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Abstract: Diabetic Parkinson’s disease (DP) is a progressive neurodegenerative disease with metabolic
syndrome that is increasing worldwide. Emerging research suggests that cannabidiol (CBD) is a
neuropharmacological compound that acts against this disease, especially CBD in nano-formulation.
The safety of cannabidiol lipid nanoparticles (CBD-LNP) was evaluated by assessing in vitro cytotox-
icity in neurons and therapeutic outcomes in a DP animal model, including metabolic parameters
and histopathology. CBD-LNPs were fabricated by using a microfluidization technique and showed
significantly lower cytotoxicity than the natural form of CBD. The DP rats were induced by strepto-
zotocin followed by a 4-week injection of MPTP with a high-fat diet. Rats were treated orally with
a vehicle, CBD, CBD-LNP, or levodopa for 4 weeks daily. As a result, vehicle-treated rats exhib-
ited metabolic abnormalities, decreased striatal dopamine levels, and motor and memory deficits.
CBD-LNP demonstrated reduced lipid profiles, enhanced insulin secretion, and restored dopamine
levels compared to CBD in the natural form. CBD-LNP also had comparable efficacy to levodopa
in ameliorating motor deficits and memory impairment in behavior tests. Interestingly, CBD-LNP
presented migration of damaged neuronal cells in the hippocampus more than levodopa. These
findings suggest that CBD-LNP holds promise as an intervention addressing both metabolic and
neurodegenerative aspects of DP, offering a potential therapeutic strategy.

Keywords: cannabidiol; drug delivery; lipid nanoparticles; Parkinson’s disease; type 2 DM

1. Introduction

Parkinson’s disease (PD), one of the most common neurodegenerative diseases, affects
over 1% of the population over the age of 60, which is estimated to be 10 to 20 cases per
100,000 people [1]. PD stands as a complex and increasing global health issue characterized
by motor symptoms such as tremors and impaired coordination [2,3]. These symptoms
result from the loss of dopaminergic neurons and the accumulation of Lewy bodies in the
substantia nigra, as well as α-synuclein and neuronal degeneration [4,5]. The development
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of PD poses a challenge due to its complex mechanism involving factors like protein
aggregation and neuroinflammation [6]. Besides motor symptoms, PD also exhibits non-
motor symptoms, including anxiety, depression, and memory loss [7,8].

Diabetes mellitus, a prevalent chronic metabolic syndrome, affects 9% of individuals
globally and increases the risk of PD diagnosis compared to non-diabetic subjects [1]. The
coexistence of diabetic Parkinson’s disease (DP) has been gradually reported worldwide
with severe symptoms, especially the effect of prolonged high blood glucose levels on
synaptic proteins and apoptosis markers in the hippocampus—a critical brain region
for memory formation [9–12]. The lack of understanding of the mechanisms of insulin
resistance in diabetes and its interaction with PD is an obstacle to developing effective
treatments. As the first-line drug, levodopa was used to compensate for central dopamine
levels, but it still has some adverse effects [13]. Therefore, to enhance the efficacy and
minimize undesirable side effects, alternative therapeutics, such as natural derivative
medicine with innovative formulations, are an ongoing pursuit.

In the realm of alternative therapeutics, cannabinoids, particularly cannabidiol (CBD)
derived from Cannabis sativa, have gained attention for their neuroprotective properties.
This interest extends to pharmacological treatments, such as levodopa, to promote central
dopamine. Even though CBD has low affinity for CB1R and CB2R, it can modify the
endocannabinoid system and enhance their neuroprotective, anti-inflammatory, and im-
munomodulatory properties [14]. Furthermore, CBDs also promise to alleviate metabolic
dysfunction in diabetes models [15–17]. However, CBD natural form still faces challenges
such as limited bioavailability, poor water solubility, and less absorption; it is therefore
necessary to explore novel formulations to overcome these drawbacks.

Recently, some studies suggested that CBD in nano-formulation, specifically as CBD-
loaded lipid nanoparticles (CBD-LNP), can enhance absorption and bioavailability com-
pared to its natural form [18,19]. However, clinical and pre-clinical studies remain limited,
especially in DP [20]. This study aimed to assess the potential of CBD-LNP in terms of
safety and therapeutic outcomes, including metabolic profiles, behavioral responses, and
hippocampal morphology in DP animal models. The study provides a well-rounded un-
derstanding of the potential of CBD-LNP as an alternative therapeutic intervention. By
enhancing CBD’s bioavailability and stability through nanoencapsulation, the hypothesis
was that CBD-LNP could improve locomotor and memory functions in animal models of
DP. Ultimately, these findings could significantly contribute to the development of effective
treatment strategies, thereby enhancing the quality of life and overall health outcomes for
individuals dealing with DP.

2. Materials and Methods
2.1. Preparation and Physical Stability of Cannabidiol Lipid Nanoparticle (CBD-LNP)

CBD-LNP was prepared using a solvent injection method. Briefly described, lipid
nanoparticles were formulated by mixing the solvent and aqueous phases using the mi-
crofluidization technique. Isolated CBD powder (Amara Asia Co., Ltd., Bangkok, Thailand)
was solubilized in ethanol with lipid components including phosphatidylcholine and
cholesterol (Lipoid GmbH, Ludwigshafen, Germany). Then, the solvent phase was mixed
with the aqueous phase (deionized water) using a high-speed homogenizer (IKA, Staufen,
Germany), and particle size was reduced by microfluidizer (M-110P Microfluidizer, Mi-
crofluidics Inc., Westwood, MA, USA). Lipid nanoparticles were formed under mechanical
force. Ethanol in the mixture was then removed by rotary evaporation under reduced
pressure until 3 mg/mL CBD was obtained.

The encapsulation efficiency (EE) of CBD-loaded LNP was determined by using an
Amicon membrane filter, followed by centrifugation. Unencapsulated CBD in the aqueous
phase (supernatant) was filtered, and the concentration of encapsulated CBD was evaluated
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and calculated based on HPLC-UV analysis. The encapsulation efficiency was calculated
using the following equation:

%EE =
Ci − C f

Ci
× 100

where:
Ci represents the initial concentration of CBD added to nanoparticles;
Cf represents the concentration of unencapsulated CBD.
The stability of CBD-LNP was confirmed by the average diameter, zeta potential, and

polydispersity index (PDI) measured using a Malvern Instruments Zetasizer Nano ZX
(Malvern Panalytical Ltd., Malvern, UK), employing the dynamic light scattering (DLS)
technique, following storage at 4 ◦C, 25 ◦C, and 45 ◦C for 30 days.

2.2. Assessment of Cytotoxicity

Human neuron cells (SH-SY5Y) were maintained in EMEM (Thermo Fisher Scientific,
Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS) (Thermo Scientific),
100 units/mL penicillin, and 100 µg/mL streptomycin (Pen&Strep). Cells were cultured
at 37 ◦C in a 5% CO2 incubator. The cytotoxicity of neuron cells was evaluated with the
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction
assay, which measured mitochondrial succinate dehydrogenase. Cells were seeded at a
density of 1 × 104 cells/well in 96-well plates and allowed to grow until 70–80% confluent,
followed by treatment with CBD-LNP, blank-LNP, and isolated CBD. Cytotoxicity was
examined 24 h post incubation by adding 100 µL MTT solution (1 mg/mL in PBS) to each
well followed by incubation for 4 h at 37 ◦C. MTT solution was removed, and the formazan
crystals were dissolved by adding 100 µL DMSO to each well. Finally, the absorbance was
measured at 570 nm using SpectraMax M2 microplate readers (Molecular Devices LLC,
San Jose, CA, USA).

2.3. Animals

Forty adult male Wistar rats (8 weeks old, weighing 180–200 g) were obtained from
Nomura Siam International Co., Ltd. (Bangkok, Thailand). The animals were housed in
groups of 2–3 rats per cage (n = 8/group) in a controlled room maintained at 25 ± 2 ◦C
and 54 ± 5% humidity, with a 12 h light/dark cycle, and were fed a standard chow diet
for at least 1 week prior to the start of the experiments (Charoen Pokphand Foods Public
Co., Ltd., Bangkok, Thailand). The experiments were carefully planned and conducted
to minimize the number of animals used. Body weight, food intake, and water intake
were measured daily. For diabetic induction, rats were provided with a high-fat diet
(HFD32) ad libitum for 1 week, purchased from CLEA Japan, Inc. (Tokyo, Japan), and were
subsequently administered lower doses of by streptozotocin (STZ) injection. After that, rats
were maintained on a high-fat diet for 4 weeks. All rats were randomly divided into five
equal groups as follows:

(i) Control group + vehicle: Rats were injected with a single intraperitoneal injection
of 0.5 mL sodium citrate solution 1 week before the start of the 4-week normal saline
injection. Subsequently, rats were orally administered vehicle (3 mL/kg mixed lecithin,
phosphatidylcholine, and cholesterol in ethanol).

(ii) DP + vehicle: Diabetic induction was conducted by a single intraperitoneal injection
of 35 mg/kg STZ 1 week before the start of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced PD (30 mg/kg dissolved in normal saline). Subsequently, rats were orally
administered vehicle (3 mL/kg).

(iii) DP + CBD: DP rats were orally administered natural form CBD dissolved in
vehicle (20 mg/kg).

(iv) DP + CBD-LNP: DP rats were orally administered CBD-LNP (20 mg/kg).
(v) DP + levodopa (L-dopa; positive control PD agent): DP rats were orally adminis-

tered levodopa dissolved in normal saline (10 mg/kg).
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2.4. Induction of Diabetes and Parkinson’s Diseases (DP)

The induction of DP was performed by modifying the methods from Elbassuoni and
Ahmed, 2019 [20]. To induce type 2 diabetes mellitus (TDM2), rats were subjected to a
high-fat diet for one week and then injected with 35 mg/kg body weight of STZ (Sigma-
Aldrich, St. Louis, MO, USA), dissolved in freshly sodium citrate solution (pH 4.5). The STZ
injection was administered intraperitoneally as a single dose. Following the STZ injection,
the rats were fed high-fat diets for four weeks [21,22]. Blood samples were collected weekly
by anesthetizing the rats and extracting blood from the lateral tail veins. The blood glucose
levels were analyzed to determine the hyperglycemic condition, and rats with fasting blood
glucose levels above 180 mg/dL were considered to have diabetes [20]. For the induction
of PD, the diabetic rats were injected with MPTP (Sigma-Aldrich, St. Louis, MO, USA)
for 4 weeks. The dosage of MPTP utilized in this study was derived from the research
conducted by Li et al. (2023), wherein it was administered intraperitoneally at a dosage of
30 mg/kg over a period of four weeks [23].

2.5. Administration of CBD-LNP

According to the preliminary data presented in Figure S1, the administration of
20 mg/kg CBD-LNP had no significant effect on the locomotor activities of normal rats
in the open field test (OFT), while concurrently reducing anxiety levels as observed in
the elevated-plus maze. This observation is consistent with previous studies conducted
by Costa et al., 2007 and Szulc et al., 2013, which demonstrated the potential of CBD in
alleviating inflammatory and neuropathic pain, as well as mitigating alcohol tolerance in
rats [24,25]. Therefore, considering the positive outcomes reported in these studies, it was
decided to orally administer 20 mg/kg CBD-LNP to DP rats.

2.6. Administration of Antiparkinsonian Agent

For the administration of levodopa, Levopar tablets containing levodopa and benser-
azide hydrochloride were obtained from Baxter International Inc., Deerfield, IL, USA.
Levodopa is a first-line dopamine replacement agent for the treatment of PD. In the
levodopa-treated group, rats were orally administered 10 mg/kg L-dopa between 15:00
and 16:00 once daily for 4 weeks, 7 days a week. Levopar tablets were freshly prepared
daily before administration [26,27].

2.7. Assessment of Muscular Rigidity-like Symptom

The catalepsy bar test assesses the inability to correct a constrained posture due to
muscular rigidity. Rats were gently placed with their forelimbs on a 10 cm high stainless
steel bar and hind limbs on the floor. The time taken for paw removal from the bar was
measured, with a maximum descent latency set at 180 s. A longer time in the bar test
indicates increased muscular rigidity and stiffness in rats [28].

2.8. Assessment of Memory-like Behaviors
2.8.1. Y-Maze Test

Memory-like behaviors were assessed using the Y-maze test, a method designed to
evaluate spatial working memory [29]. The Y-maze apparatus consisted of three arms
diverging at a 120◦ angle from each other, with a central triangular area. To minimize
the influence of stress on behavior, rats were acclimatized to the testing room for at least
30 min prior to the test. During the test, each rat was placed in the Y-maze and allowed
eight minutes for free exploration, with its behavioral responses being recorded by an
infrared video camera. Rats typically exhibit a tendency to explore recently visited arms
and alternate between the three arms. Efficient alternation between arms indicates the
utilization of working memory, as rats have to maintain a record of the most recently
visited arms [30]. The total number of arm entries, the number of triads (consecutive
visits to different arms), and the percentage of alternation were measured in the Y-maze
test [31]. Subsequently, after completion of the test, the rats were returned to their home
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cages. To maintain cleanliness and minimize potential confounding factors between trials,
the Y-maze arena was thoroughly cleaned with 20% ethanol. A spontaneous alternation
was considered to occur when a rat entered a different arm of the maze in each of three
consecutive arm entries. A low percentage of spontaneous alternation is often considered
as an indication of impaired spatial working memory [31]. The percentage of alternation
was then calculated using the following equation:

spontaneous alterations
total number of arm entries − 2

× 100.

2.8.2. Novel Object Recognition (NOR) Test

The NOR test was conducted in a black rectangular plastic box measuring 63 cm in
length, 63 cm in width, and 45 cm in height, under a room light intensity of 360 lux. The
experimental procedure followed the methods described by Lapmanee et al. in 2023. A
video camera was positioned above the box to record the behavioral profiles of the rats.
The objects used for discrimination were made of glass or ceramic. On the day prior to the
NOR test, each rat underwent habituation in the empty box for two sessions, with each
session lasting 10 min. During the test, the rat was gently placed in the box and exposed to
a 3 min acquisition session with two identical objects (ceramic pepper bottles measuring
3 cm in length, 3 cm in width, and 7 cm in height) positioned approximately 10 cm apart at
the center of the box. Following the acquisition session, the rat was returned to its home
cage for a 1 h inter-trial interval, during which time the box and objects were cleaned with
20% ethanol. Next, one of the objects in the box was replaced with a novel object (a glass
paperweight measuring 5 cm in length, 5 cm in width, and 12 cm in height). The same
rat was then placed back in the box and allowed to explore the new object for 3 min. A
decrease in the discrimination ratio indicated cognitive and memory impairment [32,33].
The discrimination ratio was calculated using the following equation:

Time exploring novel object (s)− Time exploring familiar object (s)
Total exploration time (s)

.

2.9. Assessment of Locomotor and Exploratory Activities

The locomotor and exploratory activities of the rats were assessed using the OFT. The
apparatus used for the test was constructed from black acrylic plastic and had dimensions
of 76 cm in length, 57 cm in width, and 35 cm in height. The floor of the apparatus consisted
of a 48-square grid (6 × 8 squares) with each square measuring 9.5 cm per side. The
arena was divided into two zones: the inner zone and the outer zone, with the outer zone
comprising 24 peripheral squares. To initiate the test, the animal was gently placed in one of
the four corner squares of the apparatus and given 5 min to freely explore the environment.
The behavioral responses of the rats were recorded using an infrared video camera. An
increase in the number of rearing-stretch behaviors, which refers to the rat assuming an
upright position, indicated increased exploration. The total number of lines crossed in the
grid represented changes in locomotor activity [32,33].

2.10. Assessment of Metabolic Parameters

Biochemical analyses of blood were conducted following the completion of the behav-
ioral tests. After anesthesia, the rats were sacrificed and blood samples were immediately
collected. The centrifugation at 3000 rpm for serum and 6000 rpm for plasma at 4 ◦C for
10 min was performed, and then, all blood tubes were kept at −80 ◦C until analysis. The
metabolic parameters consist of body weights, abdominal fat weights, plasma glucose, and
lipid profiles (i.e., triglyceride and cholesterol levels). Weekly blood glucose levels were
measured using an electronic blood glucose meter in units of mg/dL (Roche Diabetes Care
India Pvt Ltd., Mumbai, India), while plasma glucose, triglyceride, and cholesterol levels
were analyzed using a Fujifilm biochemical analyzer (Dri-Chem NX500, Tokyo, Japan).



Pharmaceutics 2024, 16, 514 6 of 18

2.11. Assessment of Insulin and Insulin Resistance

Insulin levels in the serum samples were determined using the ELISA test kit (catalog
number: EZRMI-13K, Merck Millipore, Darmstadt, Germany), following the manufac-
turer’s instructions. Baseline insulin resistance was measured at week −2, after inducing
diabetes at week 0, and after administering the treatments at week 4. Before each time
point, the rats were fasted for a minimum of 5 h before blood collection from the tail
vein. Insulin resistance and progressive pancreatic β-cell dysfunction have been identified
as the two fundamental features in the pathogenesis of TDM2. As a widely validated
clinical and epidemiological tool for estimating insulin resistance and β-cell function, the
homeostasis model assessment (HOMA) is derived from a mathematical assessment of
the balance between hepatic glucose output and insulin secretion from fasting levels of
glucose and insulin. The HOMA of insulin resistance (HOMA-IR) index was computed by
the following equation:

Fasting plasma insulin (µU/mL)× Fasting plasma glucose (mmol/L)
22.5

,

while the HOMA of β-cell function (HOMA-β) index was computed by the following equation:

20 × Fasting plasma insulin (µU/mL)
Fasting plasma glucose (mmol/L)− 3.5

.

Conversion factors were insulin (1 µU/mL = 0.0417 ng/mL = 7.175 pmol/L) and
blood glucose (1 mmol/L = 18 mg/dL). A higher HOMA-IR and lower HOMA-β index
indicate high impaired glucose tolerance [34,35].

2.12. Assessment of Striatal Dopamine and Serum Inflammatory Cytokine Levels

The brains were removed and then washed with ice-cold saline. The frontal region
of the whole brain, including the striatum area, was freshly dissected. The striata from
each brain hemisphere were isolated, weighed, and homogenized in phosphate-buffered
saline (pH = 7.4). The resulting homogenate was centrifuged, and the supernatants were
collected and stored at −80 ◦C. Dopamine levels in the striata were determined by using a
rat dopamine ELISA kit (catalog number: MBS262606, MyBioSource, San Diego, CA, USA),
while cytokine-induced inflammation marker, i.e., tumor necrosis factor (TNF)-α in serum
were determined by rat ELISA commercial kits analysis (catalog number: RAB0480, Merck
Millipore, Darmstadt, Germany) in accordance with the manufacturer’s instructions.

2.13. Assessment of Hippocampal Histomorphological Changes

The brains, including the half middle and back regions of the brain, encompassing the
dorsal and ventral hippocampus, were collected and post-fixed in 10% neutral buffered for-
malin before being processed for histology. Paraffin embedding was conducted, followed
by sectioning at 5 µm thickness using a rotatory microtome (Leica, Nussloch, Germany).
The sections were then cleared in xylene, hydrated in decreasing alcohols, stained with
Hematoxylin and Eosin (H&E) [36,37], and finally mounted with Permount™ mounting
media (Fisher Scientific, Geel, Belgium). Subsequently, four specific regions within the
hippocampus, including cornu ammonis (CA) 1 to CA 4 and dentate gyrus (DG), were
examined to assess neuronal damage. Damaged neurons were identified based on the
presence of pyknotic cells and cells exhibiting condensed chromatin. Pyknotic cells were
characterized by a densely stained nuclear content that was evenly dispersed throughout.
Condensed chromatin was observed when intensely stained nuclei displayed localized
regions of aggregated chromatin [38,39]. Neuronal counts were obtained from the hip-
pocampus using a light microscope Nikon DXM 1200 digital camera (Tokyo, Japan) at
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400× magnification. For each animal, average neuronal counts were obtained by counting
three serial coronal sections. Pyknotic index was calculated as follows:

Pyknotic index (%) =
pyknotic neurons

total neurons
× 100

2.14. Statistical Analysis

Statistical analysis was performed using means ± SEM. For comparisons between
two sets of data, an unpaired Student’s t-test was used. Multiple comparisons were
conducted using one-way analysis of variance (ANOVA) followed by the Dunnett post-hoc
test (GraphPad software version 9).

3. Results
3.1. Successful Preparation, Stability, and Cytotoxicity of CBD-LNP

This study utilized the solvent injection method via microfluidization techniques
to formulate nanoparticles. The CBD-LNPs were synthesized from small molecules of
phospholipid, cholesterol, and isolated CBD and then investigated for the physicochemical
properties (size, charge, and PDI), stability, encapsulation efficiency, and cytotoxicity to
neuron cells. The results showed that the synthesized CBD-LNP was obtained with a
particle size ≤ 170 nm and consistent size distribution with PDI ≤ 0.2. The zeta potential
was −16.57 ± 0.04 as shown in Table 1. The stability test suggests that synthesized CBD-
LNP maintained its physicochemical characters over 30 days. CBD was encapsulated in
LNP as high as 98.78 ± 0.90% due to the high hydrophobicity of CBD, which tends to
encapsulate in the lipid phase.

Table 1. Initial hydrodynamic size, polydispersity index, and zeta potential of blank-LNP and
CBD-LNP after being kept at 4, 25, and 45 ◦C for 30 days.

Hydrodynamic Size (nm) Day 0
Day 30

Kept at 4 ◦C Kept at 25 ◦C Kept at 45 ◦C

Blank-LNP 169.93 ± 34.41 163.50 ± 3.78 151.27 ± 2.15 153.80 ± 0.44

CBD-LNP 156.33 ± 1.24 158.17 ± 1.06 167.87 ± 0.81 166.83 ± 5.37

Polydispersity Day 0
Day 30

Kept at 4 ◦C Kept at 25 ◦C Kept at 45 ◦C

Blank-LNP 0.41 ± 0.02 0.18 ± 0.02 0.10 ± 0.03 0.07 ± 0.03

CBD-LNP 0.11 ± 0.10 0.12 ± 0.02 0.10 ± 0.03 0.13 ± 0.02

Zeta Potential (mV) Day 0
Day 30

Kept at 4 ◦C Kept at 25 ◦C Kept at 45 ◦C

Blank-LNP −3.53 ± 0.15 −15.28 ± 0.09 −17.89 ± 0.84 −13.04 ± 0.63

CBD-LNP −16.57 ± 0.04 −17.04 ± 0.90 −14.47 ± 2.08 −19.55 ± 0.70

Further, the cytotoxicity of CBD-LNP, CBD, and vehicle-LNP was evaluated using
SH-SY5Y culture cells by incubating them for 24 h. As shown in Figure 1, the results
clearly indicated that the toxicity of CBD-LNP was considerably lower than the isolated
CBD natural form. It suggests that LNP formulation alleviates the toxicity of CBD from
direct contact to neuron cell lines. Moreover, the results obviously demonstrated that
CBD-LNP has enhanced neuron cell proliferation at low concentrations due to high cellular
uptake, and less toxicity compared with blank-LNP and CBD. These are the advantages of
CBD-LNP as a potential treatment to provide benefits in animal studies.
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3.2. Successful and Validation of the DP Model

The results from behavioral profiles indicated that alterations in motor performance,
locomotor activities, and memory behaviors were indicative of the consequences of DP in-
duction in male rats, as shown in the Figure 2A. Figure 2B–G shows that vehicle-treated DP
rats exhibited symptoms resembling muscular rigidity, hypolocomotion, lower exploration
activity, and memory impairments. This was demonstrated by a significantly increased
descent latency on the bar test, decreased total line crosses and rearing numbers in the OFT,
as well as a lower percentage of alteration in the Y-maze test, and a lower percentage of
total exploration and discrimination index in the NOR test, respectively.

Furthermore, physical and biochemical changes were employed to validate the in-
duction of DP in male rats. There were no significant differences in the starting body
weight among the control and test groups. Rats exhibited a slight increase in body weight
following 1 week of pretreatment with a high-fat diet and a marked increase in body weight
when they received a single low dose of STZ injection. After induction of high-fat and
STZ-induced T2DM, rats displayed higher levels of fasting blood glucose and lipid profiles,
as well as lower insulin levels compared to the control group. These findings resulted in the
impairment of pancreatic function, as demonstrated by significantly increased HOMA-IR
and decreased HOMA-β indexes in diabetic rats (Table S1). Subsequently, the rats were con-
tinuously fed a high-fat diet and received daily MPTP injections for 4 weeks to induce both
T2DM and PD. Compared to the control group, vehicle-treated DP rats exhibited increased
metabolic and partly pancreatic abnormalities, including elevated levels of triglycerides,
total cholesterol, fasting blood glucose, decreased insulin, and a lower HOMA-β index.
Additionally, they displayed lower striatal dopamine levels and increased systemic inflam-
mation, as indicated by high TNF-α levels. These results indicate that the DP protocols
were successful in male rats, as presented in Figure 3.

At the histological level, the control group’s CA1, CA2, CA3, and CA4 regions of
the hippocampus displayed glial cells with varying nuclear staining in the pyramidal cell
layer (PCL) (Figure 4A–D), while the granule cell layer (GCL) in the DG contained small,
rounded granule cell bodies (Figure 4E). Upon closer inspection, vehicle-treated DP rats
exhibited disarranged, loosely packed, dark, shrunken pyramidal cell bodies with pyknotic
nuclei and pericellular haloes in CA1, CA2, CA3, and CA4 (Figure 4F–I). Additionally, the
DG regions showed dark, shrunken granule cell bodies with pyknotic nuclei (Figure 4J).
Neuronal cell damage was evident in vehicle-treated DP rats, with an elevated percentage
of pyknotic cells and a reduction in the thickness of the PCL and GCL compared to the
control group (Table 2). This histological examination revealed disrupted pyramidal and
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granule cell bodies in vehicle-treated DP rats, indicating successful induction and associated
neurological, metabolic, and behavioral alterations.
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Table 2. Pyknotic index, pyramidal cell layer in the hippocampus (CA1, CA2, CA3, and CA4),
and granular cell layer in the dentate gyrus after 4 weeks of vehicle, CBD, CBD lipid nanoparticles
(CBD-LNP), or levodopa (L-dopa) treatments in diabetic Parkinson’s disease (DP) rats.

Parameters
Control Group DP Group

Vehicle Vehicle CBD CBD-LNP L-Dopa

Pyknotic index of the CA1 (%) 7.70 ± 3.25 22.59 ± 12.91 ** 11.50 ± 4.30 † 9.78 ± 5.01 †† 7.86 ± 0.84 ††

Pyknotic index of the CA2 (%) 6.13 ± 1.67 40.32 ± 14.39 *** 8.86 ± 3.94 †† 12.45 ± 5.61 †† 34.39 ± 10.39 **

Pyknotic index of the CA3 (%) 6.78 ± 0.97 38.96 ± 10.41 ** 14.00 ± 0.86 † 6.12 ± 2.41 †† 14.21 ± 4.48 †
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Table 2. Cont.

Parameters
Control Group DP Group

Vehicle Vehicle CBD CBD-LNP L-Dopa

Pyknotic index of the CA4 (%) 7.84 ± 3.82 55.95 ± 9.98 ** 8.22 ± 2.24 †† 14.12 ± 7.04 †† 21.61 ± 15.31 †

Pyknotic index of the DG (%) 6.39 ± 3.76 25.83 ± 8.51 ** 10.04 ± 0.84 † 11.05 ± 4.90 † 14.51 ± 5.73 †

Thickness of the pyramidal
cell layer in the CA1 (µm) 47.28 ± 1.19 31.99 ± 1.72 *** 47.47 ± 1.95 ††† 48.51 ± 1.45 ††† 45.8 ± 1.26 †††

Thickness of the pyramidal
cell layer in the CA2 (µm) 55.69 ± 1.98 47.67 ± 2.27 *** 51.28 ± 1.52 † 52.89 ± 1.83 †† 48.48 ± 1.44 *

Thickness of the pyramidal
cell layer in the CA3 (µm) 57.47 ± 1.15 39.97 ± 1.30 *** 51.19 ± 1.32 *††† 54.45 ± 1.71 ††† 51.72 ± 1.36 *†††

Thickness of the pyramidal
cell layer in the CA4 (µm) 93.29 ± 3.33 70.16 ± 2.38 *** 82.63 ± 3.56 † 88.23 ± 3.42 ††† 89.10 ± 2.17 †††

Thickness of the granular cell
layer in the DG (µm) 64.07 ± 1.91 50.14 ± 1.73 *** 58.36 ± 1.08 †† 61.08 ± 1.62 ††† 62.18 ± 1.15 †††

Data are presented as mean ± SEM (n = 3–4 rats/group). * p < 0.05, ** p < 0.01, *** p < 0.001 compared to
vehicle-treated control group. † p < 0.05, †† p < 0.01, ††† p < 0.001 compared to vehicle treated-DP group.
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Figure 3. Changes of physical and biochemical profiles after 4 weeks of vehicle, CBD, CBD lipid
nanoparticles (CBD-LNP), or levodopa (L-dopa) treatments in diabetic Parkinson’s disease (DP) rats as
determined by neuroinflammatory and metabolic biomarkers. (A) Final body weight, (B) abdominal
fat weight, (C) striatal dopamine, (D) proinflammatory TNF-α, (E) total cholesterols, (F) triglycerides,
(G) fasting blood glucose, (H) insulin, (I) HOMA-IR (Homeostatic Model Assessment for insulin re-
sistance), and (J) HOMA-β (Homeostatic Model Assessment estimates steady state beta cell function).
Data are presented as mean ± SEM (n = 8 rats/group). * p < 0.05, ** p < 0.01, *** p < 0.001 compared
to control, † p < 0.05, †† p < 0.01, ††† p < 0.001 compared to vehicle treated-DP group and # p < 0.05,
## p < 0.01 compared to CDB treated-DP group.
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Figure 4. Morphological evaluation of H&E-stained sections in the CA1, CA2, CA3, CA4, and dentate
gyrus regions of the hippocampus in diabetic Parkinson’s disease (DP) rats. Control rats (A–E) display
normal neuron cells (arrow). Vehicle-treated DP rats (F–J) exhibit neuron cells (arrow) alongside
highly condensed pyknotic nuclei (head arrow) and pericellular haloes (asterisk). CBD-treated DP
rats (K–O) also show normal neuron cells (arrow). CBD-LNP-treated DP rats (P–T) reveal numerous
normal neuron cells (arrow) with reduced pyknotic nuclei (head arrow) and pericellular haloes
(asterisk). Levodopa-treated DP rats (U–Y) display normal neuron cells (arrow) along with pyknotic
nuclei (head arrow) and pericellular haloes (asterisk). Scale bars represent 50 µm (magnification,
40×). PCL, pyramidal cell layer; GCL, granule cell layer.

3.3. The Potential Therapeutic Effects of CBD-LNP

Regarding the therapeutic effects of the treatment on muscular rigidity, locomotion,
and exploration activity, CBD-LNP was found to reduce muscle stiffness similarly to
levodopa, rather than natural CBD, in the bar test (Figure 2B). However, CBD-LNP did
not affect locomotor activity in the OFT compared to the vehicle-treated group. Similarly,
CBD did not alter locomotor deficits but impaired exploration activity by decreasing the
rearing number in the OFT in DP rats compared with controls. As expected, levodopa
significantly restored locomotor function in DP rats in the OFT (Figure 2C). Moreover, all
treatments attenuated spatial memory impairment in DP rats (Figure 2E–G). CBD-LNP
exhibits comparable effects to levodopa, as demonstrated by the increased percentage of
alteration in the Y-maze test and exploration activity, as well as the discrimination index
in the NOR test. Therefore, CBD-LNP shows promising effects similar to levodopa in
mitigating DP-induced motor and memory abnormalities in male rats.

Although none of the treatments strongly attenuated biochemical abnormalities in
DP rats compared to control rats, CBD-LNP treatment exhibited effects similar to CBD
when compared to controls. However, CBD-LNP treatment provided additional benefits,
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including improved insulin levels and reduced inflammation without any changes in body
weight and fat accommodation compared to vehicle-treated groups. Moreover, CBD-LNP
resulted in enhancements in various parameters such as body weight, abdominal fat, blood
glucose levels, insulin, pancreatic function, dopamine levels, and inflammation when
compared with natural CBD alone.

On the other hand, CBD appears to be less effective in mitigating the detrimental
consequences of DP induction. This is demonstrated by decreased final body weight and
abdominal fat, along with persistently high levels of lipid profiles, blood glucose, TNF-
alpha, and lower HOMA-β and dopamine levels. However, the natural form of CBD could
improve metabolic status and dopamine levels compared to the vehicle-treated group. As
expected, levodopa did not dominate for modulating effects on metabolic status, including
lipid levels, blood glucose, HOMA-IR, and HOMA-β indexes in DP rats compared to
control rats. However, levodopa treatment was able to improve striatal dopamine levels
and further improve triglyceride and cholesterol levels compared to vehicle-treated DP rats
(Figure 3).

Moreover, CBD-LNP demonstrated the potential to repair damaged neuronal cells
in DP rats across all subregions of the hippocampus. Treatments with CBD also showed
positive results but had a less potent effect on increasing the thickness of the PCL and GCL
than CBD-LNP. While levodopa reduced the pyknotic index and increased the thickness of
the PCL in CA1, CA3, CA4, and GCL of the DG regions compared to the vehicle-treated
DP group; however, the effect was less pronounced in CA2 regions (Table 2). The findings
suggest that CBD-LNP demonstrated the potential to repair damaged neuronal cells in the
hippocampus more effectively than CBD alone, indicating its promising neuroprotective
properties in DP.

4. Discussion

The present study, employing the solvent injection method through microfluidization
techniques, strives for the successful synthesis of CBD-LNP. This endeavor is supported by
compelling scientific findings [40–42] suggesting the potential treatment of DP comorbidity.
The formulation underwent comprehensive characterization to assess its physicochem-
ical properties, stability, encapsulation efficiency, and cytotoxicity to neuron cells. The
nanoparticle size, a crucial determinant for effective drug delivery, was demonstrated to
be ≤170 nm with a consistent size distribution (PDI ≤ 0.2). Zeta potential is an important
factor in the physical stability of nanoparticles. The higher zeta potential shows better
stability of the dispersion [43]. The negative zeta potential of −16.57 ± 0.04 indicates the
stability and colloidal nature of the CBD-LNP. These findings align with the established
principles of nanoparticle formulation for drug delivery, ensuring optimal size and stability
for therapeutic applications [42,44]. The encapsulation efficiency of CBD within the lipid
nanoparticles was high at 98.78 ± 0.90%, suggesting a successful incorporation facilitated
by the hydrophobic character of CBD [45,46]. This result aligns with the understanding
that the lipid phase is conducive to encapsulating hydrophobic compounds, a key aspect
of efficient drug delivery systems [47]. The stability test, spanning a 30-day period in
three different temperatures, confirms the potential of CBD-LNP for practical applications.
The ability to maintain physicochemical characteristics over an extended duration is a
crucial aspect in ensuring the feasibility of translating such formulations into therapeutic
interventions [48].

Cytotoxicity evaluation in SH-SY5Y neuron cells revealed a significantly lower toxicity
profile for CBD-LNP compared to isolated CBD natural form. This suggests that the
CBD-LNP formulation relieved the toxicity of CBD on direct contact with neuron cells,
indicating a potential safety advantage [45,49]. Moreover, the observed enhanced neuron
cell survival at low concentrations, coupled with lower toxicity compared to CBD alone,
adds another layer of promise to the potential therapeutic application of CBD-LNP. These
findings align with the broader understanding that nanoparticle formulations can enhance
drug delivery efficiency and reduce toxicity [49,50]. The findings presented in this study not
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only demonstrate the successful preparation of CBD-LNP but also highlight its favorable
physicochemical properties, stability, and reduced cytotoxicity, positioning it as a promising
avenue for further exploration in the treatment of neurological disorders.

Validation of a rat model representing the coexistence of DP indicates the complex
mechanism linking metabolic and neurodegenerative disorders [9,20,21,51]. It is notewor-
thy that diabetes mellitus is independently linked to heightened cognitive impairment in
PD [7]. The study employed an integrated approach, including physical and biochemical
methods, to evaluate the effects of DP induction on the rat model. A notable observation
was the successful establishment of baseline conditions, illustrated by no significant dif-
ferences in starting body weight between the control and test groups. This foundational
information enhances the reliability of later assessments. After one week of pretreatment
with a high-fat diet and low-dose STZ injection, the observed increase in body weight, as
expected, indicated the successful induction of pre-diabetes in the rat model [21,22,52,53].
The biochemical changes post-induction, including elevated fasting blood glucose levels,
reduced insulin levels, and decreased striatal dopamine levels contributing to the devel-
opment of α-synuclein aggregation, collectively confirm the successful establishment of
DP rats [4,20,21,54,55]. The alterations in HOMA-IR and HOMA-β indexes confirmed the
development of insulin resistance and impaired β-cell function, providing a comprehensive
characterization of the model’s metabolic and neurodegenerative features [34,35,56].

The subsequent treatments involving continuous high-fat diet feeding and daily MPTP
injections further emphasized the complexity of the coexisting conditions [20,23,57]. The
vehicle-treated DP rats displayed systemic inflammation and metabolic abnormalities,
providing a clinically relevant context for assessing therapeutic interventions. Although
apoptosis, necrosis, and late apoptosis are interesting aspects of validating the DP model,
the established reduction in striatal dopamine levels in the DP group is noteworthy. Addi-
tionally, significant decreases have been observed in the activities of striatal antioxidant
enzymes, while there have been significant increases in BAX, BCL2-associated apoptosis,
and lipid peroxidation, as well as elevated levels of proinflammatory cytokines TNF-α and
IL1β. These findings collectively suggest the involvement of oxidative stress, apoptosis,
and inflammation in the pathogenesis of DP [20,23,58,59].

Interestingly, CBD treatment demonstrated positive effects, particularly in body weight
regulation and adipose tissue accumulation, supporting the potential anti-obesity prop-
erties of CBDs [60]. Our study found that the improvements of some parameters in DP
rats were observed in CBD, levodopa, and CBD-LNP treatments, including fasting blood
glucose levels, lipid, insulin profiles, HOMA-β index, and dopamine levels, which implied
the potential of these treatments in restoring both metabolic and neurodegenerative aspects
of the coexisting conditions [15–17,20,61,62]. The distinct efficacy of CBD-LNP in reducing
TNF-α levels and enhancing various metabolic parameters surpasses these effects observed
with the CBD natural form, suggesting the increased therapeutic potential of the lipid
nanoparticle formulation. This aligns with the emerging field of nanomedicine, where
nanoparticles enhance drug delivery efficiency and may contribute to improved treatment
outcomes [19,45,63,64].

Additionally, the alteration in motor symptoms and memory-like behaviors in the DP
rats indicated the consequence of the induction in DP modeling and presented the efficacy
of therapeutic interventions [65]. The assessment of motor symptoms and muscular rigidity
revealed significant differences among the treatment groups. The vehicle-treated DP rats
exhibited increased descent latency on the bar, indicating the successful induction of PD in
this animal model [20]. Interestingly, the treatment with CBD-LNP resulted in a significant
decrease in latency on the bar test, suggesting an ameliorative effect on muscular rigidity
and muscle stiffness-like symptoms. Likewise, levodopa treatment demonstrated efficacy
in alleviating catalepsy, supporting its role as a positive control [66,67].

According to locomotor and exploratory activities, DP rats displayed reduced activity
in the OFT, particularly in the vehicle-treated group [20]. Levodopa treatment as a positive
control showed increased locomotor activities compared to the vehicle-treated rats. This
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further supports the effectiveness of levodopa in addressing motor impairments associated
with PD [67]. Moreover, all results also suggest that both CBD-LNP and levodopa have
the potential to influence motor symptoms in the DP model. Further memory assess-
ments, including spontaneous alternation in the Y maze and discrimination index in the
NOR test, provided insight into cognitive function. As a result, vehicle-treated DP rats
exhibited lower spontaneous alternation in the Y maze, increased exploration latency, and
decreased discrimination index in the NOR test, which indicate memory impairment-like
behaviors [30–32,68]. In contrast, treatment with CBD, CBD-LNP, or levodopa showed
improvements in memory impairment-like behaviors. Specifically, DP rats treated with
CBD-LNP exhibited comparative efficacy to levodopa, suggesting that CBD-LNP could be a
promising intervention for mitigating cognitive symptoms associated with DP comorbidity.
The results from the behavioral assessments, together with the physical and biochemical
information, provide a comprehensive understanding of the success of the induced co-
morbid conditions and the therapeutic effects of CBD-LNP. The comparative efficacy of
CBD-LNP to levodopa in addressing both motor and cognitive symptoms illustrates its
potential treatment for this complex DP.

Moreover, the observed histopathological changes in the hippocampal subregion, as
revealed by H&E staining, provide valuable insights into the neuropathological alterations
associated with DP. The higher percentage of pyknotic cells and the reduction in the thick-
ness of the PCL and GLC in vehicle-treated DP rats emphasize the severity of neuronal
damage in this condition [12]. This aligns with existing literature suggesting a close inter-
play between diabetes and neurodegenerative processes, particularly in PD [12,69,70]. The
intriguing finding of CBD-LNP’s potential in mitigating damaged hippocampal neuronal
cells suggests a neuroprotective effect. This aligns with the known anti-inflammatory and
antioxidant properties of CBD, which have been reported in various neurodegenerative
conditions [64,71,72]. The specific targeting of damaged regions by CBD-LNP is notewor-
thy and warrants further exploration to elucidate the underlying mechanisms responsible
for this observed neuroprotection. The contrasting impact of levodopa, a standard treat-
ment for PD, raises questions about its efficacy in DP [73]. The increased percentage of
pyknotic cells following levodopa treatment in the hippocampus of DP rats suggests the
need for careful consideration and evaluation of traditional PD treatments in the presence
of comorbid diabetes [74,75].

Collectively, these findings suggest the presence of neuronal injury in the DP model
and highlight the potential of CBD-LNP as a therapeutic intervention. However, it is
crucial to address the complexity of these interactions and regard these observations as
preliminary for clinical research. While animal models provide valuable insights, they may
not fully capture the intricacies and variability of human diseases. Moreover, the study’s
focus on short-term assessments over a 30-day period might not adequately capture the
long-lasting effects of CBD-LNP treatment. To validate the superior effects of CBD-LNP
at levels higher than those of natural CBD, assessing oral bioavailability would provide a
more comprehensive understanding of the effects observed in the present study.

The present study strictly adhered to animal ethics procedures and aimed to minimize
their suffering while reducing the number of animals used for tests. A group of six animals
was deemed minimal for ethical statistical analysis related to the PD model [23], while
our study assigned eight rats to each group. In addition, the identification of specific
glial cells indicating neuroimmune activation could provide the characterization of the
neuroinflammatory process and evaluate the potential attenuation by CBD-LNP. Further-
more, exploring the amount of proliferating neurons using neurogenesis markers should
be further investigated.

Therefore, further investigations should delve deeper into the molecular and cellular
mechanisms, particularly exploring CBD-LNP’s neuroprotective effects and its implications
for long-term neurodegenerative processes in DP.
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5. Conclusions

In summary, the results of this study have demonstrated that CBD encapsulated
in lipid nanoparticles can alleviate DP symptoms in an animal model, which has never
been published before. This includes improvements in metabolic abnormalities, memory
impairment-like behaviors, locomotor and exploratory activities, as well as the suppression
of neuroinflammation and the restoration of the hippocampal histological architecture.
Based on these results, this innovative nano-formulation holds promise as a potential
treatment for addressing neuronal degeneration associated with DP disease. However, it is
important to note that the precise therapeutic mechanism and dosage of CBD-LNP have
not yet been disclosed. Hence, future additional pre-clinical studies are still necessary.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics16040514/s1, Figure S1: Effects of CBD-LNP on locomotor
activity and anxiety-like behaviors in normal male rats; Table S1: Metabolic parameters at baseline
and after diabetic induction.
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