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Abstract: Nanotechnology, an emerging and promising therapeutic tool, may improve the effec-
tiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials
(NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT)
and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen
species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress
(OS) during carcinogenesis and disease development. Because of the localized surface plasmon
resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs
can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor
microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by
glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously
generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeu-
tic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple
treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein,
we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the
role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs
used in PTT/PDT applications.

Keywords: nanomaterials (NMs); photodynamic therapy (PDT); photothermal therapy (PTT); copper
(Cu); Cu-based NMs; reactive oxygen species (ROS); glutathione (GSH)

1. Introduction

Cancer is a complicated disease characterized by various genetic flaws. The increased
incidence of malignant tumors and their predisposition for metastasis are major threats
to human health, which lead to higher mortality rates [1,2]. The traditional treatment
modalities for tumors, including surgery, radiotherapy, and chemotherapy, can engender
various adverse effects, including radioactive damage, toxic side effects of chemothera-
peutic drugs, or chemotherapy-induced multidrug resistance, which considerably limits
the therapeutic effectiveness of these modalities [3–6]. The emerging treatment modalities
for tumors, such as thermotherapy, immunotherapy, and gene therapy, have provided
greater hope for patients [7,8]. However, their prolonged use has been reported to severely
impair the immune system, even leading to organ malfunction [9,10]. Discovering a tumor
treatment modality with low toxicity to healthy tissues and improved precision presents an
imperative and formidable challenge.

Recently, phototherapies (PTs), such as photothermal therapy (PTT) and photodynamic
therapy (PDT), are being widely used as effective antitumor therapeutic strategies [10]. In
PTT and PDT, photothermal agents (PAs) and photosensitizers (PSs) work as exogenous
energy converters or absorbers in the organ affected by the tumor [11]. This has enabled
the conversion of visible or laser light energy into thermal energy to induce apoptosis
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or necrosis of tumor cells at high temperatures, with or without concurrent reactive oxy-
gen species (ROS) generation [12–15]. PT has specific advantages over other heat-based
tumor treatment techniques, including thermotherapy and microwave therapy. Its high
precision enables PT to target tumors with the least possible damage to adjacent tissues
and organs [16]. Additionally, PT is an excellent method for managing tumors because
of its controllability and low toxicity profile. Compared with either PTT or PDT acting
alone, the synergistic approach combining PTT and PDT can hasten tumor cell death and
increase the therapeutic efficacy [17]. The key components of PTT and PDT are their PAs
and PSs, majorly including nanomaterials (NMs) at present, which differ from conventional
macromolecules. NMs exhibit excellent characteristics, including high Brunauer–Emmett–
Teller (BET), electrical conductivity, spectrum shifts after light absorption, fluorescence
properties, and potential for degradation [18]. Therefore, they have been steadily incorpo-
rated into cancer research, advancing the field of tumor investigations [19–21]. Regarding
medical therapeutics, materials of nanoscale dimensions (1–100 nm diameter) have been
employed [22]. These NMs have versatile applications in drug transportation, enabling
controlled release mechanisms, increasing permeability, traversing biological barriers, and
improving overall biocompatibility [23–25]. Owing to their unique size and traits, NMs
can remarkably change various therapeutic processes and considerably improve treatment
efficacy [22]. Metal ion-based NMs, including those of gold (Au), silver (Ag), copper (Cu),
and other NMs, exhibit distinctive optical properties, notably the phenomenon of localized
surface plasmon resonance (LSPR) [26,27]. LSPR notably strengthens the electric field in the
immediate proximity of metal ion-based NMs, based on their capacity to strongly absorb
photon energy. Owing to an extensive range of light-induced effects and intermolecular
interactions produced, they are used in tumor-targeted PTT/PDT. However, the high cost
of Au- or Ag-based NMs and the non-degradability of some PAs/PSs in vivo limits their
application in clinical therapy [28]. Cu, a readily available metal, has unique bioactivities
that can be used for eliminating tumor cells by regulating various types of cell death [29].
Furthermore, Cu can undergo a Fenton-like reaction to catalyze high ROS content from
excess intracellular hydrogen peroxide (H2O2), which can induce bacterial and tumor cell
death [30]. The functions and therapeutic involvement of Cu are shown in Figure 1. Al
Kayal et al. created electrospun polyurethane membranes covered with Cu nanoparticles
(NPs) and ran an antimicrobial test on Escherichia coli and discovered that over half of
the bacteria were destroyed, showing its potent bactericidal effects. Additionally, SARS-
CoVer-2 was resistant to the antiviral activity by nearly 90% [31]. Cu-based NMs have been
widely employed in PTT and PDT in recent years because of their advantageous properties,
including strong near-infrared (NIR) absorption and photothermal capabilities [32,33], high
BET [34,35], and use in tumor imaging. [36] Furthermore, Cu-based NMs offer considerable
advantages in tumor therapy owing to their simple synthesis procedures and relatively high
production yields under mild low reaction conditions [37]. Zhao et al. synthesized CCeT
NMs (Ce: Chlorin e6, T: TPP-COOH) with Cu2−x Sulfur (S) as the core, which exhibited a
photothermal conversion efficiency (PCE) of 10.6% under laser irradiation. At very low
concentrations, the temperature increased by 5.3 ◦C in 10 min and continued to rise with
increasing concentration [38], demonstrating the therapeutic advantages of PTT/PDT and
that it can be substantially increased using Cu-based NMs.

Herein, we reviewed Cu-based NMs and explored the role of Cu in synergizing
PTT/PDT for tumor cell death. This review also provides a comprehensive overview of the
Cu-based NMs utilized in PTT/PDT.
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2. Principles and Drawbacks of PTT/PDT in Antitumor Treatment and the Benefits of
Cu-Based NMs
2.1. Principles and Drawbacks of PTT/PDT in Antitumor Treatment

PTT can be divided into traditional PTT (≥45 ◦C) and mild PTT (MPTT, 42–45 ◦C) [39].
It is an antitumor therapy where PAs convert laser light energy into thermal energy under
NIR irradiation, raising the temperature of the surrounding region and inducing apoptosis
or necrosis in the tumor cells [40]. In PDT, PSs generate ROS in the presence of oxygen
molecules upon or following photoirradiating of the tumor tissue, resulting in oxidative
damage-induced tumor cell death [41]. PDT is often classified as type I or type II, where
type I produce O2

−, hydroxyl radicals (·OH), and H2O2, and type II produce 1O2 [42,43].
Although PTT and PDT may both cause tumor cell death by phototoxicity and producing
ROS, they still have notable drawbacks in actual use [44].

First, the practical usage of PTT/PDT is generally constrained by PAs/PSs because of
the low tissue penetration of light, which leads to poor tumor cell death, tumor resistance
to therapy, and possible excruciating pain during treatment [45,46]. Additionally, with
the rise in local temperature around the tumor, adjacent normal tissues and cells may also
suffer damage. Finally, ROS production is dependent on the oxygen present around the
tissue, but the low oxygen content in the tumor microenvironment (TME) severely restricts
the effectiveness of PDT [47]. To resolve these problems, NMs are incorporated into PTT
and PDT; Cu-based NMs can act as carriers or modified PAs or PSs to fix the limitations of
conventional PAs or PSs [43,48]. For example, Zhang et al. produced biodegradable cancer
cell membrane-coated mesoporous Cu/manganese (Mn) silicate nanospheres (m@CMSNs)
to target the aggregation of homozygous cancer cells via adhesion molecules on the surface
of cancer cell membranes [49,50]. Under 635 nm laser irradiation, m@CMSNs were targeted
to aggregate 2.85-fold more than CMSNs at the tumor site and degraded by glutathione
(GSH) in the TME. Cu1+ functions as a very effective PSs, producing huge levels of 1O2 at
the tumor site, killing tumor cells and reducing tumor cell viability to 20% [51]. Thus, the
deficiencies of conventional PAs/PSs, which are especially addressed in detail in the next
section, can be significantly improved by Cu-based NMs.

2.2. Biological Properties of Cu and Benefits of Cu-Based NMs

Cu is the third most common essential trace element after zinc and iron [52]. Despite
being in low concentrations, Cu is widely distributed in biological tissues and plays roles
in many critical processes, including cellular respiration, energy metabolism, and ROS
removal [53,54]. Both Cu deficit and surplus conditions can cause serious diseases [52,55].
Several studies have shown increased Cu levels (2–3 times higher) in patients with tumors
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compared with that in healthy individuals [56,57]. Hence, the strict regulation of Cu levels
in cells and tissues is essential.

Owing to the special biological characteristics of Cu, Cu-based NMs provide many
benefits in antitumor therapy: (1) Cu-based NMs have favorable NIR absorption and
excellent photothermal performance because of the d-d transition of Cu2+, the unpairing
of 3d electrons and paramagnetic of Cu2+ [58]. They also demonstrate the capability of
magnetic resonance imaging (MRI), which has been widely used in PTT and photoacoustic
imaging (PAI) of tumors [59,60]. Because Cu2+ in small Cu sulfide (S) NPs (s-Cu2-xS NPs)
have unpaired electrons, they are magnetic and can be employed as possible contrast
agents for T1-weighted MRI [61]. Chen et al. synthesized ultrasmall structured u-Cu2-xS
(Cu2+) nanodots and found an increase in the photoaccoustic signal in mice, especially at
the tumor site. In particular, the PA signals could sustain markedly higher intensities for
extended periods [62]. Weitz et al. synthesized CuO NPs; a quantitative estimation of MRI
model experiments compared to water showed a slope of 54.1 (95% CI: 30.93–77.26) for the
percent change in signal per mg Cu/mL [63]. (2) Cu-based NMs are biodegradable and
have a high BET for loading various chemotherapeutic drugs for tumor chemodynamic
therapy (CDT) [64]. He et al. synthesized HKUST-1, a Cu-based metal–organic framework
(MOF) that could be hydrolyzed by GSH in the TME, and the released sorafenib and
meloxicam (Mel) effectively limited tumor cell growth and operated as a CDT [65]. Pang
et al. synthesized CuTz-1-O2@F127 NPs, which could carry dioxygen (O2) owing to
their high BET and be degraded by TME. The released O2 reduced tumor hypoxia while
increasing the therapeutic effects of PDT. Additionally, feces and urine accounted for the
excretion of approximately 90% of NPs, suggesting that the NPs would be rapidly cleared
post treatment [66]. (3) Cu-based NMs are considered effective Fenton-like catalysts. Cu2+

can help with anticancer PDT for CDT because at neutral pH Cu2+ interacts >100 times
faster with H2O2 compared with Fe2+, accelerating the production of large quantities of
·OH and O2 from excess intracellular H2O2 [67]. Li et al. synthesized CuFeSe2–LOD@Lipo-
CM nanocatalysts (LOD: lactate oxidase, Lipo-CM: liposome containing glioblastoma cell
membrane proteins). In the TME, lactate oxidase increased H2O2 levels and the released
Cu1+ reacted with H2O2 to produce ·OH, leading to CDT. Furthermore, modest warming of
the tumor site via NIR irradiation can increase the antitumor therapeutic effects of CDT [65].
Li et al. synthesized GSH-degrading CFT@IP6@BSANPs (CFT: Cu iron tellurite, IP6: inositol
hexaphosphate, BSA: bovine serum albumin) that effectively degraded overexpressed GSH
in the TME. The simultaneous release of Cu1+ loaded within the NMs, which acted as
chemotherapeutic agents, induced tumor cell deaths [68]. (4) Cu-based NMs can produce
high ROS quantities when exposed to light; therefore, they are frequently exploited as
PAs/PSs for PTT/PDT of malignancies. Qu et al. synthesized hollow CuS nanocubes
that increased temperature in a concentration-dependent manner under 808 nm laser
irradiation, with a PCE of 30.3%; additionally, increased ROS generation was detected
which induced tumor cell deaths, acting as an antitumor therapy [69]. Therefore, Cu-based
NMs with exceptional characteristics have been successfully created to be used in the
combined treatment of malignancies to give Cu-based NMs extra functionalities. PTT/PDT
and Cu-based NMs can both be used to treat cancer in different ways and Cu-based NMs
can compensate for some of the drawbacks of PTT/PDT. Thus, Cu may synergize with
PTT/PDT to induce tumor cell death in various ways to achieve antitumor effects.

3. Cu-Based NMs Synergizes PTT/PDT-Induced Tumor Cell Death
3.1. Cu-Based NMs Synergizes PTT/PDT-Induced Tumor Cell Necrosis

PTT/PDT can eliminate tumor cells via multiple pathways. When exposed to ex-
ogenous light, PSs/PAs attached to tumor cell membranes and lysosomes may directly
lead to tumor cell necrosis [70]. Cu has a photothermal ability and a high NIR absorp-
tion capacity; therefore, Cu-containing PSs/PAs localized in the tumor cell membrane
interact with the surrounding oxygen molecules during NIR irradiation, leading to an
elevated energy level and the formation of 1O2 through oxygen energy transfer. Then,
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1O2 oxidizes unsaturated fatty acid constituents of the membrane to malondialdehyde,
damaging the integrity of the membrane which causes rapid utilization of intracellular
adenosine triphosphate (ATP), inducing necrosis [71,72]. Proteins and lipids, which make
up the majority of the tumor cell membrane, are photosensitive and their chemical trans-
formation may swiftly destroy cells, even when light is administered at low temperatures.
Necrotic tumor cells can attract antigen-presenting cells and deliver tumor-associated
antigens to naive T cells [73], which leads to the activation of cytotoxic T cells present
near the tumor tissue and damage-associated molecular patterns (DAMPs) from dying
tumor cells, inducing the immune response [74]. After light irradiation and tumor cell
death, phosphatidylserine may present to macrophages, inducing immunosuppressive
cytokine generation, which inhibit the growth of antigen-presenting dendritic cells (DCs)
and reduces inflammation [75]. Additionally, DCs are further activated by DAMPs, which
stimulate the immune system and initiate antitumor immunological responses, increasing
their capacity to uptake tumor-associated antigenic epitopes [76]. Jin et al. synthesized
LPS–CuS NPs (LPS: lipopolysaccharide), induced tumor ablation via laser irradiation, and
found increased interleukin (IL)-6, IL-12p40 and tumor necrosis factor-α mRNA levels
in tumor-draining lymph nodes. The mRNA levels of T-helper-1 cell transcription fac-
tors interferon and T-bet expressed in T cells were also increased, which increased tumor
antigen-specific immune response by promoting DC activation [77]. Jiang et al. synthe-
sized AuNBP@CuS (NBP: nanobipyramid) NMs with a core/shell design and found that
NIR irradiation increased extracellular ATP, calreticulin (CRT), and high mobility group
box-1 (HMGB-1) levels. Both of them are immunological signals that, within a specified
concentration range, can effectively increase the expression of CD80 and CD86 signals
in DCs and promote DCs maturation [78]. Studies have shown that PTT and Cu-based
NMs worked synergistically to create DAMPs from dying cells and activate immunological
responses. The illustration of Cu-based NMs synergizes PTT/PDT-induced tumor cell
necrosis is shown in Figure 2.
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Figure 2. Cu-Based NMs synergizes PTT/PDT-induced tumor cell necrosis. Cu-containing PSs/PAs
attached to tumor cells lead to tumor cell necrosis, stimulating the immune system by DAMPs.

3.2. Cu-Based NMs Synergizes PTT/PDT-Induced Apoptosis

Cu is a crucial trace element for the organism and several studies have shown its harm-
ful effects. In a study, a Cu-based treatment of apoptotic factors increased
B-cell leukemia/lymphoma-2-associated X-protein (Bax), B-cell leukemia/lymphoma-2-
associated agonist of cell death protein (Bad), cytochrome c (Cyt c), and caspases 3 and
9 levels [79]. By binding to apoptosis-activating caspase 9, the Cu induced an increase
in Bax level, causing the release of Cyt c and mitochondrial apoptosis-inducing factor 1
(Apaf-1) from the mitochondria into the cytoplasm, where it activated caspase 3 to cause
apoptosis. Simultaneously, ROS caused DNA breakage in PC12 cells and activated the
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caspase cascade response [79]. Additionally, Cu-induced ROS increased lipid peroxida-
tion and decreased GSH levels, making cells more vulnerable to oxidative stress-induced
harm [80,81]. Hosseini et al. reported that Cu2+ interacted with respiratory complexes (I, II,
and IV) and promoted ROS generation in mouse hepatocytes in vitro [82]. Mitochondria
is also an important target for PAs/PSs. Hilf showed that PSs enter tumor cells and are
rapidly taken up by mitochondria, triggering mitochondria-mediated apoptosis in response
to light and greatly reducing the mitochondrial ATP concentration. PDT produces ROS,
which oxidizes the phospholipids in the mitochondrial membrane by involving oxygen
molecules in energy or electron transport. Depolarization and a decrease in the mito-
chondrial membrane potential cause mitochondrial expansion, which damages the outer
mitochondrial membrane [83]. Both PTT and PDT were capable of producing ROS when
exposed to light irradiation. The application and breakdown of Cu-based NMs increased
the amount of Cu ions in tumor cells, decreasing the amount of GSH and promoting ROS
accumulation [84]. Mitochondrial damage prompted by high ROS leads to Cyt c releasing
into the cytoplasm and upregulation of the Bax gene. The increase in Cu ions also resulted
in an elevated production of Bax, Cyt C, and caspase3/9, which, when combined with
PTT/PDT, led tumor cells to undergo an apoptotic cascade reaction [79]. Mithun et al.
synthesized biotin–Cu@AuNP and discovered that when laser irradiated, NPs accumulated
considerably in the mitochondria of A549 cells. Moreover, the caspase3/7 activity notably
increased, suggesting that NPs triggered apoptosis via the caspase-activation pathway [85].
In summary, Cu can induce the production of pro-apoptotic factors and ROS through direct
or indirect effects on mitochondria, PTT/PDT can cause ROS damage to mitochondria
through phototoxicity, and Cu-based NMs synergizes PTT/PDT-induced apoptosis, in-
creasing the death of tumor cells and resulting in anti-tumor therapy. The illustration of
Cu-based NMs synergizes PTT/PDT-induced apoptosis is shown in Figure 3.
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caspases 3 and 9 levels, activated the caspase cascade response, and induced apoptosis.

3.3. Cu-Based NMs Synergizes PTT/PDT-Induced Autophagy

Many studies have demonstrated that Cu ions can trigger and inhibit autophagic
processes via different pathways [86,87]. Polishchuk et al. analyzed gene enrichment
using the ATP7B mouse model and found that an insufficient level of ATP7B restricted Cu
efflux and increased intracellular Cu concentration [88]. The autophagy marker MAP1LC3
(also known as LC3) level was greatly increased, indicating that autophagy was activated
while also interfering with the inactivation of the mammalian target of rapamycin (mTOR)-
dependent signaling on the lysosomal membrane [89,90]. Autophagy is still promoted by
mTOR deactivation because it can stimulate dephosphorylation and transcription factor EB
(TFEB) translocation to the nucleus [88,91]. The unc-51-like autophagy activating kinase
(ULK)1/2 is a known downstream target of mTOR. Donita C et al. discovered that ULK1
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kinase activity was increased in Cu-sufficient cells and decreased in Cu-deficient cells,
indicating that the Cu level directly affected ULK1/2 activity [92,93]. The Cu transporter
1 (Ctr1) deletion or ULK1 mutation inhibited Cu binding, which increased intracellu-
lar Cu levels and boosted ULK1 kinase activity, producing an autophagy complex to
trigger autophagy [94]. Furthermore, Ctr1 deletion, considered pertinent to the high Cu-
content-induced autophagy, inhibited tumor development in the Kirsten rat sarcoma virus
G12D-driven lung cancers [95]. Qin et al. reported that copper sulfate (CuSO4) increased
mitochondrial ROS formation (mtROS) and activated autophagy in RAW264.7 cells via
the protein kinase B/adenosine monophosphate-activated protein kinase/mTOR pathway.
Additionally, rapamycin-stimulated autophagy decreased apoptosis, whereas autophagy-
related 5 knockdown to promote autophagy increased CuSO4-induced apoptosis [96].
Li et al. reported HYF127c/Cu, a completely novel Cu combination. The transcriptome
sequencing revealed that some autophagy genes, including the MAP1LC3B gene, were
considerably upregulated in HYF127c/Cu-treated HeLa cells and that HYF127c/Cu was
reported to activate autophagy in HeLa cells [97]. Studies have shown that ROS produced
by PDT can activate and result in a long-lasting increase in autophagy. Whether PTT/PDT-
induced survival autophagy is primarily protective or death autophagic is still undeter-
mined [98]. Numerous studies have suggested that thermal stress induces pro-survival
autophagy in tumor cells, resulting in treatment resistance in PTT/PDT [99]. Cu-based
NMs are capable of carrying autophagy inhibitors. Cu ions can improve anti-tumor efficacy
by inducing pre-survival autophagy, inhibiting the heat-induced pro-survival autophagy
produced by PTT/PDT and generating ROS for CDT treatment through a Fenton-like reac-
tion, combining PTT/PDT and CDT to achieve the improvement of antitumor efficacy [29].
For example, Wen et al. synthesized Cu palladium alloy tetrapod NPs (TNP-1) with good
photothermal characteristics that also activated autophagy due to an increased Cu2+ re-
lease. In the 4T1 and MCF7/multidrug-resistant breast cancer models, the combination of
TNP-1 with the autophagy inhibitors CQ or 3-MA significantly enhanced the anticancer ef-
ficacy of TNP-1-mediated PTT [100]. Although the exact mechanism of PTT/PDT-induced
autophagy is yet to be known, Cu-based NMs may trigger autophagy in PTT/PDT to
induce antitumor effects. The illustration of Cu-based NMs synergizes PTT/PDT-induced
autophagy is shown in Figure 4.
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3.4. Cu-Based NMs Synergizes PTT/PDT-Induced Pyroptosis

Cu2+ can be reduced by GSH to Cu1+ in the TME that overexpress GSH. Cu1+/2+ and
PTT/PDT may together activate the generation of ROS under UV irradiation, resulting
in cancer cell pyroptosis [101]. In a study, CuSO4 markedly expedited cellular pyropto-
sis via the NLRP3/caspase-1/GSDMD pathway. Furthermore, the pyroptosis-associated
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genes IL-1 and NLRP3 exhibited an increased expression in hepatocytes, which promotes
inflammation and causes the extravasation of immune cells [102–104]. The inflamma-
some caspase-1 is essential for pyroptosis, a highly inflammatory form of programmed
cell death [105,106]. In cancer cells, increasing the intracellular ROS levels activates the
nucleotide-binding oligomerized structural domain-like receptor protein 3 (NLRP3) inflam-
masome and causes pyroptosis [107]. Wang et al.′s synthesized GOx@Cu MOFs produced
excessive ·OH radicals, utilizing the internal biological cascade reaction of glucose oxidase
(GOx) and the Fenton-like reaction of Cu ions, resulting in tumor cell pyroptosis [108]. In
the work by Yin et al., it was discovered that higher Cu2+ concentrations and longer expo-
sure times decreased the protein content of the cAMP/PKA/CREB pathway, as well as the
potential of the mitochondrial membrane and the amount of GSH-Px (Glutathione peroxi-
dase) in MN9D cells. Concurrently, enhanced ROS generation, as well as the expression of
Nrf2, NQO1, HSP-70, and other proteins, resulted in the creation of inflammasome and me-
diated the overexpression of GSDMD proteins, resulting in pyroptosis in MN9D cells [109].
PTT/PDT therapy is a promising strategy for non-invasively inducing pyroptosis in can-
cer cells [105]. PDT effectively initiates pyroptosis via inflammasome activation and the
production of ROS; PTT can accelerate this process, making it the ideal complement to en-
hance photoimmunotherapy′s efficacy [110]. Tang et al. designed the aggregation-induced
dimeric photosensitizer D1 (Figure 5b). This compound targets tumor cell membranes and,
when used with PTT/PDT, proves highly effective in ROS production and, subsequently,
pyroptosis induction [102]. The surge in intracellular ROS contributes to the pyroptosis
instigated by Cu ions. At present, the specific research mechanism of Cu-induced cell
pyroptosis in PTT/PDT is still unclear, but Cu and PTT/PDT operate through distinct
mechanisms to induce tumor cell death. Their combined anti-tumor approach should offer
synergistic effects, exemplified by the principle “1 + 1 > 2.” The illustration of Cu-based
NMs synergizes PTT/PDT-induced pyroptosis is shown in Figure 5a.
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3.5. Cu-Based NMs Synergizes PTT/PDT-Induced Cuproptosis

The phenomenon of cuproptosis emerges when an excessive concentration of Cu
accumulates within a cell. This buildup promotes the enrichment of lipoylated dihy-
drolipoamide S-acetyltransferase (DLAT). Subsequently, DLAT disruption affects the tricar-
boxylic acid cycle (TCA) during mitochondrial respiration, inducing proteotoxic stress and
leading to cell death [111]. Xie et al. developed a Cu2+-doped nanohybrid gel integrated
with a PTT/PDT/CDT therapeutic combination [112]. The NIR-responsive capability of
Cu2+ harmonizes with Au in the gel, optimizing PTT/PDT tumor treatment [113]. Si-
multaneously, Cu2+ mitigates the challenge of tumor hypoxia, enhancing the therapeutic
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efficacy of PDT. This effect also results in the degradation of Cu ions due to the excessive
accumulation of Cu2+ in TMEs with a low pH. Additionally, Cu2+ interacts with GSH,
transforming into Cu1+ and GSH oxidized (GSSG), enabling CDT to produce more harm-
ful ·OH radicals [112,114]. Furthermore, in vitro data revealed that the mortality rate of
activated cancer cells was greater than 81.4%, while tumor suppression in vivo was as
high as 85.7%, demonstrating cuproptosis-enhanced PDT/PTT/CDT against malignant
tumors. Zhu et al. synthesized Cu-doped polymetallic oxalate nanoclusters (Cu-POM),
enhancing their uptake in cells via MPTT, leading to intracellular Cu-POM accumulation.
Excessive Cu interrupts the initiation of the TCA cycle and promotes intracellular peroxide
formation, culminating in cuproptosis [115]. Therefore, cuproptosis offers a novel thera-
peutic approach for tumor treatment by regulating intracellular Cu levels in tumor cells.
Moreover, Cu plays a pivotal role in PTT/PDT antitumor strategies. The illustration of
Cu-based NMs synergizes PTT/PDT-induced cuproptosis is shown in Figure 6.
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In conclusion, Cu and PTT/PDT may both be employed in various ways in anti-tumor
therapy (Figure 7). In treating tumors, they are complimentary to one another. Compared to
a single therapy method, this synergistic approach can produce better anti-tumor benefits.
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Figure 7. Anti-tumor therapeutic process of PTT/PDT with different kinds of Cu-based NMs.
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of the role of different Cu-based NMs in anti-tumor therapy.
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4. Application of Different Kinds of Cu-Based NMs in PTT/PDT
4.1. Application of Copper Oxides in PTT and PDT

Over the past few decades, various Cu-based NMs have emerged as alternative means
to amplify the effects of PTT/PDT [119]. Studies indicate that CuO-NPs can hinder pan-
creatic tumor growth, notably by targeting tumor stem cells [120]. These NPs can induce
mitochondrial dysfunction, attributed to the ability of Cu2+ to generate ROS through the
Fenton-like reaction and to enhance PCE through electronic transitions between C-2p and
Cu-3d [121]. Ma et al. developed CuO@CNSs-DOX (DOX: Doxorubicin) nanoplatforms,
elevating the PCE from 6.7% to 10.14%. These platforms achieve anti-tumor effects through
the drug action of DOX and the generation of ·OH radicals by Cu2+ (Figure 8b) [122,123].
The same group synthesized multifunctional MoS2-CuO@BSA/R837 (MCBR, BSA: Bovine
Serum Albumin, R837: Imiquimod, a toll-like receptor 7 (TLR7) agonist) nanoflowers.
Under 808 nm laser exposure, these nanoflowers exhibited a PCE of 24.6% and a marked
increase in ·OH production. Additionally, the inclusion of R837 increased the expression
of calreticulin (CRT), triggering immunogenic cell death (ICD), effectively neutralizing
primary tumors, and inhibiting metastatic tumors (Figure 8a) [124]. Taking advantage
of Cu2O’s high refractive index above 600 nm, Yu et al. produced core/shell structured
Cu@Cu2O@polymer NPs. Under a 660 nm laser exposure and an equivalent Cu concentra-
tion, compared to Cu@polymer NPs, the temperature increase for Cu@Cu2O@polymer NPs
was about 4.2 ◦C. This resulted in a temperature rise of at least 23 ◦C in adjacent tissues,
translating to a 7-fold surge in the IC50, relative to prior research [125,126]. These findings
underscore that Cu@Cu2O@polymer NPs possess sufficient phototoxicity to exterminate
tumor cells. Furthermore, the increased concentration of endogenous H2O2 produced by
the LPS endotoxin accelerated the release of Cu ions and ROS, facilitating the eradication
of cancer cells (Figure 8c) [33,125].

4.2. Application of CuxSy in PTT and PDT

Semiconductor NMs CuxSy have gained attraction in catalysis and sensing sectors due
to their optical and electrical properties. Owing to their affordability, minimal cytotoxicity,
and high photostability, CuxSy NPs hold promise as Pas [127,128]. Tian et al. synthesized
hydrophilic, plate-like Cu9S5 nanocrystals. With a 980 nm laser, the PCE of Cu9S5 reached
25.7%. Interestingly, under identical conditions, this PCE surpassed that of the synthesized
Au nanocrystals, which was approximately 23.7%. These nanocrystals eradicated tumor
cells in vivo swiftly (in less than 10 min), establishing Cu9S5 nanocrystals as efficient PAs.
When hormonal mice underwent subsequent radiation following injection, notable necrosis
and shrinkage of tumor cells in the mass region were observed [129,130]. Addressing the
challenge that non-targeted ultrasmall metallic NPs face in securing prolonged half-life and
satisfactory tumor-site aggregation as PTT agents, Li et al. synthesized CuS NPs and modi-
fied them with cetuximab (Ab) to yield CuS-Ab NPs. On exposure to a 1064 nm laser for
10 min, temperatures increase rapidly from 23 ◦C to 58 ◦C and are consistently held at 58 ◦C.
Additionally, Ab modification rendered CuS-Ab NPs superior in tumor-targeting and anti-
angiogenic capacities, ensuring effective tumor-site accumulation without concomitant
damage to other tissues and organs [131]. Cationic polymers, such as PEI, can achieve drug
delivery by intensifying the electrostatic adsorption of cations on the cell membrane [132].
Studies have shown that NMs modified with PEI and PSs can be instrumental in the PDT
of bladder tumors [133]. Based on this, Mu et al. prepared HRP@CPC@HA NPs (HRP:
horseradish peroxidase, CPC: CuS-PEI-Ce6, HA: hyaluronic acid). These particles incorpo-
rated HRP within a hollow CuS nanocage [134]. Subjected to 808 nm laser radiation, their
PCE was around 34.91%. Concurrently, the surface-bound Ce6 was activated, leading to a
large amount of 1O2 generation, the levels of which increased alongside temperature [133].
Additionally, HRP catalyzed the breakdown of intracellular H2O2 to oxygen, addressing the
oxygen deficit in tumor cells and facilitating simultaneous multimodal tumor eradication
in severely hypoxic TME [135]. Due to the increased concentration of endogenous H2S
in tumor cells, Wu et al. synthesize monolocking NPs (MLNPs) [136]. When illuminated
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with 808 nm radiation, these MLNPs combined with H2S and produced ultra-small CuS
nanodots. This interaction elevated tumor temperatures, triggering apoptosis in tumor
cells. Mel is released from the NPs which causes the COX-2 enzyme to become inactive,
amplifying the PTT action and inhibiting inflammation induced by PTT damage. Notably,
these NPs were excreted renally (Figure 8e,f) [137]. The development of nanomedicine
has witnessed diverse manifestations of CuxSy. Hollow structured CuxSy has particularly
piqued interest in oncologic therapy, attributed to its drug-loading ability and high PCE
and PAI capability [138,139], yet many extant synthesis methods for CuS-based NMs are
intricate, time-consuming, and require special reaction equipment. Consequently, there
is an evident need for facile, cost-effective methodologies that employ gentle reaction
conditions to fabricate CuxSy NMs.

4.3. Application of Copper Selenides and Copper Telluride in PTT and PDT

Copper selenides, notably Cu2-XSe NMs, present promising applications in imaging
and PTT for cancer treatment, attributed to their biocompatibility, excellent NIR light
absorption, and increased PCE (Figure 8g) [140,141].

Du et al. synthesized CuSe/NC-DOX-DNA NPs (NC: nitrogen-doped carbon) via
an environmentally friendly and simple method. Under 808 nm laser exposure, these
NPs displayed a PCE of 32.9%, surpassing that of Au nanorods which had a PCE of
22.0% [142]. Moreover, the synergistic action of photocatalysis combined with the Fenton-
like reaction of CuSe/NC markedly augmented ROS generation [143]. Concurrently, the
encapsulated DOX functioned as a chemotherapeutic agent, realizing a threefold enhanced
PTT/CDT/PCT tumor treatment method [144]. It is noteworthy that Cu2-XSe has been
identified as an effective PA [141]. In another study, He et al. developed ICG@Cu2-X
Se-ZIF-8 (ICG: Indocyanine Green, ZIF-8: a metal-organic framework). After 808 nm laser
exposure, this compound exhibited a PCE of 15.5%. In the TME, ZIF-8 breaks down and
releases Cu1+ and Cu2+, which leads to a Fenton-like reaction, controls the amount of GSH,
and produces ROS (Figure 8d) [145]. Furthermore, selenium has the ability to regulate
selenoprotein, allowing it to prevent the production of osteoclasts and tumor cells, resulting
in the synergistic PTT/CDT prevention of malignant bone metastasis [146,147]. Moreover,
CuSe is an ideal PS and has been demonstrated to biodegrade. Selenium is released during
this process and has been shown to lower the risk of liver cancer, lung cancer, and prostate
cancer [148,149]. Pun et al. fabricated COF-CuSe NMs (COF: covalent-organic framework);
under 808 nm laser irradiation, the PCE was 26.34% after injection in mice. A large quantity
of 1O2 was generated under both 650 nm and 808 nm illumination. Consequently, almost
all of the HeLa cells died under laser irradiation. The PTT and PDT anti-tumor treatment
strategies showed a synergistic potential (Figure 8h) [150]. At present, CuSe NMs have
been poorly investigated for PTT/PDT and the development of multifunctional CuSe NM
is still required to improve anti-tumor therapy for PTT/PDT.

Similar to CuSe, CuTe is considered a novel PAs candidate. Li et al. created CuTe
NPs with a plasma peak at 900 nm. Under 830 nm laser irradiation, the mortality of 3T3
embryonic fibroblasts increased [151]. However, it was discovered that some cells were
already dead before laser irradiation. It has been demonstrated that CuTe NPs are cytotoxic
and PAs. Under 1064 nm laser irradiation, bio Cu2−XTe nanosheets synthesized by Li et al.
had a PCE of 48.6%. When Cu1+ and Te are released, the nanosheets can produce ·OH
and inhibit the GPx and TrxR enzymes for CDT, significantly inhibiting the proliferation
of MCF-7 cells [152]. Shen et al. synthesized CM CTNPs@OVA NMs (CM: melanoma
B16-OVA membrane, OVA: ovalbumin) with solid CuTe NPs. Under laser irradiation,
there was a significant increase in temperature and production of ROS. In addition, B16-
OVA cells produced an abundance of ATP and HMGB-1, which effectively stimulated
the immune system and enhanced the anti-tumor treatment [153]. CuTe NPs anti-tumor
therapy research in PTT/PDT has received less attention and requires further development
and investigation.
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4.4. Application of Cu-Based Nanocomposites in PTT and PDT

Most treatments consisting of a single therapy have a negligible impact on tumor
treatment. However, a synergistic combination of multiple therapeutic modalities can
improve the efficacy of treating malignant tumors [154]. The same applies to NMs. In
cancer treatment, simple Cu-based NMs such as CuS may still be lacking. Therefore, it is
necessary to load various materials, drugs, or fluorescents onto Cu-based NMs to create a
composite material capable of fluorescence, tumor targeting, and therapy in a single NM.

As a result of the discovery of cuproptosis, Cu-based NMs may induce tumor cell
death by modulating the concentration of Cu in tumor cells, offering a novel anti-tumor
therapeutic modality [111]. Pan et al. produced GOx@[Cu(tz)] NPs. Under 808 nm laser
irradiation, NPs entering tumor cells produced H2O2 and ·OH. In the meantime, un-
der the influence of GSH, GOx hydrolyzed and consumed glucose, generating a large
amount of H2O2 and OH that produced a ROS-adding effect [155]. Due to the deple-
tion of glucose and GSH, the NPs bind to lipoylated mitochondrial enzymes, resulting
in the aggregation of lipoylated DLAT, which induces cuproptosis and effectively in-
hibits tumor growth (92.4% inhibition rate) [156]. The synthesis and development of
NMs that combine multiple antitumor therapeutic modalities is urgently needed. Xia
et al. synthesized metal-organic skeleton nanosheets Cu-TCPP(Al)-Pt-FA (TCPP: Tetrakis
(4-carboxyphenyl) porphyrin, FA: folic acid) with surface modification by platinum NPs (Pt
NPs) and FA in order to solve the problem of poor oxygenation in tumor tissues. Compared
to 25.2% tumor cell survival in vitro without laser irradiation, laser irradiation at 638 nm
reduced tumor cell survival to 20.7%. Since Cu2+ can react with GSH via a Fenton-like
reaction, it depletes intracellular GSH and increases ROS levels [157]. In the meantime, Pt
NPs have catalysis activity comparable to a catalase-like reaction that can continuously
convert intracellular H2O2 to O2 in order to alleviate hypoxic TME and enhance the ther-
apeutic effect of PDT [158]. ROS concentration was increased synergistically by these
two modalities, which stimulated antigen-presenting cells to activate systemic anti-tumor
immune responses and increased the infiltration of cytotoxic T lymphocytes (CTLs) at
the tumor site for synergistic immune anti-tumor therapy [159,160]. Xu et al. constructed
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d-Cu-LDH/ICG NPs (LDH: lactatedehydrogenase) in order to alleviate the tumor hypoxia
problem and avoid the poor therapeutic effect caused by tumor hypoxia during PDT treat-
ment [161]. Under 808 nm laser irradiation, the PCE was 88.7% and the production of
1O2 increased as the temperature rose. In the meantime, the rising temperature led to
the dissolution of the NMs and the reduction in Cu2+ to Cu1+ by GSH, both of which
can consume excessive H2O2 and generate OH in tumor cells via a Fenton-like reaction,
resulting in CDT and modulation of the TME [162]. In the meantime, it was demonstrated
that hormonal mice had significantly less tumor growth. Hematoxylin and eosin (H&E)
staining of major organs revealed no obvious inflammation or damage and demonstrated
that the effective anti-tumor agent exhibited no significant systemic toxicity. Yang et al.
created NSCuCy NPs containing Cu1+ as the core [163]. Cu1+ undergoes a Fenton-like
reaction with O2

− to produce ·OH [164]. The fluorescence intensity of the HPF was used
to detect the ROS concentration; it was discovered that the fluorescence intensity of the
HPF increased rapidly in the presence of NSCuCy NPs under 660 nm irradiation. At
pH 5.5, the emission intensity of HPF increased nearly 350-fold after 10 min of irradi-
ation, demonstrating a higher ·OH production efficiency than that at pH 7.4 (180-fold)
and targeting accumulation in tumor tissues to achieve complete tumor ablation [165].
Kang et al. developed Au@MSN-Cu/PEG/DSF NPs (Au@MSN: mesoporous silica-coated
Au nanorods, DSF: disulfiram). The PCE under 808 nm laser irradiation is 56.32%. With
an increase in temperature, the Cu-doped SiO2 framework begins to biodegrade. During
the conversion of Cu2+ to Cu1+, releasing DSF can chelate with Cu2+ to produce highly
cytotoxic bis (diethyldithiocarbamate) Cu (CuET) [166,167]. Cu1+ binds additionally to
mitochondrial protein aggregates during the TCA cycle, inducing cuproptosis in tumor
cells [111]. Photothermal therapy′s synergistic effect resulted in an 80.1% tumor inhibition
rate, effectively killing tumor cells and inhibiting tumor growth [111,168].

Overall, multifunctional nanocomposite materials that integrate imaging, diagno-
sis, and therapy have shown significant improvements in tumor treatment compared
to single-material therapy. These NMs combine PTT/PDT with drug delivery systems,
immunotherapy, and chemotherapy, reducing normal medication dosage and adverse reac-
tions while achieving effective anti-tumor treatment in the short term (Figure 9). However,
long-term experimental data on NMs are still needed to verify their long-term toxicity,
biosafety, and therapeutic effects to ensure they meet desired goals. Further investigations
are required for a comprehensive understanding.
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4.5. Application of Cu-MOF in PTT and PDT

Metal-organic frameworks (MOFs) are a novel type of NMs that combine metal ions
or clusters with multisite organic ligands. These MOFs have shown great potential in anti-
tumor therapy due to their inherent biodegradability, high porosity, structural diversity,
and high drug-loading capacity [170–173].

For instance, Wu et al. synthesized ultrathin Cu-TCPP MOF nanosheets containing
both Cu1+ and Cu2+ which enabled imaging, photothermal conversion, and anti-tumor
therapy [36,174]. Under 808 nm laser irradiation, the nanosheets showed a PCE of 36.8%
and a significant amount of 1O2 was generated in tumor cells. Cu2+ has unpaired 3d
electrons and paramagnetic also allowed the nanosheets to be used for T1-weighted MRI.
This multifunctional NMOF design holds promise for tumor PTT [59]. Tang et al. designed
two metal-organic materials, MOF-1 and MOF-2, based on this premise. MOF-1 is an
aluminum (AL)-MOF that does not contain Cu2+, whereas MOF-2 is an AL-Cu mixed-
metal MOF[CuL-[AlOH]2n with Cu2+ at its core. Comparing the two MOFs under 650
nm laser irradiation revealed that MOF-2 has a porous physical structure, which makes
the Cu2++ in MOF-2 significantly adsorb intracellular GSH and results in a decrease in
GSH and an increase in ROS concentration, which enhances the efficacy of PDT [175].
Similar to the chemotherapeutic drug camptothecin (CPT), MOF-2 was able to eradicate
tumor cells in an in vivo experiment. The results of a simultaneous examination of major
organ tissue slices revealed little toxicity in vivo [176,177]. This MOF structure, which
simultaneously decreases intracellular GSH levels and increases intracellular ROS levels,
may provide not only a new strategy for intracellular GSH adsorption but also a new
method for enhancing PDT.

Due to the higher cavity structure of emerging Cu-NMOFs, they can be loaded with
more PSs or PAs to improve PCE and increase the diffusion range of ROS. Their porous
structure also allows for chemotherapeutic drug delivery and synergistic effects with other
therapies to enhance anti-tumor efficacy. However, the synthesis process of MOF PSs or PAs
can be complex and might exhibit batch-to-batch variations, hindering large-scale NMOF
preparation. Moreover, the presence of various metal ions necessitates further investigation
into the long-term safety, biocompatibility, pharmacokinetics, and immunoreactivity of
NMOFs in mammals through systematic animal studies.

5. Conclusions and Future Perspectives

One of the most significant challenges in cancer treatment today is achieving precise
targeting. PTT and PDT have demonstrated promising results for early surface cancers.
Moreover, combining various PAs and PSs has significantly improved the therapeutic
efficacy of PTT/PDT for deep tumors. Recently, Cu-based NMs have emerged as promising
candidates due to their excellent NIR absorption, paramagnetic characteristics that can be
used for tumor imaging, ability to be degraded in the TME, and the capacity to generate
ROS via the Fenton-like reaction. In addition, Cu-based NMs can be used to inhibit tumor
growth by carrying various types of drugs (DFS, DOX, or R837), not only for tumor-site-
targeted delivery, but also for synergistic effects of various therapeutic modalities, such as
PTT, PDT, CDT, and immunotherapy.

However, some important considerations need to be addressed. Firstly, there is no
consensus on the best way to synthesize Cu-based NMs; the preparation and use of Cu-
based NMs may generate wastewater and exhaust fumes, which could cause potential
threats to environmental safety that should be extensively investigated and controlled.
The most environmentally friendly way of synthesizing Cu-based NMs on a wide scale
for clinical use is still being researched in order to minimize their detrimental impact on
humans and the natural world. Cu-based NMs have not yet been used in actual clinical
practice because the long-term biosafety, pharmacokinetics, and immunoreactivity of Cu-
based NMs has not been adequately explored and only the short-term safety of Cu-based
NMs has been validated in tumor-bearing mice. Therefore, their safety and toxicity must
be completely established through long-term rigorous mammalian experimental testing.
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In conclusion, the application of Cu-based NMs in preclinical therapies has consid-
erable advantages. Combining Cu-based NMs with PTT/PDT shows great promise for
anti-tumor therapy. Our most critical mission is to promote human health to realize accu-
rate, safe, and effective cancer treatments. Cu-based NMs produced for clinical application
should be more precise and careful, but we still look forward to the development of more
Cu-based NMs or other nanocomposites which have undergone comprehensive biosafety
testing and have proven to be reliable.
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