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Abstract: Despite recent clinical successes in cancer immunotherapy, it remains difficult to initiate a
long-term anti-tumor effect. Therefore, repeated administrations of immune-activating agents are
generally required in most cases. Herein, we propose an adjuvant particle size tuning strategy to
initiate a long-term anti-tumor effect by one-shot vaccination. This strategy is based on the size-
dependent immunostimulation mechanism of mesoporous silica particles. Hollow mesoporous silica
(HMS) nanoparticles enhance the antigen uptake with dendritic cells around the immunization site
in vivo. In contrast, hierarchically porous silica (HPS) microparticles prolong cancer antigen retention
and release in vivo. The size tuning of the mesoporous silica adjuvant prepared by combining both
nanoparticles and microparticles demonstrates the immunological properties of both components
and has a long-term anti-tumor effect after one-shot vaccination. One-shot vaccination with HMS-
HPS-ovalbumin (OVA)-Poly IC (PIC, a TLR3 agonist) increases CD4+ T cell, CD8+ T cell, and CD86+

cell populations in draining lymph nodes even 4 months after vaccination, as well as effector memory
CD8+ T cell and tumor-specific tetramer+CD8+ T cell populations in splenocytes. The increases in
the numbers of effector memory CD8+ T cells and tumor-specific tetramer+CD8+ T cells indicate
that the one-shot vaccination with HMS-HPS-OVA-PIC achieved the longest survival time after a
challenge with E.G7-OVA cells among all groups. The size tuning of the mesoporous silica adjuvant
shows promise for one-shot vaccination that mimics multiple clinical vaccinations in future cancer
immunoadjuvant development. This study may have important implications in the long-term vaccine
design of one-shot vaccinations.

Keywords: adjuvant; cancer; particle size; one-shot vaccination

1. Introduction

Cancer immunotherapy is currently emerging as an important cancer treatment op-
tion. Different from conventional treatments of cancer, such as surgery, chemotherapy,
and radiotherapy, which directly remove/kill cancer cells and surrounding healthy cells,
cancer immunotherapy shows promise in utilizing the body’s own immune system to
remove cancer cells without damaging surrounding healthy cells. Despite recent clinical
successes in cancer immunotherapies, including immune checkpoint blockades, chimeric
antigen receptor-T cells, and cancer vaccines, it remains difficult to achieve long-term
therapeutic efficacy [1–4]. Furthermore, repeated administrations over months to years are
necessary, imposing significant physical, psychological, and economic burdens on patients.
Additionally, there are risks of treatment-associated toxicity, chronic administration pain,
and poor adherence [5–7].

A too-short immunomodulator retention period around the vaccination site is one of
the main obstacles to realizing long-term therapeutic responses, as a too-rapid clearance
of immunomodulators is considered to decrease the quality and duration of generated
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immune memory [8,9]. Thus, a prolonged release of an immunomodulator is advantageous
in not only generating stronger and persistent immune responses but also minimizing
systemic side effects [6,10–12]. Previous studies showed that the time of immunomodulator
exposure during vaccination is crucial to the initiation of long-term T cell memory [6,10–12].
For instance, sustained antigen exposure over several days induced the generation of many
memory CD8+ T cells, whereas short-term antigen exposure induced a limited number of
memory CD8+ T cells [6]. In addition, a prolonged antigen release from particulate vaccines
resulted in enhanced antigen presentation, an increased number of cytotoxic CD8+ T cells,
and thus, increased anti-tumor immunity in vivo [10]. The efficient activation of CD8+

T cells is highly affected by dendritic cells (DCs). Therefore, promoting DC recruitment
and antigen delivery to DCs is essential for the activation of CD8+ T cells. In more detail,
DCs are activated and become mature after the uptake of vaccine components. Then,
the activated and mature DCs migrate to lymphoid organs, present antigens through the
peptide/major histocompatibility complex (MHC) to naive T cells, and induce innate and
adaptive immune responses. Such processes induce effector and memory cell proliferation
and differentiation [13,14].

The size of the vaccine carrier adjuvants is a crucial determinant of the antigen reten-
tion period, antigen uptake, DC activation, and antigen presentation [15–23]. The efficiency
of antigen presentation is determined by the antigen uptake pathway, which is, in turn, de-
termined by particle size. Particles of 20–200 nm size are engulfed by endo- or pinocytosis,
whereas particles bigger than 0.5 µm in size need phagocytosis [24,25]. Another study also
showed that the uptake of mesoporous silica (MS) by HeLa cells is size-dependent. MS par-
ticles of 50 nm in size showed the maximum uptake by HeLa cells, compared with those 30,
110, 170, and 280 nm in size [21]. In addition, particle size is linked to antigen presentation,
cytokine secretion, and the type of induced immune response [15,16,20,23]. Recently, we
illustrated the size-dependent immunogenicity of hydroxyapatite (HA) rods. HA rods with
lengths of 100, 200, and 500 nm promoted T-cell immunity by enhancing the uptake of the
antigen by DCs, DC maturation, and antigen delivery to lymph nodes. On the other hand,
HA rods with lengths of 500 nm–10 µm prolonged antigen retention and DC accumulation
at injection sites, possibly owing to the low clearance rate of microparticles in vivo [22]. MS
particles act both as immune enhancers and as delivery systems for biomolecules. Previous
studies showed that MS improves Th1 and Th2 immunity and increases effector memory
T cells in mouse models [4]. Therefore, this study focuses on the use of MS of different
sizes to control the delivery of cancer antigens. In this study, we hypothesized that the
size tuning of an adjuvant prepared by combining microparticles and nanoparticles can
realize the long antigen retention of microparticles and the high antigen delivery efficiency
of nanoparticles.

2. Materials and Methods
2.1. Synthesis of Template Carbonaceous Microspheres

Glucose (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) was dissolved in
ultrapure water (0.2 M) and added into a Teflon bottle (80 mL) held in a stainless autoclave
at 180 ◦C for 4 h. Carbonaceous microspheres were collected after centrifugation (3000× g,
20 min). Then, they were washed in water or ethanol 5 times. The obtained product was
dried at 80 ◦C for 4 h.

2.2. Synthesis of Hierarchically Porous Silica (HPS) Microparticles and Hollow Mesoporous Silica
(HMS) Nanoparticles

HPS microparticles were synthesized using a tri-templating method. Typically, 1,3,5-
trimethylbenzene (TMB, Tokyo Chemical Industry Co., Ltd., Tokyo, Japan), triblock copoly-
mers EO106PO70EO106 (Pluronic F127, AnaSpec Inc., Fremont, CA, USA), and KCl (FU-
JIFILM Wako Pure Chemical Corporation, Osaka, Japan) were dissolved in 2 M HCl
(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) with stirring at 30 ◦C. Car-
bonaceous microspheres (1 wt%) were fully dispersed in TMB and F127 solution with
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ultrasonication. Then, tetraethoxysilane (TEOS, FUJIFILM Wako Pure Chemical Corpo-
ration, Osaka, Japan) was added dropwise with stirring at 600 rpm for 3 min. The molar
ratio of TEOS:F127:TMB:H2O:KCl:HCl was 1:0.0037:0.5:155:3.36:6. Stirring was continued
for 2 h at 30 ◦C. The mixture was placed in a Teflon bottle held in a stainless autoclave at
100 ◦C for 24 h. The precipitate was collected by centrifugation (3000× g, 20 min), washed
with ultrapure water/ethanol, dried at 80 ◦C, and heat-treated at 550 ◦C for 5 h. HMS
nanoparticles were synthesized using a Stöber solution composed of hexadecyltrimethy-
lammonium bromide (CTAB, FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan),
TEOS, H2O, ammonia (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan), and
ethanol (Wako) as described previously [4]. TEOS was added to solution containing CTAB,
NH3, H2O, and C2H5OH with TEOS: CTAB: NH3: H2O: C2H5OH molar ratio of 1: 0.0922:
2.96: 621: 115 under stirring at 35 ◦C. After 24 h, the precipitate was collected by centrifu-
gation (3000× g, 10 min). After washing with ethanol, the precipitate was mixed with
ultrapure water at 70 ◦C for 2 h, collected by centrifugation (3000× g, 10 min), washed with
ultrapure water/ethanol, dried at 80 ◦C, and heat-treated at 550 ◦C for 5 h to obtain the
HMS nanoparticles.

2.3. Characterization of HPS Microparticles and HMS Nanoparticles

The morphology of the HPS microparticles and HMS nanoparticles was observed using
a transmission electron microscope (TEM, EM-002B, TOPCON, Tokyo, Japan) and a field
emission scanning electron microscope (FE-SEM, S-4800, Hitachi, Japan). In addition, the
samples were analyzed using a powder X-ray diffractometer (XRD, Rigaku, Tokyo, Japan)
employing CuKα X-rays. Fourier transform infrared (FTIR) spectra of the samples were
recorded using an FTIR-350 spectrometer (JASCO Corporation, Tokyo, Japan). The zeta
potential of the particles was analyzed using a Delta Nano C particle analyzer (Beckman
Coulter, Inc., Brea, CA, USA). The nitrogen gas adsorption–desorption isotherm of HPS
microparticles and HMS nanoparticles was measured using a specific surface area/pore
size distribution analyzer (Micromeritics, Norcross, GA, USA).

2.4. In Vivo Cellular Uptake of Cancer Antigen

Fluorescein conjugates of ovalbumin (F-OVA, Life Technologies, Carlsbad, CA, USA)
were used as the cancer antigen to test its in vivo cellular uptake. First, F-OVA (100 µg) was
simply mixed with HMS nanoparticles or HPS microparticles (0.9 mg/100 µL) in saline and
subcutaneously injected into the flank of a mouse (C57BL/6J, female, 6 weeks old, CLEA
Inc., Tokyo, Japan). The mice were divided into four groups: (1) F-OVA, (2) HMS-F-OVA,
(3) HPS-F-OVA, and (4) HMS-HPS-F-OVA. Cells around the injection site were collected
on d3 to prepare a single-cell suspension. Non-specific staining was inhibited by anti-
CD16/CD32 antibody (2.4G2, BD Pharmingen, San Jose, CA, USA). Then, the cells were
stained using anti-mouse CD11c and anti-mouse CD86 antibodies (Biolegend, San Diego,
CA, USA) for 30 min. Flow cytometry was performed using FACSAria (BD Bioscience,
Franklin Lakes, NJ, USA).

2.5. In Vivo OVA Release Test

Alexa Fluor 647 conjugates of OVA (A647-OVA, Molecular Probe, Eugene, OR, USA)
were used as the cancer antigen to test its in vivo release. A647-OVA (100 µg) was simply
mixed with HMS nanoparticles or HPS microparticles (0.9 mg/100 µL) in saline, and the
suspension was subcutaneously injected into the right flank of a mouse. The mice were
divided into four groups: (1) A647-OVA, (2) HMS-A647-OVA, (3) HPS-A647-OVA, and
(4) HMS-HPS-A647-OVA. A647-OVA remaining at the injection site was observed using an
in vivo imaging system (IVIS, PerkinElmer, Shelton, CT, USA) between d0 and d3.

2.6. In Vivo Anti-Tumor Test

Chicken egg OVA (Sigma-Aldrich, St. Louis, MO, USA) was used as the cancer antigen-
specific to E.G7-OVA lymphoma cells (CRL-2113™, ATCC, Manassas, VA, USA). First, OVA
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(100 µg) and Poly IC (PIC, 12.5 µg) were simply mixed with HMS nanoparticles or HPS
microparticles (0.9 mg/100 µL) in saline and subcutaneously injected into the left flank
of a mouse to elicit immune responses against OVA. The mice were divided into four
groups: (1) OVA-PIC, (2) HMS-OVA-PIC, (3) HPS-OVA-PIC, and (4) HMS-HPS-OVA-PIC.
Next, OVA (100 µg/100 µL in saline) was subcutaneously injected into the left flank of a
mouse on d120 to induce the recall of immune responses against OVA. Then, E.G7-OVA
cells (5 × 105 cells/mouse) were subcutaneously injected into the right flank of a mouse
on d124. The tumor size of a mouse was measured using a caliper. The mice showing
no formation of a tumor larger than 15 mm were considered survivors. Flow cytometry
analysis was conducted to study the mechanisms of anti-tumor immunity. Lymphocytes
from the draining lymph nodes were obtained from mice 1 month after E.G7-OVA injection
to prepare a single-cell suspension. The cells were blocked with an anti-CD16/CD32
antibody and stained with anti-mouse CD4, anti-mouse CD8α, and anti-mouse CD86
antibodies (Biolegend) for 30 min.

To further analyze the mechanisms of anti-tumor immunity provided by the different
silica particles, OVA (200 µg) and PIC (50 µg) were simply mixed with HMS nanoparticles
or HPS microparticles (2 mg/100 µL) in saline and subcutaneously injected into the left
flank of a mouse to elicit immune responses against OVA. The mice were divided into five
groups: (1) saline, (2) OVA-PIC, (3) HMS-OVA-PIC, (4) HPS-OVA-PIC, and (5) HMS-HPS-
OVA-PIC. Next, OVA (100 µg/100 µL in saline) was subcutaneously injected into the left
flank of a mouse on d104 to induce the recall of immune responses against OVA. Then,
splenocytes were collected on d109 to prepare a single-cell suspension. The cells were
blocked with an anti-CD16/CD32 antibody and stained with anti-mouse CD8a, anti-mouse
CD44, anti-mouse CD62L (Biolegend), and anti-mouse T-Select H-2Kb OVA Tetramer-
SIINFEKL (MBL) antibodies for 30 min. Moreover, the nearby draining lymph nodes were
collected on d109, and microarray analysis was performed using Agilent SurePrint G3
Mouse GE Microarray 8 × 60 K Ver. 2.0. The data were analyzed by Metascape [26]. In
addition, to confirm the safety of the suspension, major organs (heart, spleen, liver, kidney,
and lung) from group (1) saline and group (5) HMS-HPS-OVA-PIC were collected for
hematoxylin and eosin (HE) staining on d104.

2.7. Statistical Analysis

The statistical significance of differences was calculated by Student’s t test, ANOVA
with Tukey’s multiple comparisons post hoc test, or log-rank test. A p value of <0.05 was
considered statistically significant.

3. Results and Discussion

The HMS nanoparticles are about 200 nm in size with a hollow structure, and meso-
pores are about 2–6 nm in size on the shells (Figure 1a–c). The HPS microparticles are about
3–6 µm in size with hierarchical pores about 3–20 nm and 100 nm in size (Figure 1d–f).
Both the HMS nanoparticles and the HPS microparticles are composed of amorphous silica,
as shown by the XRD patterns and FTIR spectra (Figure 2a,b). The BET surface areas of the
HMS nanoparticles and HPS microparticles are 1063 ± 109 and 448 ± 52 m2/g, respectively
(Figure 2c–e). The HMS nanoparticles and HPS microparticles show zeta potentials of −6
and −7 mV in saline (pH around 5.5) and −24 and −23 mV in PBS(−) (pH around 7.4),
respectively (Figure 2f). Both HMS nanoparticles and HPS microparticles are composed of
amorphous silica and exhibited porous structures, high surface areas, and negative zeta
potentials, so their different sizes may be one of the most important factors determining
their immune response. Moreover, MS particles showed a high affinity to biomolecules.
The interactions between MS particles and biomolecules include hydrophobic interactions,
π − π stacking, electrostatic interactions, and hydrogen bonds. In a previous report, after
simply mixing tumor antigens with HMS nanoparticles, up to 68% of the tumor antigens
could be adsorbed on HMS nanoparticles. Furthermore, HMS nanoparticles prolonged the
release of biomolecules, with only 33% of adsorbed tumor antigens released in saline after
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7 days [4]. The HMS nanoparticles and HPS microparticles should be good carriers for
antigens and immunostimulatory molecules, similar to previously reported MS particles,
owing to their abundant mesopores, their high BET surface area, and the Si-OH groups on
MS particles [27–29].
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3 days after subcutaneous immunization. Mouse DC markers, including CD11c and CD86,
are used to identify DCs in this study. Mice subcutaneously injected with F-OVA, HMS-
F-OVA, HPS-F-OVA, and HMS-HPS-F-OVA show CD11c+F-OVA+ populations of 1.2%,
3.8%, 2.4%, and 1.9% around the injection site in vivo, respectively. In addition, mice
subcutaneously injected with F-OVA, HMS-F-OVA, HPS-F-OVA, and HMS-HPS-F-OVA
show CD86+F-OVA+ populations of 0.2%, 2.9%, 1.9%, and 1.3% around the injection site
in vivo, respectively. Mice subcutaneously injected with HMS-F-OVA show the highest
percentages of CD11c+F-OVA+ and CD86+F-OVA+ cells around the injection site among the
four subcutaneously injected groups in this study (Figure 3). Previous studies showed that
the delivery of F-OVA can be easily degraded under enzymatic or physiological conditions
in vivo [30], which explains why solely delivered F-OVA is not present at the injection site
(Figure 4) and is not phagocytosed by DCs (Figure 3).
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Nano-sized particles tend to be engulfed by DCs; thus, antigens and immunomod-
ulatory molecules loaded in nano-sized particles can also be efficiently internalized in
DCs [22]. Efficient vaccine component delivery to DCs is an essential step for the ini-
tiation of adaptive immune responses. This is because vaccine component delivery to
DCs promotes DC activation and maturation, enhances MHC class II presentation and
MHC class I cross-presentation to naïve T cells, and promotes the initiation of adaptive
immune responses [30]. Previous studies showed that MS nanoparticles with a diameter of
about 100 nm acted as good carriers to internalize the cancer antigen in DCs; promoted
the secretion of antigen-specific interleukin-2 (IL-2), IL-4, IL-10, interferon-γ (IFN-γ), im-
munoglobulin G (IgG), IgG1, and IgG2a; increased the number of CD4+ and CD8+ T cells
and effector memory CD4+ and CD8+ T cells; and consequently, enhanced anti-tumor
immunity in vivo [4,31].

1 
 

 

Figure 4. HPS microparticles prolonged A647-OVA retention time around injection site in vivo.
Experimental protocol (a); percentage of A647-OVA remaining at the injection site observed by an
in vivo imaging system (b,c) (n = 3, * p < 0.05). The data in d0 of b were calculated from A647-OVA,
HMS-A647-OVA, HPS-A647-OVA, and HMS-HPS-A647-OVA.
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Secondly, the HPS microparticles prolong cancer antigen retention in vivo (Figure 4).
A647-OVA remaining at the injection site was tested using an in vivo imaging system
on d0–d3. For mice subcutaneously injected with A647-OVA, the fluorescence signal
intensity decreases very rapidly 1 day after injection. However, for mice injected with HMS-
A647-OVA, HPS-A647-OVA, and HMS-HPS-A647-OVA, the fluorescent signal intensity
decreased very slowly 1–3 days after injection. Mice injected with HPS-A647-OVA showed
the highest fluorescence signal intensity among all groups 3 days after injection (Figure 4).
The percentages of A647-OVA remaining around the injection site for mice injected with
A647-OVA, HMS-A647-OVA, HPS-A647-OVA, and HMS-HPS-A647-OVA 3 days after
subcutaneous injection are 11.2%, 27.3%, 58.3%, and 41.2%, respectively (Figure 4). Mice
injected with HMS-A647-OVA and HMS-HPS-A647-OVA show lower fluorescence signal
intensity 3 days after injection than mice injected with HPS-A647-OVA (Figure 4). This is
because HMS-A647-OVA with an HMS size of 200 nm (Figure 1a–c) can be phagocytosed
efficiently by immune cells (e.g., DCs) and delivered to other parts of the body (Figure 1d–f).
These results are consistent with previously reported size-dependent immunogenicity of
particulate adjuvants [22]. Moreover, the effect of antigen release kinetics on immune
responses was shown in previous studies [3,6,32,33]. The prolonged retention of the
antigen in the injection site will enhance the recruitment and activation of APCs, which is
important for priming long-term CD8 T-cell immunity [32,33].

Lastly, the combination of HMS nanoparticles and HPS microparticles is found to
exhibit the immunological capabilities of both components and achieve long-term anti-
tumor immune responses in vivo (Figure 5). We then evaluated the longevity and efficiency
of the memory recall response in mice immunized with HMS-HPS-OVA-PIC, HMS-OVA-
PIC, HPS-OVA-PIC, and OVA-PIC after immunization with OVA on d120. Then, the mice
were challenged with E.G7-OVA cells on d124. Mice challenged with E.G7-OVA cells
124 days after a single injection of HMS-HPS-OVA-PIC show the highest survival rate
(80%) among those immunized with HMS-OVA-PIC, HPS-OVA-PIC, and OVA-PIC, which
show survival rates of 40%, 40%, and 0% at the endpoint, respectively (Figure 5a,b). Mice
immunized with OVA-PIC, HMS-OVA-PIC, HPS-OVA-PIC, and HMS-HPS-OVA-PIC show
CD4+ T cells of 17.9%, 27.2%, 30.7%, and 37.1%; CD8+ T cells of 17.9%, 20.5%, 30.5%, and
35.2%; and CD86+ cells of 7.3%, 5.9%, 7.8%, and 9.0% in draining lymph nodes of mice
at the endpoint, respectively. The data indicate that the one-shot vaccination with HMS-
HPS-OVA-PIC can definitely increase the populations of CD4+ T cells, CD8+ T cells, as well
as CD86+ cells in the draining lymph nodes (Figure S1). The activation of CD4+ T cells,
CD8+ T cells, and DCs is essential for inducing anti-tumor immune responses [34]. Poly
IC, a synthetic analog of dsRNA and an agonist of Toll-like receptor 3 (TLR3), was used to
stimulate anti-tumor immunity as an adjuvant [35]. TLR3 is widely expressed in neurocytes,
fibroblasts, immune cells, and epithelial cells [36]. Poly IC induces Th1-based anti-cancer
immunity, stimulates DC activation, increases the proliferation of antigen-specific CD4+

and CD8+ T cells, and promotes the secretion level of cytokines [37].
The anti-tumor mechanism induced by one-shot vaccination with HMS-HPS-OVA-

PIC was further studied using splenocytes collected from the vaccinated mice. One-shot
vaccination with saline (as negative control), OVA-PIC, HMS-OVA-PIC, HPS-OVA-PIC,
and HMS-HPS-OVA-PIC, respectively, show the following percentages of cells: effector
memory CD44highCD62L− cells among CD8+ T cells, 10.7%, 13.8%, 11.5%, 12.7%, and 22.8%;
tumor-specific tetramer+CD8+ T cells among splenocytes, 4.3%, 4.7%, 4.3%, 6.6%, and 7.6%.
The data indicate that the one-shot vaccination with HMS-HPS-OVA-PIC can definitely
increase the populations of effector memory CD44highCD62L− cells among CD8+ T cells and
tumor-specific tetramer+CD8+ T cells among splenocytes 109 d after vaccination (Figure 6).
Previous studies show that sustained and effective immune modulator delivery is critical
for T cell activation and memory T cell initiation [6,10–12]. The HMS nanoparticles promote
antigen cellular uptake (Figure 3) but do not significantly prolong antigen retention time
(Figure 4). On the contrary, HPS microparticles prolong antigen retention time (Figure 4)
but do not significantly promote antigen cellular uptake (Figure 3). These results also
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show that antigen retention time and cellular uptake by immune cells are both essential for
activating an effective and long-lasting immune response. These results are consistent with
previous publications [6,10–12].

To support the underlying anti-tumor mechanism of the one-shot vaccination, nearby
draining lymph nodes were collected on d109 and investigated by microarray analysis.
Microarray analysis results show that one-shot vaccination with HMS-HPS-OVA-PIC shows
the highest number of shared genes (dark orange color in Figure 7a) and unique genes
(light orange color in Figure 7a) among all groups. In contrast, one-shot vaccination with
OVA-PIC shows the lowest number of shared genes (dark orange color in Figure 7a) among
all groups. Moreover, one-shot vaccination with HMS-HPS-OVA-PIC shows markedly
increased top-level gene ontology biological processes, including response to stimulus,
localization, signaling, the metabolic process, the immune system process, and the cellular
process (Figure 7b). The microarray results are consistent with the anti-tumor results
(Figure 5b) and immune activation results (Figures 5, 6, and S1). Moreover, representative
HE-stained sections of the spleen, lung, kidney, heart, and liver of mice one-shot-vaccinated
with HMS-HPS-OVA-PIC indicate no marked histological changes compared with those of
mice vaccinated with saline (Figure 8). The results suggest that HMS-HPS-OVA-PIC at an
appropriate amount can be safely injected subcutaneously with a one-shot vaccination.
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Figure 5. HMS nanoparticles and HPS microparticles showed synergistic anti–tumor immunity
in vivo. Experimental protocol (a), survival rate of mice (b) (n = 5, * p < 0.05). HMS-HPS-OVA-
PIC immunized mice showed highest CD4+, CD8+, and CD86+ (quantitative results, (c–e)) cells in
draining lymph nodes of mice (n = 5, * p < 0.05).
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Herein, mice challenged with E.G7-OVA cells 124 d after the one-shot vaccination
with HMS-HPS-OVA-PIC show the highest anti-tumor immunity and the highest popula-
tions of effector memory CD44highCD62L– cells among CD8+ T cells and tumor-specific
tetramer+CD8+ T cells (Figures 5, 6, and S1), indicating a memory effect of anti-tumor
immune responses for at least 4 months in mice. Immunological memory was mainly found
in T cells, B cells, etc. After the elimination of the pathogen/antigen, most effector cells die,
but a small number of memory T cells, B cells remain to maintain long-term memory that
affects the specific pathogen/antigen (Scheme 1). Immunological memory is one of the core
characteristics of adaptive immune responses; it provides an enhanced and rapid immune
response to a previously encountered pathogen/antigen [38]. Moreover, most present
vaccination schedules require several administrations at set time intervals. In our previous
cancer immunoadjuvant studies using preventative and re-challenge models, mice were
generally vaccinated three to four times within 4–10 d, then challenged with tumor cells
4–19 d after the last vaccination [15,22,31,39]. Herein, one-shot vaccination with combined
micro-sized and nano-sized particles initiated long-term anti-tumor immune responses
since the adjuvant particle grading strategy combining micro-sized and nano-sized particles
balanced both the antigen retention benefits of micro-sized particles and the significant
antigen delivery benefits of nano-sized particles. Experiments directly comparing this
regime with traditional multi-immunization regimens should be further studied.
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4. Conclusions

The immune stimulation mechanisms of two types of mesoporous silica particles
(HMS nanoparticles and HPS microparticles) were illustrated in this study. The HMS
nanoparticles are about 200 nm in size with a hollow structure and mesopores of about
2–6 nm on the shells, whereas the HPS microparticles are about 3–6 µm in size with
hierarchical pores about 3–20 nm and 100 nm in size. The HMS nanoparticles enhance
antigen uptake by DCs around the immunization site in vivo. The HPS microparticles
prolong cancer antigen retention and release in vivo. Mice challenged with E.G7-OVA cells
4 months after one-shot vaccination with HMS-HPS-OVA-PIC show the highest anti-tumor
immunity and the highest CD4+, CD8+, and CD86+ cell populations in draining lymph
nodes of mice at the endpoint compared with those immunized with HMS-OVA-PIC,
HPS-OVA-PIC, and OVA-PIC. Moreover, mice with one-shot vaccination with HMS-HPS-
OVA-PIC show the highest number of effector memory CD8+ T cells and tumor-specific
tetramer+CD8+ T cells in splenocytes among all groups. Thus, the size tuning of the
adjuvant prepared by combining both HMS nanoparticles and HPS microparticles shows
the long-term anti-tumor effect of one-shot vaccination.
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