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Abstract: Inhibitors of phosphodiesterase-4 (PDE4) are small-molecule drugs that, by increasing
the intracellular levels of cAMP in immune cells, elicit a broad spectrum of anti-inflammatory
effects. As such, PDE4 inhibitors are actively studied as therapeutic options in a variety of human
diseases characterized by an underlying inflammatory pathogenesis. Dendritic cells (DCs) are
checkpoints of the inflammatory and immune responses, being responsible for both activation
and dampening depending on their activation status. This review shows evidence that PDE4
inhibitors modulate inflammatory DC activation by decreasing the secretion of inflammatory and
Th1/Th17-polarizing cytokines, although preserving the expression of costimulatory molecules and
the CD4+ T cell-activating potential. In addition, DCs activated in the presence of PDE4 inhibitors
induce a preferential Th2 skewing of effector T cells, retain the secretion of Th2-attracting chemokines
and increase the production of T cell regulatory mediators, such as IDO1, TSP-1, VEGF-A and
Amphiregulin. Finally, PDE4 inhibitors selectively induce the expression of the surface molecule
CD141/Thrombomodulin/BDCA-3. The result of such fine-tuning is immunomodulatory DCs
that are distinct from those induced by classical anti-inflammatory drugs, such as corticosteroids.
The possible implications for the treatment of respiratory disorders (such as COPD, asthma and
COVID-19) by PDE4 inhibitors will be discussed.

Keywords: cDC1; cDC2; pDC; monocyte-derived DC; tolerogenic DCs; CD80; CD86; IL-12;
TNFα; Tanimilast

1. Introduction

cAMP is a key modulator of inflammation whose intracellular levels are regulated
through hydrolysis by various phosphodiesterases (PDEs) [1]. PDE4, in particular, is a fam-
ily of four genes (PDE4A, PDE4B, PDE4C and PDE4D) encoding cAMP-specific enzymes
sharing a highly conserved catalytic domain and prominently expressed in immune cells.

PDE4 inhibitors increase cAMP intracellular levels by inhibiting cAMP hydrolysis,
thus eliciting a broad spectrum of anti-inflammatory effects in virtually all cells of the
immune system [2]. Because of this, the inhibition of PDE4 enzymes has been clinically
investigated as a therapeutic strategy in a variety of pathological settings, including respira-
tory, dermatological and immune diseases, as well as cognitive and affective disorders [3,4].

Dendritic cells (DCs) are a specialized population of antigen-presenting cells, serving
as sentinels of innate immunity and key initiators of adaptive and anti-viral immune
responses. Deregulated DC functions are one major pathogenetic determinant of virtually
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all types of diseases [5]. Thus, DCs represent crucial targets for immunomodulatory
drugs. This present review will describe how PDE4 inhibitors affect the immune-activating
properties of DCs, which display relevant cAMP-specific PDE4 enzymatic activity mainly
mediated by PDE4A [6]. Additionally, we will describe how the immunomodulatory effects
of PDE4 inhibitors impact the treatment of some major respiratory diseases, highlighting
the possible implications of DC modulation in such conditions.

2. Overview of PDE4 Inhibitors

Three small-molecule PDE4 inhibitors are currently approved and marketed for the
treatment of human diseases: Roflumilast for chronic obstructive pulmonary disease
(COPD), crisaborole for atopic dermatitis and Apremilast for psoriatic arthritis [7]. Roflu-
milast, developed as an oral drug, is the first approved PDE4 inhibitor as well as the only
PDE4 inhibitor approved for respiratory diseases [8]. Roflumilast was approved in the EU
and the US in 2010 and 2011, respectively, for the oral treatment of severe COPD [9]. Roflu-
milast proved capable of reducing inflammatory-mediated processes and the frequency of
exacerbations in COPD patients with a chronic bronchitis phenotype [8]. Moreover, the
potential utility of Roflumilast in non-cystic fibrosis bronchiectasis, a neutrophilic airway
disease presenting with mucus hypersecretion, is under investigation in clinical trials
(https://classic.clinicaltrials.gov/ct2/show/NCT03988816, accessed on 1 July 2023). How-
ever, the use of Roflumilast is limited by class-related side effects, such as nausea, diarrhea,
weight loss and abdominal pain, resulting in both substantial treatment discontinuation
in clinical practice and withdrawal from clinical trials. This has prompted the search for
PDE4 inhibitors to be administered by inhalation to reduce the systemic exposure (and thus
optimize drug safety) and maximize the therapeutic effect in the lung [10]. Tanimilast (inter-
national non-proprietary name of CHF6001) is an example of a novel inhaled PDE4 inhibitor
that has progressed to clinical studies in COPD and asthma [11]. Tanimilast showed anti-
inflammatory properties in various inflammatory cells, including leukocytes derived from
asthma and COPD patients, as well as in experimental rodent models of pulmonary inflam-
mation [11–13]. Inhaled Tanimilast has reached phase III clinical development by showing
promising pharmacodynamic results associated with a good tolerability and safety profile,
with no evidence of PDE4 inhibitor class-related side effects [11]. Apremilast is currently un-
der clinical evaluation as a therapy to mitigate the severe inflammatory reactions associated
with COVID-19 pneumonia (https://classic.clinicaltrials.gov/ct2/show/NCT04590586,
accessed on 1 July 2023). Additionally, a number of molecules are currently under clinical trial
for the treatment of respiratory diseases, as recently reviewed in several works [4,7,14–16] and
briefly summarized in Table 1.

Several clinical trials for the treatment of COPD and psoriasis were terminated due
to adverse events, mainly affecting the gastrointestinal tract, which were caused, at least
in part, by poor selectivity versus the different PDE4 subfamilies. Because of the high
similarity between the isoforms of PDE4, there is a lack of isoform selective inhibitors, which
may improve tolerability. By contrast, however, since PDEs are also expressed in structural
and inflammatory cells in the respiratory tract and may contribute to disease development
and exacerbation [16], a selective targeting of PDE4 may not be fully effective. In such
conditions, the simultaneous inhibition of multiple PDE families would be a promising
direction for the discovery of novel PDE4 inhibitors. Finally, for treating respiratory
diseases, inhaled PDE4 inhibitors may reduce unwanted side effects by directly targeting
the airways while limiting systemic exposure, as exemplified by clinical studies with
Tanimilast [11].

For an extensive review on PDE4 inhibitors development, usage, role and side effects
in therapy, which goes beyond the scope of this review, we refer the reader to the recent
and comprehensive literature (e.g., [4,7,14,15,17–21]).

https://classic.clinicaltrials.gov/ct2/show/NCT03988816
https://classic.clinicaltrials.gov/ct2/show/NCT04590586
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Table 1. PDE inhibitors in ongoing clinical development for respiratory diseases.

Drug Name Company Indications Phase NCT Number Comments

Roflumilast
(Daliresp) AstraZeneca

COPD n/a Approved
Approved in EU (2010) and in the USA

(2011) for the management of severe
COPD.

Bronchiec-
tasis II NCT03988816 Efficacy on lung function and mucus

properties.

Tanimilast
(inhaled)

Chiesi
Farmaceutici

COPD
III NCT04636801

(Pilaster) Placebo-controlled (Pilaster) and active
(Roflumilast)-controlled (Pillar) 52-week

studies for efficacy and safety as an
add-on to maintenance triple therapy in

COPD and chronic bronchitis.

III NCT04636814
(Pillar)

Asthma II NCT01689571 Efficacy, tolerability and safety of
Tanimilast in asthmatic patients.

Ensifentrine
(RPL554)

Verona
Pharma

COPD II NCT05270525
Under evaluation as an add-on to

standard of care treatments.
Asthma II NCT02427165

COVID-19 II NCT04527471

BI 1015550
Boehringer
Ingelheim

International

Idiopathic
Pulmonary

Fibrosis
III NCT05321069 Evaluate long-term efficacy and safety of

BI 1015550.

Apremilast
(Otezla) Amgen COVID-19 III NCT04590586

Efficacy and safety of Apremilast as
add-on to standard of care in

hospitalized patients.

Cilomilast
(Ariflo) GSK COPD III NCT00103922

Completed 24-week study for safety and
efficacy in COPD patients

(development terminated).

GSK256066
(inhaled) GSK COPD II NCT00549679

Safety and tolerability in mild to
moderate COPD patients

(development terminated).

Tetomilast
(OPC-6535)

Otsuka
Pharmaceutical COPD II NCT00917150

24-month study for efficacy and safety of
OPC-6535 in COPD patients

(last update 2021).

Oglemilast Forest
Laboratories

COPD II NCT00671073
14-week study for safety and efficacy of a

range of Oglemilast doses
(last update 2019).

Asthma II NCT00322686
Prevention of bronchoconstriction after
the administration of allergen in mild

asthma patients (last update 2012).

Revamilast
Glenmark

Pharmaceuticals
Ltd. India

Asthma II NCT01436890
12-week study for effects of Revamilast

in patients with chronic persistent
asthma (last update 2013).

3. DC Subtypes and Functions in the Respiratory Tract
3.1. The Biology of DCs
3.1.1. DC Subpopulations

Dendritic cells are a heterogeneous group of cells originating in the bone marrow from
both myeloid and lymphoid precursors. DCs are identified by the abundant expression
of major histocompatibility complex class II (MHC-II) molecules and the absence of lym-
phocytic, monocytic and granulocytic-specific makers [22]. According to their ontogeny,
phenotypical features, tissue distribution and transcriptional profiles, DCs are classified
into different subsets: conventional or classical DCs (cDCs), including cDC1s and cDC2s;
plasmacytoid DCs (pDCs); and monocyte-derived DCs (moDCs) [23–25]. cDC1s require the
transcription factors IRF8, ID2 and BATF3 for development and can be distinguished by the
expression of the membrane markers CD141/Thrombomodulin/BDCA-3 and Clec9A [26].
The transcription factor IRF4 is essential for cDC2s that can be phenotypically distinguished
by the expression of the membrane markers BDCA1/CD1c and SIRPa [26]. Single-cell
analysis revealed an additional level of complexity in DC heterogeneity by identifying
multiple cDC2 subsets, such as DC2 and DC3 [27,28], whose developmental origin and
functional properties need further investigations [29,30]. pDC differentiation relays on
the transcription factors TCF4, IRF8 and Ikaros family zinc finger 1 (IKZF1) [31–33] and
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can be identified by the phenotypic markers BDCA-2/CD303, BDCA-4/CD304, ILT7 and
the receptor for IL-7 [34]. Finally, moDCs represent a DC subset originating from blood
monocytes recruited in the tissues in response to inflammatory stimuli [35].

3.1.2. DC Maturation

DCs commonly reside in blood, non-lymphoid and lymphoid tissues with the unique
role among immune cells to activate and tailor T cell responses to combat specific pathogens
and foreign antigens [36]. From a functional point of view, DC can be classified in immature
and mature cells (Figure 1).
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Figure 1. Schematic representation of phenotypic features of cDC maturation. Following activation
stimuli in the peripheral tissues, maturing cDC starts moving toward lymphatics by down-regulating
the expression of receptors for inflammatory chemokines (CCR1, 5 and 6) and upregulating the
lymph node-addressing chemokine receptor CCR7. The increased expression of MHC molecules
allows mature cDC to present engulfed antigens to T cells. The increased expression of costimulatory
molecules (CD80 and 86) on mature cDC promotes the activation of antigen-specific T cells and the
adaptive immune response.
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Immature cDCs reside in the peripheral tissues and express chemokine receptors, such
as CCR1, CCR5 and CCR6, allowing them to be recruited by inflammatory chemokines
produced by injured cells. Immature cDCs patrol the local environment through the
expression of a vast repertoire of innate receptors, which recognize different types of
exogenous or endogenous danger signals [24]. In response to this recognition, DCs undergo
a profound and ordered alteration of their functional status and tissue localization, known
as maturation. During maturation, cDCs lose their endocytic and phagocytic abilities,
rearrange chemokine receptor repertoire and re-program the expression of cytokines and
costimulatory and MHC molecules to specifically prime T cells [37,38]. On these bases,
maturation markers include antigen-presentation molecules (MHC-I and II), costimulatory
molecules (such as CD80, CD83 and CD86) and homing lymph node chemokine receptors
(CCR7 and CXCR4) [39]. Indeed, maturing DCs leave peripheral tissues and migrate
toward regional lymph nodes (Figure 1). Here, cDC1s specialize in the processing and
presentation of intracellular antigens and in shaping anti-viral immune responses by cross-
presenting virus-associated antigens to CD8+ T cells via MHC-I [40]. In parallel, cDC2s
efficiently present MHC-II-associated antigens to CD4+ T cells, promoting Th1, Th2 and
Th17 polarization [41]. By contrast, pDCs mature in response to viral or tumor stimuli
accumulate in non-lymphoid tissues and secrete huge amounts of type I interferons (IFNs).
Mature pDCs can also prime T cells but with a lower efficiency in respect to cDCs [42].

Notably, DC maturation is no longer considered a one-step event. Indeed, the endoge-
nous production of secondary mediators by activated DCs acts as an essential amplification
loop besides stimulation by pathogen recognition [43]. Among these, type I IFNs play a
key role in both cDC and pDC maturation [44,45], while TNF-α and IL1β are essentials for
cDCs [46,47].

3.1.3. Tolerogenic DCs

DCs, and especially cDC1s [48], are also crucial for the establishment of peripheral tol-
erance in steady-state conditions [48]. Tolerogenic DCs express low levels of co-stimulatory
and pro-inflammatory molecules and may promote T cell anergy or clonal deletion, as well
as the conversion into regulatory T cells (Tregs) [48,49]. Interestingly, at specific barrier
sites, such as the airways, extrinsic signals can also induce the tolerogenic differentiation
of DCs to maintain immune homeostasis in the presence of commensal organisms and
other antigens, even under partially pro-immunogenic conditions [48,50]. pDCs may also
contribute to peripheral tolerance [51], in particular when antigen uptake and presenta-
tion occurs in conditions that also trigger pDC inhibitory receptors such as BDCA2 and
DCIR [52,53].

Tolerogenic DC-based therapies are being actively investigated for the management of
aberrant inflammatory or immune-mediated conditions [54]. As of today, tolerogenic DCs
can be induced by treatment with immunomodulatory agents, such as corticosteroids or
calcineurin inhibitors, which impair phenotypical and functional maturation and induce
regulatory markers (e.g., PD-L1, ILT3, etc.) and mediators (e.g., IL-10 and TGF-β), as well
as indoleamine 2,3-dioxygenase 1 (IDO1), which suppresses T cell activation by promoting
tryptophan metabolism [50]. Here, we collected evidence that PDE4 inhibitors induce a
novel type of tolerogenic DCs that are clearly distinct from those induced by corticosteroids
(see Section 4).

3.2. DCs in the Respiratory Tract

The frequency and the distribution of the different DC subsets is a function of the tissue
site [55] and, especially at barrier sites, is finely tuned to maintain the balance between
protective immunity and self-tolerance [37,56].

cDCs are present in normal human airway mucosal epithelium, lung parenchyma, in-
teralveolar septa and visceral pleura [57] (Figure 2). In the lung parenchyma, the frequency
of cDCs is particularly high with respect to other mucosal sites, with cCD2s surpassing
cDC1s. cDC2s and pDCs are particularly enriched in lung lymph nodes as compared to
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other lymphoid tissues [55]. Concerning the airways, DCs lie along the mucosal epithelium,
spanning from the upper to lower respiratory tract and forming an extensive network to
continuously sample antigens from the environment [56]. DC density decreases from large,
conducting airways to respiratory bronchioles, where cDC1s are mostly associated with
respiratory epithelium, sampling airway content by protruding their dendrites through
epithelial tight-junctions (Figure 2). Interestingly, studies in mice and in a 3D model of the
human airway showed that DC build tight-junction-like complexes with epithelial cells
in order to preserve epithelial integrity [58,59]. By contrast, cDC2s are located in the basal
layer of the epithelium. DCs in the visceral pleura were also described to arrange in parallel
with the pleural surface, with extensive cytoplasmic processes projected to the mesothelial
lining [57].
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Figure 2. Distribution of DCs in the respiratory tract. Tissue resident DCs are differentially located
along the airways and in the regional lymph nodes. Upon inflammation, DC precursors originat-
ing from blood monocyte or circulating DC and plasmacytoid DC are rapidly recruited into the
damaged tissue.

Under homeostatic conditions, both cDC1s and cDC2s in the airways exhibit an
immature phenotype. Upon inflammation, mature cDC2s, and with a lower frequency
cDC1s, migrate to the local lymph node, where cDC1s localize preferentially in the T cell
zone while cDC2s tend to aggregate in proximity to B cell follicles [55]. Additionally,
circulating- and monocytic-DC precursors are rapidly recruited to the site of infection via
chemotactic signals [60]. In some cases, the influx of DC precursors occurs within two
hours after challenging, being even faster than the infiltration of neutrophils [61]. Together
with pulmonary DCs, these cells capture, process and transport antigens to the draining
pulmonary lymph nodes where they activate and imprint the magnitude of the immune
response [56].

Given the central role of DCs in immune regulation, as well as their strategic anatom-
ical location, it is not surprising that the dysregulation of DC functions may represent a
pathogenetic determinant, as well as a relevant pharmacological target in different lung
diseases [62], as described in Section 5.
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4. DC Regulation by PDE4 Inhibitors

The effects of PDE4 inhibitors on maturation and immune functions of DCs has been
investigated in a number of studies revealing the modulation rather than the suppression
of the proinflammatory and T-activating capabilities of DCs. These changes are detailed in
the following paragraphs and depicted in Figure 3.
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Figure 3. Distinctive immunomodulatory functions of PDE4 inhibitors on cDCs. PDE4 inhibitors and
corticosteroids differently affect cDC maturation induced by TLR ligands and their ability to activate
T cells. Upper panels depict the modulation of membrane markers, functional features (dead cell
uptake) and gene expression in activated cDCs. Bold characters indicate the parameters that have
been found modulated in the same way in sputum cells of COPD patients treated with Tanimilast on
top of standard-of-care therapy. Middle panel summarizes the modulation of cytokine and chemokine
secretion in activated cDCs. Data in the heat map are expressed as the % of the maximal stimulation
over control. Lower panels illustrate the modulation of T cell proliferation/effector functions. Most of
the results shown in the pictures were obtained with Tanimilast and budesonide or dexamethasone.
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4.1. DC Phenotype

DC activation implies the upregulation of several signature cell surface molecules,
marking their transition into the so-called “mature” state. Different from other anti-
inflammatory or immuno-modulatory agents, such as corticosteroids, different PDE4
inhibitors, including Tanimilast and Apremilast, neither fully abrogated the acquisition of
a mature phenotype nor promoted a classical tolerogenic profile in inflamed DCs [6,63–66]
(Figure 3, upper panels). Conversely, PDE4 inhibitors selectively restrained the upregula-
tion of MHC-I and CD80 while sparing the increase of MHC-II, CD83 and CD86. The lymph
node migratory capacity was also retained as the result of the untouched upregulation
of chemokine receptors CCR7 and CXCR4. Of note, similar results were obtained when
DCs were treated with cAMP analogs [67]. Unexpectedly, DC inhibitory molecules such as
PD-L1 and ILT3/CD85k were downregulated by Tanimilast. These inhibitory molecules
are induced during inflammatory DC activation, possibly as a feedback loop to prevent
excessive T cell responses, at least partially as a result of the autologous secretion of in-
flammatory mediators. Thus, reduction of proinflammatory mediators by PDE4 inhibitors
(see Section 4.2.1.) may block this feedback circuit, resulting in PD-L1 and ILT3/CD85k
reduction [65,68,69]. The biological significance of this phenomenon remains to be explored.

Of particular interest, we found that Tanimilast, but not the glucocorticoid budesonide,
could strongly induce the expression of CD141 both in moDCs and in circulating cDC2s [65].
CD141 is a transmembrane protein that is abundantly expressed by endothelial cells, where
it is regulated by the levels of intracellular cAMPs [70,71]. In this cell type, CD141 exerts
various and well-characterized anti-coagulant and anti-inflammatory activities, such as
the sequestration of LPS and/or HMGB1 and degradation/inhibition of complement
deposition [72,73]. CD141 is also a marker of cDC1 cells, a subpopulation of human DCs
known for their superior antigen cross-presenting capacity [74]. However, the function
of CD141 in DCs remains unknown. Recently, the lectin domain of this molecule was
suggested to play a role in DC-mediated immune stimulation in the lung [75]. Consistent
with this view, CD141+ DCs within peripheral tissues were shown to display a tolerant
phenotype [76,77] to preferentially induce type 2 immunomodulatory responses [78] and
even potent regulatory T cells [76]. Despite the fact that we could not identify the role
of CD141 upregulation in DC activated in the presence of Tanimilast, we found that the
percentage of CD141+ correlated with the uptake of dead cells, a function that is crucial
to trigger antigen cross-presentation. In addition, we have proposed that CD141 may
represent a marker of Tanimilast-induced immunomodulatory DCs [65].

4.2. DC Immune Functions
4.2.1. Production of Pro-Inflammatory and T-Polarizing Mediators

Mature DCs secrete a wide range of pro-inflammatory cytokines and chemokines,
which, in turn, initiate and amplify inflammation via the recruitment of innate inflammatory
cells and the polarization of T lymphocytes [79]. In this context, the administration of
PDE4 inhibitors during DC maturation potently prevented the secretion of prototypic
pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and chemokines that are essential
for the influx of immune cells into inflamed tissues (CCL3, CXCL9 and 10) [6,63–66]
(Figure 3, middle panels). PDE4 inhibitors, including Tanimilast, effectively suppressed
Th1/Th17-polarizing cytokines (IL-12, type I IFNs, IL-6 and IL-23) and strongly enhanced
the production of CCL22, a Th2/Treg attractor [63–65]. Tanimilast also increased the
expression of cAMP-dependent immunosuppressive molecules, such as IDO1, TSP-1,
VEGF-A and Amphiregulin, in stimulated DCs [65], which decrease T cell activation, skew
towards a Th2/Treg profile and promote the resolution of inflammation [80–85].

4.2.2. T Cell Activation

One prominent characteristic of DCs is their instructive role in the activation of adap-
tive immunity, depending on their unique capability to activate and polarize naïve T
cells [39]. To elucidate the effects of PDE4 inhibition on this DC function, several studies



Pharmaceutics 2023, 15, 2254 9 of 21

exploited allogeneic mixed lymphocyte reaction experiments, which involve the cocul-
ture of DCs matured in the presence or absence of PDE4 inhibitors with allogeneic T
lymphocytes [6,63–66] (Figure 3, lower panels).

DCs matured in the presence of PDE4 inhibitors displayed a profound impairment in
Th1 induction but, at difference with budesonide, still retained their ability to grossly expand
naïve CD4+ T cells [6,64,65]. This is in line with the above-described blockade of IL-12 together
with the untouched retention of MHC-II, CD83 and CD86 upregulation. Moreover, Tanimilast
increased the percentage of Th2 cells, which positively correlated with the CD86/CD80
ratio [64,65], as previously described in different experimental settings [86,87]. Indeed, the Th2
biased effects were not only observed in human DCs treated with PDE4 inhibitors but also in
those treated with other cAMP-elevating agents, such as cholera toxin, prostaglandins and
others [88–91]. However, it is important to stress that the suppressive effects of PDE4 inhibitors
on the Th-1/Th-17 axis were mostly demonstrated in the context of type 1 inflammation.
Further studies are therefore necessary to fully explore the modulatory effects of these agents
on Th2/Th17-mediated conditions.

In marked contrast with the human setting, Roflumilast and cAMP-elevating agents
were shown to favor the Th17-polarizing properties in murine bone marrow-derived
DCs [92,93] by efficiently inhibiting the production of IL-12 and promoting a higher level
of Th17-expanding cytokines IL-23 and IL-10. Interestingly, Kim and colleagues proposed
a novel signaling network in which low levels of cAMP in murine DCs promoted Th2
immunity, whereas increased cAMP concentration induced Th17 response [94]. Therefore,
the effect of PDE4 inhibition on the polarizing potential of DCs may differ among DC
subsets and species, and results may need to be interpreted carefully depending on the
different experimental models and settings.

At difference with CD4+ T cells, CD8+ T cell proliferation and effector functions were
strongly inhibited by Tanimilast at a level similar to budesonide accordingly to the reduced
expression of both IL-12 and MHC-I molecules [64,65]. These data were indeed in line
with other reports on cAMP-elevating agents, including NECA, forskolin and IBMX, which
were shown to limit the expansion of Melan-A26–35 specific CD8+ T cells by modulating the
process of DC activation [95].

Altogether, the existing literature indicates that PDE4 inhibitors confer to DCs a dis-
tinct phenotype, highlighted by the upregulation of CD141 and associated with tolerogenic
functions distinct from those of classical immunosuppressive molecules such as corticos-
teroids (Figure 3). Type 2 immunity is normally linked to host defense against helminths
and allergy. Currently, however, type 2 responses are being recognized as playing a broader
role in immune surveillance at tissue barrier sites, repair responses and the restoration
of homeostasis [96]. In particular, a Th2-skewed T cell activation along with the expres-
sion of resolution-inducing molecules may define DCs conditioned by PDE4 inhibitors as
pro-resolving mediators, potentially relevant in the limitation of dysregulated immune
responses as well as the restoration of homeostasis at sites of injury [97]. Thus, cAMP
signaling in human DCs may play a pivotal role in the differential steering of CD4+ T
cell activation as well as in enabling the signals for the resolution phase of inflammation.
These results support the use of PDE4 inhibitors as a disease-modifying strategy to manage
certain inflammatory or immune-mediated respiratory diseases also via the increase of
intracellular cAMP in DCs [98].

5. Pathological Role of DCs in Respiratory Diseases and Implications for PDE4
Inhibitor Therapy
5.1. COPD

COPD is a chronic lung inflammatory condition characterized by persistent airway
obstruction and remodeling, with smoking being the most important risk factor of the
disease [99]. Several studies demonstrated a link between DCs and the pathogenesis of
COPD. The accumulation of DCs in the airways with activation of Th1/Th17 lymphocyte
subsets and overactivation of CD8+ T cells were consistently observed during disease
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progression and aggravation [100,101]. In particular, the increased cytotoxic activity of
CD8+ T cells was associated with an increased expression of Clec9A, consistent with the
function of cDC1s [101]. Moreover, cDC2s purified from a COPD patient displayed an
increased ability to induce follicular T helper cells, suggesting their contribution to the for-
mation of tertiary lymphoid tissues, which play a detrimental role in chronic inflammatory
conditions, including lung diseases [102].

As of now, Roflumilast is the only PDE4 inhibitor approved by the FDA for the treat-
ment of COPD, while Tanimilast is advancing in the phase III clinical trials with promising
results for its potency and safety profile [103]. Indeed, PDE4 inhibitors displayed promising
anti-inflammatory effects in experimental models for COPD in vitro and in vivo [11,104].

In particular, the administration of PDE4 inhibitors efficiently reduced the influx
of neutrophils to murine lungs acutely exposed to cigarette smoke and restrained the
progression to emphysema in mice with chronic smoke exposure [105,106]. A pivotal
study with cilomilast revealed the decrease of CD8+ T cells and CD68+ macrophages, two
critical components associated with COPD pathogenesis, in the bronchial specimens of
COPD patients [107]. In a later study, Roflumilast induced a substantial decrease of soluble
inflammatory mediators in sputum, thus partly contributing to the amelioration of lung
functions [108]. Finally, in accordance with in vitro results described in previous section, a
randomized study revealed an enhanced expression of genes related to immunosuppression
and Th2 response, including TSP-1, VEGF-A, Amphiregulin and CD141 in sputum cells of
COPD patients treated with Tanimilast on top of inhaled corticosteroids [64,103] (Figure 3,
upper panels).

Despite direct experimental evidence still lacking, it is tempting to hypothesize that,
by modulating DC activation, PDE4 inhibitors may create a local microenvironment less
supportive to Th1/Th17 and more favorable to Th2 differentiation, which was demon-
strated to enhance the therapeutic response to inhaled corticosteroids [109]. These ob-
servations provide a mechanistic rationale for the administration of PDE4 inhibitors as
add-on therapy in a defined subgroup of COPD patients who remain symptomatic upon
standard-of-care treatment. This approach was also investigated in randomized trials
with Roflumilast, where patients on combination therapy displayed improved outcomes
compared to monotherapy [110].

5.2. Asthma

Asthma is a chronic inflammatory condition that causes reversible airway obstruction,
resulting in occasional breathing difficulties and wheezing in response to an array of en-
vironmental triggers. In terms of pathogenesis, a dominant Th2 paradigm, together with
eosinophilic inflammation in the airway, are recognized as the main underlying molecular
mechanisms of the disease [111]. However, a Th2-low endotype driven by distinct, poorly
characterized molecular mechanism and featuring neutrophilic or paucigranulocytic inflam-
mation is also described in various asthma subtypes. Interestingly, this clinical presentation
is responsible for the majority of cases resistant to inhaled corticosteroids and short-acting
β2 agonist [112].

The role of DCs was investigated, especially in the Th2 endotype of asthma. In aller-
gic asthma, both cDC1s and cDC2s were found to be increased in induced sputum after
allergen inhalation [113,114]. A single-cell proteomic and transcriptomic profiling of nasal
biopsies demonstrated a different behavior of cDC2 from allergic vs. non-allergic patients,
characterized, respectively, by inflammatory vs. inhibitory/tolerogenic transcriptional
changes upon allergen challenge [115]. Mice lacking lung DCs failed to initiate and to
perpetuate allergen-driven airway inflammation [116–118]. A single-cell RNA-sequencing
study in a mouse model of allergic asthma reported an imbalance of two newly described
cDC1 clusters toward a pro-inflammatory versus a tolerogenic phenotype [119]. Interest-
ingly, the adoptive transfer of tolerogenic DCs in models of allergy-induced persistent
suppression of Th2 allergic response, thus conferring long-term protection from airway
inflammation [120–122]. Likewise, restraining DC maturation not only alleviated lung
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injury but also accelerated the recovery phase of the disease [123–125]. Despite the role
of pDCs being scarcely investigated, mouse data indicated that pDCs are able to prevent
asthmatic reactions to harmless inhaled antigens [126].

Preclinical evidence of PDE4 targeting in a rat model of allergic asthma indicated that
ovalbumin sensitization and challenge significantly increased the activity of PDE4 and
mRNA expression of different PDE4 isoforms, including PDE4A, PDE4C and PDE4D [127].
Recently, PDE4B was shown as the main player in driving Th2 development in allergic
asthma: its knockdown reduced the number of Th2 cells and cytokines (IL-4, IL-5 and IL-13)
and switched off airway hyperresponsiveness upon allergen challenge [128]. Selective
blocking of PDE4 by rolipram in ovalbumin-sensitized animal models not only counteracted
the increase of eosinophils in the blood and BAL but also relieved the symptoms of airway
hypersensitivity [129]. Especially, increasing cAMP levels in dendritic cells of an allergic
model restrained Th2 development and airway inflammation in both in vitro and in vivo
experiments [130]. In humans, asthmatic patients under PDE4 inhibition therapy displayed
attenuated allergen-induced airway inflammation, along with lower accumulation of
inflammatory cells and cytokines [131].

Whether PDE4 inhibitors exert their therapeutic effects on Th2-asthma by regulating
the immunogenic features of DCs remains to be clearly defined, although one study showed
that the modulation of cAMP levels in DCs reduced Th2 development and airway inflam-
mation in a bronchial asthma model [130] (Table 2). The data presented above indicate
that human DCs, when treated with PDE4 inhibitors, acquire a semi-mature phenotype
endowed with a Th2-skewing capacity, which seems inconsistent with such therapeutic
exploitation. However, in all in vitro studies, DCs were activated with LPS, which induces
Th1 responses, thus failing to recapitulate the model of DC activation occurring in allergic
asthma. Further studies are required in which DCs are activated with allergens or TSLP, a
molecule that is emerging as a pivotal inducer of different types of asthma [132]. In addition,
in vitro studies on DCs cannot provide reason for the direct effects of PDE4 inhibition on
other target cell types that cooperate in the establishment of the immunomodulatory effects
of PDE4 inhibition observed in in vivo models [6,63–66]. Indeed, in vitro proliferation
experiments showed that PDE4 inhibitors also directly impact T cell activation [133–135].
On the other hand, a dual anti-inflammatory/Th2-orienting effect could be useful in the
treatment of pathologies characterized by excessive Th1/Th17 responses such as Th2-low
asthma. This speculation is supported by the lower number of neutrophils and decreased
airway inflammation reported in neutrophilic asthmatic models under Roflumilast ther-
apy [136]. The efficacy was largely enhanced when steroids were added to PDE4 inhibitors,
proposing a new strategy of drug combination in asthma management.

Table 2. Therapeutic effects via modulation of cAMP levels in DCs.

Animal Model Findings Reference

Bronchial asthma model
(Gnas∆CD11c mice)

Adoptive transfer of OVA-loaded DCs from Gnas∆CD11c mice induced
Th2 response and airway inflammation in WT and Gnas∆CD11c mice.

Adoptive transfer of 8-CPT-cAMP-treated DCs from Gnas∆CD11c mice
reduced Th2 development and airway inflammation in recipient mice.

[130]

LPS induced ALI in mice
Adoptive transfer of Resveratrol-treated DCs to WT mice before LPS
challenge enhanced survival rates, reduced lung tissue damage and

lowered the expression of Th17 cells in the lung.
[123]

Another interesting immunomodulatory feature of PDE4 inhibitors on DCs is their
capacity to induce high levels of CD141, since CD141+DCs were suggested to exert protec-
tive effects against bronchial asthma [65,75,137]. In in vivo asthma models, the adoptive
transfer of CD141+ DCs or administration of inhaled soluble CD141 resulted in a decline of
inflammatory cells, eosinophils and Th2-related cytokines, thus reducing disease severity
and progression [75]. Even though a number of studies reported an elevation of CD141
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expression in peripheral blood associated with air limitation in asthmatic patients, it ap-
peared to be a compensatory response more than a pathogenic mechanism [75]. Despite
it being tempting to speculate that CD141+ DCs induced by PDE4 inhibitors may present
beneficial effectors in the management of asthma and other allergic diseases, further studies
are required to confirm this hypothesis.

5.3. Coronavirus Disease 2019 (COVID-19)

COVID-19 is an infectious disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [138]. As the lung is one of the preferential targets of the virus,
most patients show bilateral pneumonia on admission to healthcare facilities, and one fifth
of them progress to severe lung injury [139]. It is now clear that the progression and the
severity of COVID-19 is a direct consequence of dysregulated host immune responses rather
than of viral replication per se. These responses include hyper-inflammation and cytokine
storm, leading to uncontrolled diffuse tissue damage and acute organ failures [140–143].
Several prototypic immunomodulatory agents have been tested in clinical trials, and yet
none were proven to be fully effective for the management of COVID-19, especially at later
stages of the disease [144,145].

Several groups also proposed PDE4 inhibitors for COVID-19 management [3,146,147]
based on the assumption that the upstream inhibition of inflammatory pathways via in-
creased cAMP levels may outclass single anti-cytokine drugs, especially once multiple
cytokines are massively released [148]. In vitro, our group showed that human DCs acti-
vated by SARS-CoV-2 RNA in the presence of Tanimilast massively decreased multiple
pro-inflammatory chemokine and cytokine production and induced defective develop-
ment of Th1/Th17 and CD8+ effector cells while increasing Th2 cells [64]. Of note, Th2
cytokines were shown to decrease the expression of the SARS-CoV-2 receptor angiotensin-
converting enzyme 2 [149–151] and to sustain the anti-thrombotic properties of airway
endothelial cells [152]. Interestingly, SARS-CoV-2-induced coagulopathy may benefit from
the anti-coagulant activity of CD141+ DCs, which were shown to directly activate two
critical components of anti-coagulation pathways, protein C and proCBP2 [153]. Thus, the
immuno-modulatory effects of PDE4 inhibitors on DC activation may help counteract key
pathological mechanisms in severe SARS-CoV-2 pneumonia, such as the overactivation of
innate cells and T lymphocytes and hypercoagulation [152,154–157].

In accordance, PDE4 inhibitors, such as Apremilast, when administered actively for
the treatment of COVID-19 or passively as a targeted therapy of underlying diseases, dis-
played rapid and positive effects in a subgroup of severe SARS-CoV-2 pneumonia [158–160].
However, the therapeutic efficacy of PDE4 inhibitors in the clinical practice requires broader
investigation and analysis. To this aim, a phase III clinical trial with Apremilast has been com-
pleted (https://classic.clinicaltrials.gov/ct2/show/NCT04590586, accessed on 1 July 2023),
but results are not yet available to confirm its applicability in the management of COVID-19.

5.4. Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS)

Although ALI and ARDS are caused by different injuries and conditions, they are
studied as a single entity because of their similar clinical picture, consisting of acute
systemic inflammation, bilateral pulmonary infiltrates and severe hypoxemia requiring
critical care and ventilation support [161]. In LPS-induced ARDS models, pulmonary DCs
facilitated Th1 response and enhanced the infiltration of neutrophils, which are essential in
the initiation and amplification of severe lung injury [162–164].

Numerous in vivo studies investigated the preventive and therapeutic potential of
PDE4 inhibition for these pathological conditions. For example, lung edema and pulmonary
functions of rabbits induced to ALI by saline administration were significantly improved
by Roflumilast [165], and other PDE4 inhibitors performed similarly in models where ALI
was induced by chemicals or microbial agents [166–168]. In mice infected with a lethal dose
of Influenza A H1N1 virus, rolipram, in combination with antiviral therapy, significantly
reduced lung injuries and increased the survival rates up to 80–100% [169]. Importantly, the

https://classic.clinicaltrials.gov/ct2/show/NCT04590586
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adoptive transfer of Resveratrol-treated DCs to WT mice before LPS challenge enhanced
survival rates, reduced lung tissue damage and lowered the expression of Th17 cells in the
lung [123] (Table 2).

In line with in vivo research, in vitro data focusing on human DCs provided support-
ive evidence for the application of PDE4 inhibitors in ALI/ARDS because of their capacity
to restrain DC maturation [123–125], Th1/Th17 polarization and secretion of crucial in-
flammatory mediators [6,63–66]. For example, Resveratrol, exerting its anti-inflammatory
effects through PDE inhibition [170], alleviated LPS-induced lung injury by regulating DC
immunogenic properties [123]. In addition, because the inflammatory milieu is enriched in
HMGB1 and Thrombin, the induction of CD141 may contribute in scavenging these danger
signals [11,104].

Despite promising results, the use of PDE4 inhibitors is not included in the current
treatment guidelines of ALI/ARDS because of insufficient clinical data and a narrow
therapeutic window. In this scenario, inhaled PDE4 inhibitors may represent a valuable
alternative to increase tolerability and efficacy.

6. Conclusions

DCs represent a paramount checkpoint of the immune system, being immunogenic
to activate adaptive immunity upon pathogen encounters and also serving as an active
inducer of tolerance in peripheral tissues at a steady state. The modulation of DC properties
is an innovative modality for treating inflammatory and immune-mediated conditions
because it targets the underlying disease mechanism. In this review, we highlighted PDE4
inhibitors as promising DC-modifying agents and the potential fallout of this modulation
in a number of respiratory diseases where DCs play critical pathogenic roles. Despite
a few studies directly addressing DC modulation as the relevant mechanisms of action
substantiating the effects of these drugs, we suggest that DCs may deserve more attention
in the future as targets of PDE4 inhibitors in multiple respiratory conditions associated
with chronic and acute airway inflammatory responses.
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Abbreviations

ALI acute lung injury
ARDS acute respiratory distress syndrome
BATF3 Basic Leucine Zipper ATF-Like Transcription Factor 3
cAMP cyclic AMP
cDC conventional dendritic cell
COPD chronic obstructive pulmonary disease
DC dendritic cell
GrB Granzyme B
HMGB1 high mobility group box 1
IBMX 3-isobutyl-1-methyl-xanthine
ID2 inhibitor of DNA binding 2
IDO indoleamine 2,3-dioxygenase
IKZF1 Ikaros family zinc finger 1
IL interleukin
IPF idiopathic pulmonary fibrosis
IRF interferon responsive factor
LPS lipopolysaccharide
moDC monocyte-derived dendritic cell
MHC major histocompatibility complex
NECA N-ethylcarboxamidoadenosine
pDC plasmacytoid dendritic cell
PDE phosphodiesterase
SARS severe acute respiratory syndrome coronavirus
TCF4 transcription factor
TGF tumor growth factor
Th T helper
TNF tumor necrosis factor
Treg T regulatory
TSLP thymic stromal lymphopoietin
TSP-1 thrombospondin-1
VEGF vascular endothelial growth factor
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