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Abstract: To meet unmet medical needs, middle-to-large molecules, including peptides and oligonu-
cleotides, have emerged as new therapeutic modalities. Owing to their middle-to-large molecular
sizes, middle-to-large molecules are not suitable for oral absorption, but there are high expectations
around orally bioavailable macromolecular drugs, since oral administration is the most convenient
dosing route. Therefore, extensive efforts have been made to create bioavailable middle-to-large
molecules or develop absorption enhancement technology, from which some successes have recently
been reported. For example, Rybelsus® tablets and Mycapssa® capsules, both of which contain
absorption enhancers, were approved as oral medications for type 2 diabetes and acromegaly, respec-
tively. The oral administration of Rybelsus and Mycapssa exposes their pharmacologically active
peptides with molecular weights greater than 1000, namely, semaglutide and octreotide, respectively,
into systemic circulation. Although these two medications represent major achievements in the
development of orally absorbable peptide formulations, the oral bioavailability of peptides after
taking Rybelsus and Mycapssa is still only around 1%. In this article, we review the approaches
and recent advances of orally bioavailable middle-to-large molecules and discuss challenges for
improving their oral absorption.

Keywords: middle-to-large molecule; absorption enhancer; new modality; Lipinski’s rule of five;
cyclic peptide; antisense oligonucleotide; target protein degrader; SNAC; C10; C8

1. Introduction

For many years, the pharmaceutical industry has primarily focused on the develop-
ment of traditional small-molecule drugs (molecular weight (MW) ≤ 500). However, in
recent times, there has been growing interest in new drug scaffolds such as antibody drug
conjugates (ADCs), macrocycles, cyclic peptides, target protein degraders (TPDs), antisense
oligonucleotides (ASOs), and small interfering RNA (siRNA). These novel drug modali-
ties offer new therapeutic approaches that were previously unattainable with the existing
modalities [1–3]. These emerging modalities are collectively referred to as new modality
drugs [1–6], and they have beneficial features lacking in traditional small-molecule drugs.
For example, macrocycles and cyclic peptides can bind to groove or cleft structures of target
proteins with a large surface area, mimicking protein–protein interactions, while small
molecules mainly interact with pocket structures of proteins [7–10]. Another advantage of
macrocycles and cyclic peptides is the accessibility of intracellular targets, to which naked
antibodies cannot bind. It is important to select an appropriate modality when we develop
new drugs capable of addressing unmet medical needs.

Most new drug modalities are within the category of middle-to-large molecules, and
thus, they tend to lack oral bioavailability, which is one of the greatest advantages of small-
molecule drugs. Considering that oral administration is superior to other dosing routes
(e.g., intravenous and subcutaneous) given its noninvasiveness and safety [11], parenteral
administration of new drug modalities limits their potential use by patients. The reason

Pharmaceutics 2024, 16, 47. https://doi.org/10.3390/pharmaceutics16010047 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics16010047
https://doi.org/10.3390/pharmaceutics16010047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://doi.org/10.3390/pharmaceutics16010047
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics16010047?type=check_update&version=1


Pharmaceutics 2024, 16, 47 2 of 27

for the poor oral bioavailability of new drug modalities can be explained by Lipinski’s
rule of five [12] defining the necessary properties for oral absorption as follows: molecular
weight (MW) ≤ 500, number of hydrogen bond donors (HBDs) ≤ 5, number of hydrogen
bond acceptors (HBAs) ≤ 10, and octanol-water partition coefficient (LogP) ≤ 5. Veber
et al. suggested additional rules for orally absorbed drugs [13], namely, that the number
of rotatable bonds should be fewer than 10 and the topological polar surface area (TPSA)
should be less than 140 Å2. As illustrated by octreotide, an example cyclic peptide, the
physicochemical properties of most of the new drug modalities exceed the thresholds in
Lipinski’s rule of five and these additional rules [14] (Figure 1). More specifically, most
middle-to-large molecules tend to lack membrane permeability, which is essential for
gastrointestinal absorption after oral dosing.
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This background indicates the need for technical innovation in order to develop
middle-to-large molecules with oral bioavailability. To date, various different technologies
have been applied to the development of orally bioavailable peptides, but most of these at-
tempts failed until the emergence of two game-changers: Rybelsus® tablets and Mycapssa®

capsules [15,16]. Rybelsus tablets and Mycapssa capsules contain salcaprozate sodium
(SNAC) and sodium caprylate (C8), both of which are absorption enhancers, thereby en-
abling the gastrointestinal absorption of semaglutide [17,18] (a GLP-1 agonistic peptide
with a molecular weight of approximately 4100) and octreotide [19] (a somatostatin receptor
agonistic peptide with a molecular weight of 1019), respectively. Patients can orally take
Rybelsus tablets or Mycapssa capsules to treat type 2 diabetes or acromegaly at home. To
commemorate this new era of bioavailable peptide drugs, this review article summarizes
the technological progress in improving the oral absorption of new drug modalities and
discusses future prospects to improve absorption enhancement. Since numerous review ar-
ticles about oral absorption enhancement technology have already been published [20–35],
this manuscript provides a brief explanation of these technologies in Section 2. How-
ever, the main focus of this manuscript involves shedding light on new aspects of orally
bioavailable middle-to-large molecules, mainly based on information in the recent (from
2020 to 2023) literature available in PubMed, in order to keep readers up to date with the
latest technology.

2. Technology to Improve Oral Absorption of Middle-to-Large Molecules

There are two strategies to achieve the oral absorption of middle-to-large molecules:
chemical modification and the utilization of an absorption enhancer. Each approach has its
own advantages and limitations, as summarized in Table 1.
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Table 1. Advantages and limitations of chemical modifications and absorption enhancers for middle-
to-large molecules.

Advantages Limitations

Chemical modifications

• Oral bioavailability (BA) of chemically
modified middle-to-large molecules
tends to be higher than that by
absorption enhancers. (In the best case,
oral BA of cyclic peptide is 100% [36]).

• Synthesis and structure design to acquire
sufficient bioavailability are difficult because
the following points need to be considered:
✔ Intramolecular hydrogen bonding and

chameleonic property are sometimes
necessary [37].

✔ Molecular volume or weight should be
less than 1500 Å3 and 1200 because of
the limitations of solubility and
permeability [38].

✔ If the middle-to-large molecules possess
poor solubility, special formulations
such as self-microemulsifying drug
delivery system (e.g., Neoral®) are
necessary [39].

✔ Avoidance of P-gp efflux and P450
metabolism is sometimes necessary
(Section 3.1).

Absorption enhancers

• Oral bioavailability of middle-to-large
molecules whose molecular weight
exceeds 1000 can be enhanced (e.g.,
molecular weight of semaglutide in
Rybelsus tablets is more than 4100).

• Fatty acids (C8 and C10) and SNAC
have acquired generally recognized as
safe (GRAS) status from the FDA.

• Absorption-enhancing effect can be
easily evaluated in animals (Section 3.2).

• Oral bioavailability is relatively low, generally
ranging from 1% to 20%. Interindividual
variety in exposure [17] and high cost of goods
(COG) [40] are sometimes problematic due to
low bioavailability (Section 3.2).

• Development of sophisticated formulations
utilizing absorption enhancers is challenging.
Patented formulations (e.g., Eligen® and
TPETM) might be necessary (Section 2.3).

• Safety of some absorption enhancers
is unknown.

• Detailed mechanism and structure–activity
relationship for absorption enhancement are
unknown (Section 3.2).

2.1. Chemical Modification to Acquire Membrane Permeability and Chameleonic Property

The oral bioavailability of peptides is generally less than 1% in animal models. An
exception to this is the peptide cyclosporin, which is a natural product isolated from
fungi discovered in 1971 [41]. Despite the large molecular weight of 1202, cyclosporin
shows a good bioavailability of approximately 30% [41] due to novel formulations and
its unique structure (Figure 2). In terms of the formulation, a self-microemulsifying drug
delivery system (Neoral®) has already been developed to overcome the poor solubility of
cyclosporin [39]. Its cyclic peptide structure with N-methylated amide bonds and unnatural
amino acids confers it with good metabolic stability against peptidases and “chameleonic
property” [37]. This latter property means that the conformation of cyclosporin dramatically
changes upon transition from aqueous to lipophilic conditions, achieving good membrane
permeability and oral bioavailability (Figure 3) [42,43]. The reason for such a change in
structure in a manner depending on the conditions can be explained by the change in the
mode of hydrogen bonding, from interaction with water molecules in the aqueous environ-
ment to intramolecular hydrogen bonding in the lipid membrane. Extensive efforts are now
being dedicated to synthesizing artificial cyclic peptides or middle-to-large molecules with
membrane permeability using various evaluation methods, such as the measurement of
lipophilic permeability efficiency (LPE) [44], experimental polar surface area (EPSA) [45,46],
nuclear magnetic resonance (NMR) [47,48], and X-ray analysis [36] (Table 2).
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Table 2. Analytical method to evaluate chameleonic property.

Evaluation Method Detail Reference

Partition coefficient in octanol-water (LogPoct)
and toluene/water (LogPtol)

The difference between LogPoct and LogPtol (∆LogP) correlates
with the presence or absence of intramolecular
hydrogen bonding.

[49]

Molecular (3D) polar surface area in nonpolar
environments (MPSA) and topological polar
surface area (TPSA)

TPSA is a polar surface area calculated as a sum of
fragment-based contributions. MPSA is the minimal
solvent-accessible polar surface area in 3D conformations.
If the value of TPSA minus MPSA (∆PSA) is larger than 0.2 ×
molecular weight—140 Å2 or TPSA—140 Å2, the evaluated
middle-to-large molecules would possess chameleonic property.

[37]

Lipophilic permeability efficiency (LPE)

LPE is an index of the membrane permeability of
middle-to-large molecules. It can be calculated as follows:
LPE = distribution coefficient in decadiene-water at pH 7.4 −
mlipo (scaling factor) × calculated LogPoct + bscaffold (scaling
factor).

[44]

Experimental polar surface area (EPSA)
EPSA is an index of the membrane permeability with
consideration of intramolecular hydrogen bonding. It can be
measured by supercritical fluid chromatography.

[45,46,50,51]



Pharmaceutics 2024, 16, 47 5 of 27

Table 2. Cont.

Evaluation Method Detail Reference

Nuclear magnetic resonance (NMR) analysis
Amide temperature coefficients and H/D exchange study
measured by NMR indicate the presence or absence of
intramolecular hydrogen bonding.

[47,48]

X-ray analysis
Three-dimensional structure of middle-to-large molecules can
be elucidated by X-ray crystallography, indicating the presence
or absence of intramolecular hydrogen bonding.

[36]

In silico structural simulation Molecular dynamic method can predict chameleonic property
or membrane permeability. [52,53]

2.2. Utilization of Absorption Enhancers

While the maximum molecular weight of orally bioavailable membrane-permeable
peptides is around 1200 [38], absorption enhancers can improve the oral absorption of
middle-to-large molecules with molecular weights more than 1000 (e.g., the molecular
weight of semaglutide contained in Rybelsus is approximately 4100). There are many
kinds of absorption enhancers, such as cell-penetrating peptides (CPPs) (i.e., TAT or octa-
arginin) [54], claudin modulators [55], ethylenediaminetetraacetic acid (EDTA) [56], and
bile acid [57] (Table 3). As shown in Table 3, most of the absorption enhancers are con-
sidered safe additives, although no information is available on the toxicity of some of
them. Recently, Otsuki et al. discovered cyclic DNP peptide [58,59], which could enhance
the intestinal absorption of insulin. The majority of CPPs, such as TAT and octa-arginin,
are cationic peptides containing multiple lysine and arginine moieties, and their target
molecules are heparan sulfate proteoglycans [60]. However, cyclic DNP peptide does not
contain basic amino acids and likely interacts with integrin αvβ3 [58]. With regard to clini-
cal application, two of the most well-known absorption enhancers are fatty acids (C8 and
C10) and SNAC [15,16,25]. These absorption enhancers are defined as generally recognized
as safe (GRAS) substances by the FDA. Despite their similar chemical structures (Figure 4),
they have different origins and modes of action, as described in the following sections.

Table 3. Representative absorption enhancers.

Absorption Enhancer Mechanism Available Safety Information

SNAC and related compounds (4-CNAB
and 5-CNAC)

Enhancing transcellular permeation
[61–63]

NOAEL of SNAC: 500 and
500 mg/kg/day in male and female mice,
500 and 75 mg/kg/day in male and
female rats, and 300 and 300 mg/kg/day
in male and female monkeys,
respectively [64].

C8, C10, fatty acids, and surfactants Opening tight junctions and/or causing
membrane perturbation [65,66]

LD50 of C8 and C10: 1280–10,080 mg/kg
[67] and 3730 mg/kg [68] in
rats, respectively.

Amino acids (arginine and tryptophan)
Unclear (possible involvement of
receptor- or transporter-mediated uptake)
[69,70]

NOAEL of arginine and LD50 of
tryptophan: 3131 mg/kg in rats [71] and
5000 mg/kg in mice [72], respectively.

Acylcarnitines, EDTA, bile acid, NO,
chitosan (polysaccharide), claudin
modulator, 1-phenylpiperazine

Opening tight junctions [55–57,73–76]

LD50 of carnitine, EDTA, deoxycholic
acid, nitroprusside, chitosan, claudin
modulator, and 1-phenylpiperazine:
19.2 g/kg in mice [77], 2 g/kg [78],
1 g/kg in mice and rats [79], 43 mg/kg in
mice [80], 16 g/kg in mice [81], unknown,
and 210 mg/kg in rats [82], respectively.
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Table 3. Cont.

Absorption Enhancer Mechanism Available Safety Information

TAT, octa-arginine, and related peptides
(cell-penetrating peptides: CPPs) Inducing macropinocytosis [54,60] Unknown

Cyclic DNP peptide
(CPPs) Inducing macropinocytosis [58,59] Unknown

Intravail® (alkylsaccharide excipient)
Opening tight junctions and enhancing
transcellular permeation [83,84]

LD50 of Intravail®: 2000 mg/kg in
rats [85].

Citric acid and protease inhibitors Protecting peptides and proteins from
digestive enzymes [86]

LD50 of citric acid: 5040 and 3000 mg/kg
in mice and rats, respectively [87].
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2.2.1. Fatty Acids (C8 and C10)

Origin: In the 1980s, fatty acid emulsions were known to have an absorption-enhancing
effect. Van Hoogdalem et al. thought that medium-chain fatty acids contained in emulsions
might be nontoxic and effective for poorly absorbed drugs, and they demonstrated that
the rectal absorption of cefoxitin could be improved by the concomitant administration of
caprylic acid (C8) and capric acid (C10) [88]. C8 and C10 are originally derived from food
ingredients, and these additives are abundant in dairy milk products [89]. Additionally,
C8 and C10 have been clinically applied for the development of many drugs in humans,
as follows.

• Epocelin® suppositories (antibiotics prescribed in Japan [90]) contain C10 to enhance
the rectal absorption of ceftizoxime sodium in humans.

• Krug et al. reported that C10 improved the rectal absorption of ampicillin in hu-
mans [91].

• Tuvia et al. reported that C8 enhanced the oral absorption of octreotide in humans [92].
• Halberg et al. and Tillman et al. reported that C10 enhanced the oral absorption of

insulin [40] and antisense oligonucleotides [93] in humans, respectively.

Mechanism: The most widely accepted mechanisms behind the absorption-enhancing
effects of fatty acids include the opening of tight junctions of cellular membranes by the
activation of phospholipase C, increased calcium level, and altered localization of tight
junction proteins, because the transepithelial electrical resistance (TEER) value of cells was
found to be significantly decreased by the addition of fatty acids (C8, C10, etc.) [65,94–96].
Another potential mechanism behind the absorption enhancement by C8 and C10 is the
perturbation of cellular membranes [97,98]. Nonetheless, the entire absorption-enhancing
mechanism by fatty acids remains unclear.

Safety: Fatty acids have been regarded as safe additives [89]. Moreover, previous
in vivo studies indicated that C8 and C10 are safe additives, as follows.

• Leonard et al. reported that the oral administration of C10 at 1000 mg/kg for 7 days
did not cause any side effects in dogs [99].

• Raoof et al. reported that the oral administration of C10 at 990 mg/body (as three
ISIS104838-containing tablets) for 7 days was safe in dogs [100].

• Tuvia et al. reported that the oral administration of C8 (as octreotide-containing oily
suspension) for 9 months was tolerated with minor toxicity in monkeys [96].

• Halberg et al. reported that the oral administration of C10 at 550 mg/body (as I338
tablets) for 8 weeks was well tolerated in humans [40].
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2.2.2. SNAC

Origin: SNAC was discovered by Emisphere Technology (now Novo Nordisk) in
the 1990s. Emisphere investigated drug-loaded proteinoid microspheres composed of
thermally condensed amino acids for oral medication [101]. Then, they derivatized the
α-amino acids by N-acylation to enhance the oral absorption of proteins [102]. After testing
numerous non-α-amino acid derivatives [103], they found that SNAC was one of the most
effective absorption enhancers [104]. Intramolecular hydrogen bonding between phenolic
hydrogen and a carbonyl moiety adjacent to the phenol ring is essential for the planar
structure and absorption-enhancing effect of SNAC-related compounds, as interpreted
from their chemical structure [103]. Therefore, although C10 and SNAC appear to have
similar structures (Figure 4), they were discovered independently.

Mechanism: The entire mechanism behind the absorption enhancement by SNAC
has not been fully elucidated, nor has that for fatty acids (C8 and C10). Some reports
demonstrated that the TEER value of cells was decreased by the addition of SNAC [104,105],
suggesting enhancement of the paracellular pathway. Meanwhile, there are other reports
suggesting that SNAC could improve transcellular permeability without a significant
decrease in the TEER value or the occurrence of cell damage [61,106,107]. A recent paper
supports the latter mechanism. In this paper, apparent permeability across NCI-N87 cells
was significantly enhanced by SNAC and EDTA, a paracellular enhancer, but an increased
intracellular concentration of semaglutide was observed only with SNAC but not with
EDTA [108]. Therefore, SNAC is considered to be an enhancer of transcellular permeability
via the complex formation of transported compounds with SNAC [106] or inhibition of
digestive enzymes [108]. Buckley et al. reported the very interesting experimental results
that the gastric absorption of semaglutide was enhanced by SNAC when Rybelsus tablets
were administered to pylorus-ligated dogs [108]. Because absorption enhancers have been
used to improve intestinal or colorectal absorption for a long time, this evidence overturned
the conventional wisdom regarding absorption enhancers. At the same time, several
questions have arisen in this context:

• Is SNAC ineffective against intestinal permeation?
• Are other permeation enhancers (e.g., C8 and C10) effective against gastric permeation?
• Why do SNAC and other permeation enhancers have different sites of action, the

stomach and the intestine, respectively?

To answer these questions, more detailed research on the mode of action is expected
in the future.

Safety: Riley et al. reported that the no-observed-adverse-effect level (NOAEL) was
1000 mg/kg in a 13-week repeated-dose toxicity study of SNAC in male and female Wistar
rats [109]. Recently, labeling materials of Rybelsus approved by FDA have already been
disclosed. Based on this document [64], Novo Nordisk conducted various kinds of safety
assessments of SNAC, in which the NOAELs were 500 and 500 mg/kg/day in male and
female mice (13-week toxicity study), 500 and 75 mg/kg/day in male and female rats
(104-week toxicity study), and 300 and 300 mg/kg/day in male and female monkeys
(39-week toxicity study), respectively. The tolerability of SNAC in humans has been
confirmed in various clinical studies and marketed medication (Eligen B12 and Rybelsus
containing 100 and 300 mg of SNAC, respectively) [18,110].

2.3. Utilization of Special Formulations with an Absorption-Enhancing Effect

As shown in Table 4, most of the formulations for middle-to-large molecules or
biomolecules containing absorption enhancers (i.e., C10) are enteric-coated to avoid degra-
dation by acidic pH and digestive enzymes in the gastrointestinal tract. Notable exceptions
are Rybelsus and EligenB12 tablets. Because SNAC improves gastric permeation, it is
designed as immediate-release tablets. Although semaglutide is generally unstable in the
presence of pepsin, SNAC released from Rybelsus could neutralize acidic pH in the stomach
and decrease the hydrolytic activity of pepsin. Since solid formulations are essential for
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the clinical application of drugs, various kinds of special formulations are currently under
evaluation (Table 4).

Table 4. Representative formulations for absorption enhancement.

Formulation Composition and Design API Marketed Reference

Rybelsus® and
Eligen® B12

Immediate-release tablet with SNAC Semaglutide (MW: ca. 4100) and
vitamin B12 (MW: 1355) Yes [17,18,20,21,

35,108,110]

enTRinsic™ Enteric-coated capsule composed of
cellulose acetate phthalate Esomeprazole (MW: 345) No [20,111]

GIPET™ Enteric-coated tablet with various
additives (C10, etc.)

Heparin (MW: ca. 1000–35,000),
I338 (MW: ca. 6400), acyline
(MW: ca. 1500), and GLP-1 (MW:
ca. 3000–4000)

No [20,24,112]

POD™ (Protein
Oral Delivery)

Enteric-coated capsule with various
additives (SNAC, EDTA, aprotinin, fatty
acid, trypsin inhibitor, etc.)

Insulin (MW: ca. 5800) and
exenatide (MW: ca. 4200) No [20,113,114]

Peptelligence™
and Ovarest®

Enteric-coated tablet with various
additives (acylcarnitine, citric acid, etc.)

Salmon calcitonin (MW: ca. 3400),
leuprolide (MW: ca. 1200), and
difelikefalin (MW: ca. 680)

No [20,21]

TPE™ and
Mycapssa®

Enteric-coated capsule containing oily
suspension of C8 and additives Octreotide (MW: ca. 1000) Yes [19–21,35]

NodlinTM Enteric-coated nanoparticle Insulin (MW: ca. 5800) No [26]

Capsulin™ Enteric-coated capsule with bile salt
and antioxidant Insulin (MW: ca. 5800) No [35,115]

SmPill®
Emulsion-based formulation containing
various absorption enhancers (sodium
taurodeoxycholate, C10, etc.)

Salmon calcitonin (MW: ca. 3400)
and cyclosporin (MW: 1202) No [116,117]

Oraldel™ Cyanocobalamin-coated nanoparticle
consisting of carbohydrate-based sugar Insulin (MW: ca. 5800) No [35]

HDV (hepatocyte-
directed vesicle)
and other
liposomes

Liposome composed of
hepatocyte-targeting molecule (disofenin,
etc.), various phospholipids
and/or cholesterol

Insulin (MW: ca. 5800) No [35,118,119]

API represents active pharmaceutical ingredient.

3. Recent Challenges of Orally Bioavailable Middle-to-Large Molecules
3.1. Application of Chemical Modification
3.1.1. Cyclic Peptides

To date, numerous attempts have been made to synthesize orally bioavailable cyclic
peptides like cyclosporin [120]. Among them, one of the largest cyclic peptides with high
bioavailability is the cyclic decapeptide synthesized by Novartis [36]. The intramolecular hy-
drogen bonding and good membrane permeability of cyclic decapeptides were demonstrated
using NMR and X-ray analyses, as well as in vitro experiments [36]. Although the best cyclic
decapeptide (compound 9, MW: 987 in [36]) showed approximately 100% BA in rats, oral
BA (1% to 46%) of other cyclic decapeptides did not necessarily correspond with membrane
permeability, suggesting that systemic exposure of these peptides is determined not only by
permeability but also by other pharmacokinetic and/or physicochemical factors.

To elucidate the factors determining the oral BA of cyclic peptides, we evaluated the
oral absorption of cyclic decapeptide A (Figure 5, MW: 1091) in detail [121]. Cyclic decapep-
tide A showed good membrane permeability in vitro (3.1 × 10−6 cm/s in MDCK cells) and
solubility (640 µg/mL in JP2 solution), but its oral bioavailability in mice was less than
1% [121]. When cyclic decapeptide A was administered to mice pretreated with GF120918
(P-glycoprotein (P-gp) inhibitor, also known as elacridar) and 1-aminobenzotriazole (ABT)
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(cytochrome P450 (P450) inhibitor), the oral bioavailability approached 100% (Figure 6), sug-
gesting that its oral absorption is largely inhibited by P-gp efflux and P450 metabolism [121].
It is worth noting that both P-gp and P450 are important factors for the oral absorption
of cyclic peptides, as well as small-molecule drugs [122,123]. In general, middle-to-large
molecules are easily recognized by P-gp [124,125]. Therefore, orally bioavailable peptides
need not only membrane permeability but also the avoidance of a high affinity toward
P-gp. We also found that cyclic decapeptide A did not undergo hydrolytic metabolism by
pepsin, pancreatin, plasma, liver, and intestinal homogenates from mice, but it was mainly
metabolized by P450 in vitro [121]. A metabolite identification study indicated that cyclic
decapeptide A was converted into a de-ethylated metabolite in the liver and intestinal micro-
some fractions from mice (Figures 5 and 7) [121]. N-Alkylation is suggested to be one of the
chemical modification methods to obtain orally bioavailable peptides [126,127]; however,
based on our results, the alkyl moiety can easily be recognized by P450. Thus, metabolic
stability against P450 should be taken into consideration when N-alkylation is applied to
peptides. Based on these experimental results, the reason for the poor bioavailability of
cyclic decapeptide A was found to be extensive P-gp-mediated efflux and P450-mediated
rapid metabolism into de-ethylated metabolites (Figure 8) [121]. Since a similar synergic
elimination of small-molecule drugs by P-gp and P450 was also reported [122,123], it is
noted that escape from these enzymes is important for not only small-molecule drugs but
also cyclic peptides.
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Although there is no approved cyclic peptide with oral bioavailability (more than
10%) and systemic efficacy after the discovery of cyclosporin, multiple pharmaceutical
companies such as Chugai Pharmaceutical Co., Ltd. (Roche) [126,127], Shionogi Pharma
Co., Ltd. [128], Merck & Co, Inc. [129,130], and PeptiDream Inc. (PeptiAID Inc.) [131,132]
have been focusing on the development of orally bioavailable peptides. In fact, some of
their peptides have already been tested in clinical studies. Merck has already disclosed that
MK-0616 (MW: 1616) showed good potential and oral exposure in humans [129,130].

3.1.2. TPD

Target protein degrader (TPD) is a heterobifunctional molecule that connects ligands
for E3 ligase (e.g., von Hippel–Lindau tumor suppressor, cereblon, apoptosis proteins, and
mouse double minute 2 homolog) and those for target proteins (e.g., androgen receptor,
estrogen receptor, B-cell lymphoma-extra-large, bromodomain-containing protein 9, Bru-
ton’s tyrosine kinase, epidermal growth factor receptor, interleukin-1 receptor-associated
kinase 4, and signal transducer and activator of transcription 3) [133–135]. Recently, several
TPDs (ARV-110 (MW: 812), ARV-471 (MW: 724), ARV-766 (MW: 808), DT2216 (MW: 1542),
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FHD-609 (MW: 829), NX-2127 (MW: 720), NX-5948 (MW: 807), etc.) have entered clinical
trials [136]. Their chemical structure depends on the combination of the binders to target
proteins, E3 ligase ligands (e.g., VH032, AZ-A, AZ-B, thalidomide, pomalidomide, lenalido-
mide, methylbestatin, LCL161 derivative, and nutlin-3) and the linkers (e.g., PEG, alkyl,
glycol, alkyne, triazole, piperazine, and piperidine) [134]. The chemical structures of repre-
sentative TPDs, ARV-110 and ARV-471, are shown in Figure 9. Despite the middle-to-large
molecular weights of TPDs ranging from 600 to 1600 and their physiochemical properties
being outside the rule of five, many TPDs, including ARV-110 and ARV-471, are under de-
velopment as oral medications [136]. Since TPDs tend to have an affinity for P-gp [137,138],
the avoidance of extensive P-gp recognition would be a key factor for orally bioavailable
TPDs in humans, similar to cyclic peptides. The clinical outcomes of ongoing TPDs that are
currently under evaluation would provide us with further information about the ADME
characteristics of TPDs. Arvinas Inc. has already announced good oral exposure to ARV-110
and ARV-471 in humans [139–141] and suggested that the physicochemical parameters
required for the oral absorption of TPDs appear to differ from the general criteria for rule
of five drugs (e.g., MW ≤ 950, unsatisfied HBD ≤ 2, HBA ≤ 15, TPSA ≤ 200, number of
rotatable bonds ≤ 14, cLogP ≤ 7, calculated octanol-water distribution coefficient (cLogD)
≤ 6, and number of aromatic rings (NAr) ≤ 5) [142].

Pharmaceutics 2024, 16, x  12 of 28 
 

 

 
Figure 9. Chemical structures of TPDs ((A) ARV-110 (MW: 812); (B) ARV-471 (MW: 724)). 

3.1.3. Other Middle-to-Large Molecules beyond the Rule of Five 
The number of FDA-approved orally bioavailable middle-to-large molecules is in-

creasing [143]. Most of them can be classified as diverse structures, including macrocycles 
[144,145], and they might also possess chameleonic property [37,146]. Examples of their 
structures are shown in Figure 10. The requirements for bioavailable middle-to-large mol-
ecules have been assessed by investigating their physicochemical properties. Doak et al. 
suggested both an “extended” rule of five (MW ≤ 700, HBD ≤ 5, TPSA ≤ 200 Å2, number of 
rotatable bonds ≤ 20, and 0 ≤ cLogP ≤ 7.5) and “limits” of rule of five (MW ≤ 1000, HBD ≤ 
6, HBA ≤ 15, TPSA ≤ 250 Å2, number of rotatable bonds ≤ 20, and −2 ≤ cLogP ≤ 10) [143]. 
In addition, DeGoey et al. demonstrated a similar observation that middle-to-large mole-
cules with MW ≤ 1132, TPSA ≤ 229 Å2, and −5.5 ≤ cLogP ≤ 13.3 could be bioavailable and 
reached the conclusion that the “AB-MPS” score calculated based on the following equa-
tion is a good indicator of oral bioavailability [147]. 

AB-MPS = Abs (cLogD − 3) + NAr + number of rotatable bonds 

Middle-to-large molecules with AB-MPS less than 15 have a chance of being absorbed 
from the gastrointestinal tract [147]. 

 
Figure 10. Chemical structures of other representative middle-to-large molecules. (A) Rifampicin 
(MW: 823), (B) venetoclax (MW: 868), (C) erythromycin (MW: 734), and (D) simeprevir (MW: 750). 

Figure 9. Chemical structures of TPDs ((A) ARV-110 (MW: 812); (B) ARV-471 (MW: 724)).

3.1.3. Other Middle-to-Large Molecules beyond the Rule of Five

The number of FDA-approved orally bioavailable middle-to-large molecules is in-
creasing [143]. Most of them can be classified as diverse structures, including macrocy-
cles [144,145], and they might also possess chameleonic property [37,146]. Examples of
their structures are shown in Figure 10. The requirements for bioavailable middle-to-large
molecules have been assessed by investigating their physicochemical properties. Doak
et al. suggested both an “extended” rule of five (MW ≤ 700, HBD ≤ 5, TPSA ≤ 200 Å2,
number of rotatable bonds ≤ 20, and 0 ≤ cLogP ≤ 7.5) and “limits” of rule of five (MW
≤ 1000, HBD ≤ 6, HBA ≤ 15, TPSA ≤ 250 Å2, number of rotatable bonds ≤ 20, and
−2 ≤ cLogP ≤ 10) [143]. In addition, DeGoey et al. demonstrated a similar observation
that middle-to-large molecules with MW ≤ 1132, TPSA ≤ 229 Å2, and −5.5 ≤ cLogP ≤ 13.3
could be bioavailable and reached the conclusion that the “AB-MPS” score calculated based
on the following equation is a good indicator of oral bioavailability [147].

AB-MPS = Abs (cLogD − 3) + NAr + number of rotatable bonds

Middle-to-large molecules with AB-MPS less than 15 have a chance of being absorbed
from the gastrointestinal tract [147].
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3.2. Application of Absorption Enhancers and/or Special Formulations with an
Absorption-Enhancing Effect
3.2.1. Peptides

A representative clinical study for peptides was conducted after the oral administration
of insulin formulated with C10 [40]. This study indicated that a blood glucose-lowering
effect was observed in humans after the oral administration of a C10-containing formulation
of insulin, suggesting that C10 can actually enhance the gastrointestinal permeability of
insulin in humans [40]. However, this formulation has never been launched because of
the high manufacturing cost [40]. Therefore, in the pharmaceutical industry, there is a
need to consider the cost of manufacturing peptide formulations to provide high doses
due to limited bioavailability. This seems to be the case with C8- and SNAC-containing
formulations. Although Mycapssa capsules (with C8) and Rybelsus tablets (with SNAC)
have been successfully approved and marketed, their oral bioavailability was only 0.7% in
humans [19] and 1% in dogs [108] and humans [20], respectively.

To explore the room for improvement of absorption enhancer-containing formulations,
we performed fundamental research on animals [148]. The first experiment involved the
dose optimization of SNAC in male rats, where SNAC (10–1000 mg/kg) and daptomycin
(10 mg/kg) (Figure 11), a cyclic peptide with low membrane permeability (0.3 × 10−6 cm/s
in MDCK cells) and MW of 1621, were co-administered to male rats, and the plasma
exposure level of daptomycin in male rats was measured [148]. The results showed that the
plasma exposure of daptomycin in male rats increased with increasing the SNAC dose from
100 mg/kg to 1000 mg/kg (Figure 12) [148]. The effective SNAC dose of 100 to 1000 mg/kg
in rats is consistent with previous reports indicating that the oral dose of absorption
enhancers (SNAC-related compounds and C10) in animals generally ranged from 25 to
800 mg/kg [102,103,149–152]. One important question here is the difference in the required
SNAC dose between rats (100 to 1000 mg/kg) and humans (300 mg in Rybelsus tablets).
Novo Nordisk reported that the absorption-enhancing effect was saturated at a SNAC dose
of 300 mg in humans, and a greater effect was not observed with 600 mg of SNAC [108].
Regarding the Mycapssa capsule, its C8 content has never been disclosed, but it is estimated
to contain 100 mg of C8, assuming that octreotide (20 mg) and C8 account for 3% and 15% of
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the composition by weight, respectively, based on patent information [153]. It is generally
noted that a liquid suspension or solution for oral administration can be prepared in animal
experiments, while a solid formulation (tablet or capsule) is used in clinical settings. In
the rat study, the dosing solution was prepared by dissolving daptomycin and SNAC in
sodium bicarbonate buffer at pH 9, because SNAC is highly dissolved in alkaline buffer
due to its acidity. Therefore, one possible explanation for the discrepancy in SNAC dose
between animals and humans is the difference in dosing forms (suspension/solution or
tablet/capsule). In other words, solid formulations might be able to minimize the required
amount of SNAC by delivering SNAC to the appropriate region of the stomach in a more
effective manner than solution administration. Another possible explanation for the smaller
amount of SNAC in humans than in animals is the limitations of the current formulation
technology. A very high dose of SNAC, such as more than 600 mg in the tablets, might be
unable to exhibit an absorption-enhancing effect due to solubility or diffusion limitations
in humans.
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Figure 11. Chemical structure of daptomycin (MW: 1621).
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When daptomycin (5–10 mg/kg) and SNAC (200 mg/kg) were co-administered
to monkeys and dogs, elevated plasma exposure to daptomycin was also observed in
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these animals (Figure 13), indicating the permeability-enhancing effect of SNAC across
species [121]. Note that the PK experiments above were conducted in fasted animals,
because the absorption-enhancing effect of SNAC can be strongly decreased by food in-
take [108]. According to the package insert of Rybelsus tablets, these tablets should be
administered to patients before the first food [15].
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As mentioned above, the absorption enhancement of peptides with SNAC can be
easily evaluated in animals, and similar experiments have been performed with fatty acids,
but the mode of interaction of peptides with SNAC and fatty acids has not been elucidated
yet. To explore the peptide specificity, we performed a PK study of octreotide derivatives
(octreotide (MW: 1019), lanreotide (MW: 1096), and pasireotide (MW: 1047)) (5 mg/kg)
(Figure 14) with SNAC (200 mg/kg) in rats [148]. While SNAC’s effect of enhancing
oral absorption was observed with octreotide and lanreotide, the plasma exposure of
pasireotide was not increased by SNAC (Figure 15) [148]. A similar tendency was also
described in the literature, where the oral absorption of liraglutide (Figure 16A, MW: ca.
3800), a GLP-1 analog like semaglutide (Figure 16B, MW: ca. 4100), was not enhanced by
SNAC [108]. Thus, the absorption-enhancing effect of SNAC is sometimes ineffective for
peptides analogous to bioavailable peptides upon the concomitant administration of SNAC.
Additional research on the detailed structure–activity relationship between peptides and
SNAC or fatty acids (C8 and C10) would be expected in the future to make better use of
these absorption enhancers.

3.2.2. Oligonucleotides

Oligonucleotide therapeutics have been attracting attention as a new treatment modal-
ity for a range of diseases that have been difficult to target by conventional approaches.
As of 17 June 2023, oligonucleotide therapeutics have been approved, including 10 anti-
sense oligonucleotides (ASOs) and 5 small interfering (si)RNAs for treating cardiovascular,
neuromuscular, and central nervous system diseases [154–157]. One of the ADME-related
characteristics common to oligonucleotide therapeutics is poor oral absorption, which is
mainly due to low membrane permeability resulting from their molecular weight and
hydrophilicity [158–161]. Therefore, orally administered oligonucleotide therapeutics have
not yet been marketed, and intravenous (five drugs) or subcutaneous (seven drugs) ad-
ministration has been adopted when systemic exposure is intended. Although the clinical
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application of oligonucleotide therapeutics has been achieved by IV- or SC-based systemic
administration and local administration (e.g., IVT, IT, and IM), the oral delivery of oligonu-
cleotides still holds potential clinical benefits and attractiveness because of its convenience,
satisfactory medication compliance, and avoidance of injection site reactions, particularly
when repeated administration is needed. In addition, in the case where the target is in the
small intestine or liver, oral dosing could improve drug delivery to these organs through
the first pass extraction effect. Therefore, various approaches such as the use of absorption
enhancers and nanocarriers have been investigated to improve the oral absorption of ASOs
and siRNAs.
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Representative studies examining oral formulations of oligonucleotides with bioavail-
ability data are summarized in Table 5. In the case of ASOs with a phosphorothioate
backbone, poor intestinal permeability due to their charged and hydrophilic nature is the
major hurdle to oral delivery, and thus, the formulation with C10, an absorption enhancer,
has been intensively studied in both preclinical studies on animals and humans to improve
oral bioavailability. Raoof et al. first evaluated the effect of this enhancer on the oral
absorption of a 2′-O-methoxyethyl (2′-MOE)-modified phosphorothioate ASO, ISIS104838
(MW: ca. 7300), targeting human tumor necrosis factor alpha (TNF-α) mRNA in pigs [150].
Plasma concentrations of ISIS104838 after intrajejunal (IJ) administration at a dose of 10
mg/kg with C10 were measured by a HPLC/UV analysis, and the bioavailability relative
to IV dosing at 2 mg/kg was calculated to be 1.7–2.8% by dose normalization. Then, a
tablet formulation of ISIS104838 (80 mg) with C10 (330 mg) was tested in dogs, and the oral
bioavailability after once-daily administration ranged from 1.1% to 1.7% relative to IV [100].
The bioavailability in major tissues was also evaluated in this study, and it was found to
be dependent on tissue type, ranging from 2.0% to 4.3% relative to IV. The reason for the
higher bioavailability in tissues than in plasma was considered to be the underestimation
of the plasma concentration due to the limited sensitivity of the bioanalytical method used.
The oral administration of ISIS104838 with C10 was further studied in humans, where
15 healthy subjects received four tablet formulations, changing the coating or drug to a
C10 composition, in a crossover manner. The oral bioavailability of the tablet formulations
was calculated relative to the dose-normalized historical parenteral plasma AUC after SC
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administration, ranging from 7.2% to 12.0%. This series of data on ISIS104838 suggested the
possibility of practically applying orally administered ASOs by using absorption enhancers.
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Gennemark et al. recently demonstrated the oral delivery of a highly potent ASO
targeting PCSK9 mRNA, known as AZD8233 or ION-86366 (MW: ca. 6900), in which
the chemical modification with constrained ethyl (cEt) chemistry and liver targeting by
N-acetylgalactosamine (GalNAc) conjugation were applied to improve its potency [162].
To evaluate the oral delivery of AZD8233 with sodium caprate, a study of its single in-
trajejunal administration using jejunal-cannulated rats was performed, because the oral
administration of tablets to rodents is not feasible. The liver concentrations of AZD8233
48 h after IJ and SC administrations at various doses were determined by a hybridization
ELISA method, and the liver bioavailability of IJ dosing relative to SC was calculated to be
5.3%. Then, oral delivery of the tablet formulation was evaluated in a non-rodent study,
where the concentrations of AZ8233 in the plasma, liver, and kidney were measured after
repeated oral daily administration of a tablet containing 700 mg of sodium caprate and 3 or
20 mg of AZD8233 for 1 or 4 weeks. The result revealed liver bioavailability of 7.0–7.4%,
which was about fivefold higher than the plasma bioavailability (1.3–1.8%), probably due to
the active liver uptake by the GalNAc ligand and the first pass extraction effect. In addition,
the bioavailability in the liver was significantly higher than that in the kidney (1.2–1.6%),
suggesting the beneficial selectivity in tissue exposure between the liver and other organs
with regards to the efficacy/safety margin. Based on these preclinical observations, liver
exposure and PD parameters (PCSK9 knockdown and LDL cholesterol) in humans after
oral administration were simulated, and it was suggested that a repeated oral daily dose
of 15 mg/day would lead to PD marker changes comparable to those observed after SC
administration at 25 mg/month.

As one of the other approaches for the oral delivery of ASOs, the formulation with
a biodegradable albumin polymer matrix was reported to improve the oral absorption of
an ASO targeting nuclear factor kappa B (NF-kB) mRNA [163]. Although significantly
high oral bioavailability (70% relative to IV) was reported, further research appears to be
necessary to demonstrate its mechanism and applicability.

For the oral administration of siRNAs, nanocarrier-based delivery technologies have
been explored and tested in preclinical settings. The delivery system needs to overcome
multiple physiological barriers, such as destabilization of the nanocarrier-siRNA complex
in the harsh gastrointestinal environment, the electrostatic trapping of nanoparticles with a
positively charged surface by the negatively charged components in the gastrointestinal
mucus, and endosomal trapping in the target cells resulting in the insufficient release of
siRNA in the cytosol.

One of the extensively studied biomaterials used in nanocarriers for the oral deliv-
ery of siRNA is chitosan, a biocompatible polysaccharide [164,165]. It can prolong the
residence time on the epithelial surface and facilitate paracellular drug transport due to
its mucoadhesive and mucopermeable nature. Ballarín-González et al. demonstrated by
Northern blotting and quantitative PCR analysis that siRNA encapsulated in chitosan-
based nanoparticles retained the structural integrity and was distributed in the stomach,
small intestine, and colon after oral administration to mice [166]. In addition, Han et al.
formulated chitosan-based nanocarriers loaded with fluorescence (TAMRA)-labeled siRNA
and evaluated the exposure in plasma and tissues following oral administration to tumor-
bearing mice [167]. The TAMRA-siRNA contents in the plasma and the supernatant of the
tissues were determined by fluorescence measurement and calculated as the percentage of
the total amount. The results revealed that the oral administration of TAMRA-siRNA by
chitosan-based nanocarrier formulations was associated with significantly higher exposure
in the plasma and tumor than oral administration of the naked siRNA. Although accurate
concentration data or subsequent oral bioavailability were not determined in this study,
approximately 6–7% of the total TAMRA-siRNA signals were found in the plasma at 4 and
12 h after the oral administration of a chitosan-containing formulation.

Recently, Wei et al. developed small, fluorinated nanocapsules for the efficient oral
delivery of siRNA targeting tumor necrosis factor α (TNF-α) [168]. The nanocapsules are
designed to be stable in the gut due to their shell structure with disulfide cross-linkages



Pharmaceutics 2024, 16, 47 18 of 27

and are designed with a relatively small particle size (~30 nm) to facilitate diffusion in the
mucus layer. The particle tracking assay demonstrated that the fluorinated nanocapsules
were more able to diffuse than the control nanocapsules without fluorocarbon. In addition,
an in vitro experiment using porcine mucin revealed that the degree of adsorption to mucin
decreased in a fluorocarbon content-dependent manner, suggesting that the modification of
fluorocarbon could facilitate the penetration of mucus by preventing adsorption to mucin
glycoproteins. In a PK study, fluorinated nanocapsules loaded with TNF-α siRNA were
orally and intravenously administered to mice, and plasma concentrations of siRNA were
determined by a PCR-based method. The calculated oral bioavailability result for the best
optimized formulation of fluorinated nanocapsules was 20.4% relative to IV injection.

Table 5. Representative studies for the oral delivery of oligonucleotide with bioavailability data.

Target Gene
(Name of
Oligonucleotide)

MW Type of
Oligonucleotide

Formulation/Modification
for Oral Delivery Species Bioavailability Bioanalytical

Method Reference

TNF-α
(ISIS104838) ca. 7300 PS-ASO

2′-MOE C10

Pig IJ relative to IV:
1.7–2.8% in plasma HPLC/UV [150]

Dog
PO relative to IV:
1.1–1.7% in plasma
1.3–4.3% in tissues

HPLC/UV [100]

Human PO relative to SC:
7.2–12.0% in plasma

hybridization
ELISA [93]

NF-kB Unknown
ASO,
modification
unspecified

biodegradable albumin
polymer matrix Rat PO relative to IV:

70% in plasma
OliGreen
fluorescence
assay

[163]

PCSK9
(AZD8233,
ION-863633)

ca. 6900
PS-ASO
GalNAc
cET chemistry

C10

Rat IJ relative to SC:
5.3% in liver

hybridization
ELISA [162]

Dog

PO relative to SC:
1.3–1.8% in plasma
7.0–7.4% in liver
1.2–1.6% in kidney

TNF-α Unknown siRNA fluorinated nanocapsules Mouse PO relative to IV:
20.4% in plasma

PCR-based
method [168]

4. Conclusions and Future Perspectives

The emergence of Rybelsus tablets and Mycapssa capsules has ushered in a new era in
which patients can orally take pharmacologically active peptide drugs with a molecular
weight of 1000 to 4100. However, there are still many challenges to be overcome, such
as poor bioavailability (approximately 1%) and the selection of pharmacologically active
peptides with permeability that can be improved by absorption enhancers (e.g., liraglutide
vs. semaglutide and pasireotide vs. octreotide).

To the best of our knowledge, this is the first article to highlight the discrepancy in the
amount of absorption enhancers required to improve oral absorption between nonclinical
animal experiments and clinical human studies where physical mixture solutions and solid
formulations were administered, respectively. Although the dosage of SNAC that enhances
the oral absorption of peptides is 100 to 1000 mg/kg in male rats, based on our experiments
in which a combined solution of SNAC and peptides was orally administered to them, and
the fact that absorption enhancers (SNAC-related compounds and C10) have generally
been used at high oral doses ranging from 25 to 800 mg/kg in animals, such huge dosages
are not feasible in humans. Only 300 mg of SNAC and around 100 mg of C8 (estimated
amount) are contained in the Rybelsus tablets and Mycapssa capsules, respectively. The
smaller amount of absorption enhancers required in humans compared with that in animals
suggests that the current formulation technologies applied to humans are well designed to
promote local disintegration and enhance absorption in the gastrointestinal tract. However,
this also indicates that there is room for improvement. That is to say, new solid formulations
that can maximize the oral absorption of middle-to-large molecules with the minimum
required amount of SNAC and C8 or new absorption enhancers superior to SNAC and C8
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should be developed to further promote the practical use of orally bioavailable middle-to-
large molecules.

This review also covers the state-of-the-art molecular design and chemical modification
approaches for oral delivery, since diversely structured drugs such as TPD and cyclic
peptides have recently been developed as new modalities. Extensive research on the
mechanism by which these molecules acquire membrane permeability is being performed,
revealing the importance of their chameleonic property. Additionally, new evaluation
methods (e.g., EPSA) have been developed to analyze these characteristics, along with new
in silico criteria for an “extended” or “limit” of the rule of five. As illustrated by cyclosporin
(oral BA: 30%), well-designed chemically modified middle-to-large molecules can achieve
much higher oral BA than absorption enhancers (oral BA: typically ~1%). Thus, when
considering the option of applying either an absorption enhancer or a chemical modification
approach for middle-to-large molecules, the latter approach should be prioritized due to its
potential for achieving higher oral BA. It has been asserted in the past that the hydrolytic
metabolism of peptides by digestive enzymes has primarily been considered problematic,
but our recent considerations additionally suggest that cyclic peptides undergo synergic
elimination by P450 metabolism and P-gp efflux and middle-to-large molecules are readily
recognized by P-gp. The latest knowledge on this class of molecules, such as cyclic peptides
(e.g., LUNA-18 (MW: 1438), MK-0616 (MW: 1616), and PA-001 (MW: unknown)) and
TPDs (e.g., ARV-110 (MW: 812) and ARV-471 (MW: 724)), should provide the key for the
successful development of chemical modification approaches for their oral use.

In conclusion, we strongly believe that we will be able to fully utilize both absorption
enhancer and chemical modification technologies to achieve the oral delivery of middle-to-
large molecules. Since one of the most important aspects of drugs is their pharmacolog-
ical activity, sometimes the molecular structures of new modalities cannot be drastically
changed to maintain their affinity toward the target molecules (e.g., peptide hormones
and oligonucleotides). In such cases, the utilization of absorption enhancer technology
would be more effective for oral absorption than chemical modification. Meanwhile, if new
modalities involving drastic chemical modification (e.g., cyclization and N-alkylation) can
achieve sufficient pharmacological activity and obtain a chameleonic property to achieve
membrane permeability, this type of molecule can be orally absorbed without absorption
enhancers. It is highly anticipated that the optimal strategy will be employed for each
new drug modality, taking into consideration its chemical structure and pharmacological
activity to provide patients with orally bioavailable drugs with middle-to-large molecular
sizes in the future.
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Abbreviations

API active pharmaceutical ingredient
ASO antisense oligonucleotide
AUC area under the curve
BA bioavailability
C8 caprylic acid, octanoic acid
C10 capric acid, decanoic acid
COG cost of goods
cEt constrained ethyl
CPPs cell-penetrating peptides
cLogD calculated octanol-water distribution coefficient
cLogP calculated octanol-water partition coefficient
EDTA ethylenediaminetetraacetic acid
EPSA experimental polar surface area
FDA United States Food and Drug Administration
GalNAc N-acetylgalactosamine
GRAS generally recognized as safe
HBAs number of hydrogen bond acceptors
HBDs number of hydrogen bond donors
IJ intrajejunal
IV intravenous
MW molecular weight
MPSA molecular (3D) polar surface area in nonpolar environment
Ms microsomes
NAr number of aromatic rings
NMR nuclear magnetic resonance
LD50 median lethal dose
LPE lipophilic permeability efficiency
NF-kB nuclear factor kappa B
NOAEL no-observed-adverse-effect level
P450 cytochrome P450
P-gp P-glycoprotein
PO per oral
TPSA topological polar surface area
SC subcutaneous
siRNA small interfering RNA
SNAC salcaprozate sodium
TEER transepithelial electrical resistance
TNF-α tumor necrosis factor α
TPDs target protein degraders
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