1 - - - 4.23 1.17
PZL2 - - - 6.52 1.22

PCPZL1 1:1 1.1:1 1.1:1 12.57 1.47
PCPZL2 2:1 1.9:1 1.1:1 26.99 1.40

1 Calculated using the feed molar ratio of SCM-PEG-SCM to PZL; 2 Determined from 1H NMR.

The molecular weights and molecular weight distributions were determined using
GPC measurements. As shown in Figure 2 and Table 1, the number average molecular
weights of PCPZL1 and PCPZL2 were calculated to be 12.57 and 26.99 kDa, respectively,
which are significantly higher than those of PZL1 and PZL2 (4.23 and 6.52 kDa). In addition,
all the samples exhibited a narrow molecular weight distribution with a polymer dispersity
index (PDI) below 1.50. The GPC results demonstrated a successful crosslinking reaction
induced by SCM-PEG-SCM, and the obtained PCPZL1 and PCPZL2 possessed appropriate
molecular weights for drug delivery applications.
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3.2. Preparation and Characterization of SPIO-Loaded PCPZL Micelles

The amphiphiles obtained after PEG crosslinking have shown superior ability to
effectively encapsulate hydrophobic drugs and form polymeric micelles with enhanced
stability and drug loading capacity in our previous studies [22]. This study further explores
the potential of such systems in facilitating the formation of magnetic nanoclusters, thus
enhancing T2 relaxivity in MRI and facilitating the diagnostic sensitivity of liver diseases
or cancers. SPIO-loaded PCPZL micelles were fabricated using an optimized ultrasonic
dialysis method. The PCPZL copolymer and SPIO nanocrystals were uniformly dispersed
in the organic solution. Subsequently, the self-assembly of SPIO-loaded micelles occurred
spontaneously through the mixing of the organic and aqueous phase solutions. The
hydrophobic environment of hydrophobic SPIO nanocrystals spontaneously distributed in
the core of the micelles was driven by hydrophobic effects, whereas the crosslinked PEG
chains distributed in the outer layer of the micelles primarily played the role of forming a
stable hydration outer layer to protect the micelles [32–34]. Ultrasound played a crucial
role in the preparation of SPIO-loaded PCPZL micelles by regulating the size distribution
of the micelles and facilitating the conformational adjustment of SPIO nanoclusters within
the micelles to increase their density.

The prepared SPIO-loaded PCPZL1 and PCPZL2 micelles are shown in Figure 3A.
The PCPZL2 magnetic micelles were darker than that of the PCPZL2 magnetic micelles,
indicating that PCPZL2 was more capable of loading SPIO nanocrystals. The results of
quantitative detection confirmed that the SPIO loading capacities of the PCPZL1 and
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PCPZL2 micelles were 55.9 ± 1.6% and 66.0 ± 0.9%, respectively, and the corresponding
SPIO loading efficiencies were measured at 61.2 ± 1.6% and 93.5 ± 1.3% (Figure 3B,C). The
high SPIO loading capacity of PCPZL2 micelles is significantly higher compared with those
reported in the relevant literature [19,35,36]. It has been reported that a high SPIO loading
capacity of micelles (i.e., an increase in the SPIO/polymer mass ratio) increases the diameter
of the SPIO nanoclusters, with a corresponding gradual increase in T2 relaxivity [19].
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micelle solutions. (B) SPIO loading capacity and (C) SPIO loading efficiency of various micelles.
(D) TEM image of SPIO-loaded PCPZL2 micelles. Size distribution of (E) SPIO nanocrystals and
(F) SPIO nanoclusters inside the SPIO-loaded PCPZL2 micelles with Gauss fitting. (G) Hydrodynamic
diameter of SPIO-loaded PCPZL2 micelles determined using DLS. (H) Schematic of the structural
composition of SPIO-loaded PCPZL2 micelles. (I) Fluorescence spectrum of pyrene in PCPZL2 aque-
ous solutions with a constant pyrene concentration (6 × 10−7 mol L−1) and various concentrations of
PCPZL2. (J) Plot of I339/I334 of pyrene versus logarithm concentration of PCPZL2.
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Subsequently, we employed TEM and dynamic light scattering (DLS) measurements
to observe the SPIO distribution in the polymeric micelles and determine the diameter of
the SPIO-loaded PCPZL2 micelles, respectively (Figure 3D–H). Figure 3d confirms that the
SPIO nanocrystals were clustered in the core of the PCPZL2 micelles with a high cluster
density. An analysis of the TEM image revealed that SPIO nanocrystals, with an average
diameter of 9.3 ± 2.1 nm, were encapsulated within the micelles and formed approximately
101.7 ± 17.2 nm SPIO nanoclusters (Figure 3E,F). The DLS analysis showed that although
the SPIO nanoclusters of SPIO-loaded PCPZL2 micelles had a large diameter; the average
hydrodynamic diameter of this magnetic micelle was only 128.2 nm (Figure 3G). This may
be attributed to the low polymer content in the micelles and the crosslinked structure of
PEG, which limited the extension of the PEG chain segments on the nanoparticle surface
and the size of the hydration layer (Scheme 1). Moreover, studies have reported that
the hydrodynamic size of nanoparticles plays a significant role in their plasma half-life,
biological distribution, and pharmacokinetics [37]. Nanoparticles with a diameter of
approximately 100 nm may exhibit a prolonged circulation time in vivo, which facilitates
the targeted accumulation of contrast agents at specific organs or sites and ultimately
enhances the quality of MRI [38,39].

In addition, we conducted a zeta potential analysis on SPIO-loaded PCPZL2 micelles
and found that the micelles had a zeta potential of +0.03 mV. The approximate neutral zeta-
potential is consistent with the hypothesis that the outer shell of these micelles is composed
primarily of PEG rather than PEI. This may also be attributed to the fact that PEI only
occupies 5.9% of the mass ratio of the PZL2 segment. The colloidal stability of the delivery
system primarily describes whether the system will aggregate and precipitate during
long-term storage. Therefore, SPIO-loaded PCPZL2 micellar suspensions were stored at
4 ◦C for 1 month and were then examined for their particle size distribution. The average
hydrodynamic diameter of the micelles was determined to be 133.5 nm, showing slight
changes during storage, while no visible precipitation was observed. The results indicated
that the colloidal stability of the SPIO-loaded PCPZL2 micelles was largely high, which
may be attributed to the fact that the crosslinked PEG shell provides a stable hydration
layer to inhibit the aggregation of nanoparticles.

The main challenge faced by micelles in the bloodstream is their susceptibility to
disaggregation upon significant blood dilution, resulting in premature drug leakage. The
critical micelle concentration (CMC) is commonly employed to evaluate the thermodynamic
stability of micelles upon dilution [40]. In this study, pyrene was used as a hydrophobic
fluorescent probe to determine the CMC of PCPZL2. The typical excitation fluorescence
spectra of pyrene in PCPZL2 aqueous solutions with a constant pyrene concentration
(6 × 10−7 mol L−1) and various concentrations of PCPZL2 are shown in Figure 3I. By
plotting the logC against the ratio of fluorescence intensity at 339 nm and 334 nm (I339/I334),
two straight lines with different slopes were obtained, and the CMC value was thus
determined from the inflection point on the plot. As shown in Figure 3J, the CMC of
PCPZL2 was determined to be 4.48 × 10−3 mg mL−1, which was 10 to 100 times lower than
that of many conventional linear polymers [34]. The results indicated an adequate stability
of the shell-crosslinked PCPZL2 micelles upon dilution, for example, in the bloodstream.

3.3. Magnetization and T2 Relaxivity of SPIO-Loaded Micelles

The magnetic properties of SPIO-loaded PCPZL2 micelles were determined using a
vibrating sample magnetometer [41]. Because the magnetization of superparamagnetic
materials did not linearly depend on the applied field, the shape of this hysteresis line
indicated that the SPIO-loaded PCPZL2 micelles were superparamagnetic (Figure 4A). The
saturation magnetization values of single SPIO nanocrystals and SPIO-loaded PCPZL2
micelles reached maximum values of 59.1 and 34.2 emu g−1 Fe, respectively. The slight
saturation magnetization reduction of the SPIO-loaded PCPZL2 micelles may be attributed
to the encapsulation of the polymer; a similar phenomenon has also been observed in other
polymer-coated magnetic nanocluster systems [42,43]. Because a saturation magnetization
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of 9.7–30.3 emu g−1 Fe has been reported to be sufficient for biomedical applications of
T2 contrast agents [44], SPIO-loaded PCPZL2 micelles with saturation magnetization of
34.2 emu g−1 Fe can be used for T2-weighted MRI.
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To evaluate the performance of the magnetic nanocrystal-loaded micelles as MRI con-
trast agents, we studied their relaxivity using a 1.5 T MRI scanner. T2 contrast agents can
shorten T2 (spin–spin) relaxation times, and their net effectiveness is frequently denoted
as r2, which represents the reciprocal of the relaxation time per unit of iron concentra-
tion [45,46]. Studies have reported the r2 values of commercialized SPIO nanoparticles
Resovist® and Feridex® as 130 and 108 mM−1 s−1, respectively [9,47]. However, our find-
ing indicated that the r2 value of SPIO-loaded PCPZL2 micelles reached 720.1 mM−1 s−1

(Figure 4B), which was approximately 5.5 and 6.7 times higher than that of Resovist®

and Feridex®, respectively. The high r2 value of the SPIO-loaded PCPZL2 micelles was
attributed to the high SPIO loading capacity as well as the diameter and density of the
SPIO nanoclusters.

To evaluate the potential of SPIO-loaded PCPZL2 micelles as MRI contrast agents,
we used an MRI scanner to obtain T2-weighted images of the micelles at different concen-
trations at room temperature. Figure 4C shows that as the concentration of the solution
increased, the T2-weighted imaging signal of the agents gradually decreased and changed
from light to dark. As evidenced by the complete darkening of the MRI images at iron
concentrations as low as 10 µg·mL−1, the SPIO-loaded PCPZL2 micellar solution can be
considered as a promising MRI contrast agent. The amphiphilic copolymer PCPZL also has
significant potential for clustering SPIO-based T2 agents and forming magnetic micelles,
thereby enhancing their sensitivity in T2-weighted MRI.
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3.4. In Vivo Mouse Liver MRI Study

The SPIO-based contrast agents Resovist® and Feridex® have been extensively used
in clinical practice for liver-specific MRI [48]. Therefore, this study aimed to evaluate the
liver MRI performance of SPIO-loaded PCPZL2 micelles using Kunming mice as model
animals. Figure 5 shows representative T2-weighted MRI images of mice before and after
injection of SPIO-loaded PCPZL2 micelles. Regions of interest were selected for the images
of the bladder, muscles, and liver to quantify the contrast enhancement. The bladder area
in all the images appeared bright white due to its high water content. The muscles in the
thighs of the mouse also did not visibly turn black, which may have been because the
SPIO-loaded PCPZL2 micelles did not accumulate at high concentrations in the muscle
tissue within 1 h. In contrast, a significant enhancement was observed in the liver after
a 3 min injection of SPIO-loaded PCPZL2 magnetic micelles, and quantitative analysis
showed an approximately 80% reduction in the signal (Figure 5C). The signal in the liver
continued to decrease and maintained a strong enhancement effect 60 min after injection,
likely because nanoparticles with diameters of approximately 100 nm easily accumulated
through passive targeting in the liver. In addition, the results showed that SPIO-loaded
PCPZL2 micelles had a long half-life in the liver, which was beneficial for their distribution
and accumulation in specific areas to provide more detailed MRI images.
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Figure 5. In vivo T2-weighted MRI performed on the liver of mice. (A) Schematic of mice intra-
venously injected with SPIO-loaded PCPZL2 micelles. (B) Time-dependence of the relative signal
intensity in the livers, muscles, and bladders of mice before and after tail vein administration of
SPIO-loaded PCPZL2 micelles. (C) Mouse T2-weighted images of mice at different time points before
and after administration of SPIO-loaded micelles.
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To evaluate the potential of SPIO-loaded PCPZL2 micelles as MRI contrast agents for
tumor imaging, we performed in vivo MRI of nude mice bearing human liver cancer using
an MRI scanner in which signals from the liver, muscle, and tumor were measured at the
workstation. Figure 6A,B shows that the SPIO-loaded PCPZL2 micelles afforded noticeably
shortened MRI T2 and a significantly low MRI signal intensity within the tumors and livers
of BALB/c nude mice over a period of 1200 min. The prolonged MRI signal observed in
these tissues is likely attributed to the “stealth effect” of the crosslinked PEG shell [22],
reducing SPIO clearance from the body.
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Figure 6. In vivo T2-weighted MRI of nude mice bearing human hepatocellular carcinoma. (A) T2-
weighted images of mice at different time points before and after tail vein administration of SPIO-
loaded PCPZL2 micelles. The blue, green, and red circles indicate the regions of interest for the tumor,
liver, and muscle, respectively, selected for the signal intensity measurement. (B) Mean values of
signal intensity collected before and after micelle administration. (C) Time-dependence of the relative
signal difference between tumor and normal liver tissues at different time points.

Although SPIO-loaded PCPZL2 micelles may accumulate non-specifically in the liver,
there are significant structural (e.g., vascular) and metabolic differences between tumors and
normal liver tissues, which can affect the distribution and duration of magnetic nanoparti-
cles in the two different tissues. As a result, the magnetic nanoparticles would exhibit a
differential impact on the MRI signal intensity of these two tissues, and an optimal display
period needs to be sought during the clinical use of MRI contrast agents. In this study, the
MRI signal intensity of the mouse liver reached its lowest value 720 min after injection of
SPIO-loaded PCPZL2 micelles and then gradually recovered, whereas the MRI signal in-
tensity of the mouse liver tumor reached its lowest value 120 min after injection. Figure 6C
shows that the relative signal difference between the tumor tissue and the normal liver
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tissue reached a maximum at 960 min. Therefore, this time point was considered to be the
optimal time for diagnosis after injecting the SPIO-loaded PCPZL2 micelles, as it enabled
easy detection and observation of lesion details.

4. Conclusions

In this study, the amphiphilic copolymers PCPZL1 and PCPZL2 were developed to
encapsulate SPIO nanocrystals and form shell-crosslinked magnetic micelles with enhanced
colloidal stability and prolonged circulation time in the bloodstream. PCPZL2 was ob-
served to be the most potent carrier for SPIO loading, and SPIO nanoclusters with small
interparticle spacing and an average diameter of 101.7 ± 17.2 nm were formed in the
core of SPIO-loaded PCPZL2 micelles. The r2 value of the SPIO-loaded PCPZL2 micelles
reached 720.1 mM−1 s−1, which exceeded those of Resovist® and Feridex® by approxi-
mately 5.5 and 6.7 times, respectively. In addition, SPIO-loaded PCPZL2 micelles were
effective in vivo for liver MRI by significantly amplifying the relative signal difference
between tumor and normal liver tissues, making it easier to detect and observe lesions. Our
results revealed that PCPZL2 is a promising SPIO delivery system and that SPIO-loaded
PCPZL2 micelles should be thoroughly investigated and used as MRI probes for in vivo
diagnostics or therapeutic applications.
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