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Abstract: Typical examples of non-viral vectors are binary complexes of plasmid DNA with cationic
polymers such as polyethyleneimine (PEI). However, problems such as cytotoxicity and hemaggluti-
nation, owing to their positively charged surfaces, hinder their in vivo use. Coating binary complexes
with anionic polymers, such as γ-polyglutamic acid (γ-PGA), can prevent cytotoxicity and hemagglu-
tination. However, the role of interactions between these complexes and serum components in in vivo
gene transfer remains unclear. In this study, we analyzed the contribution of serum components to
in vivo gene transfer using PEI/plasmid DNA binary complexes and γ-PGA/PEI/plasmid DNA
ternary complexes. In binary complexes, heat-labile components in the serum greatly contribute
to the hepatic and splenic gene expression of the luciferase gene. In contrast, serum albumin and
salts affected the hepatic and splenic gene expression in the ternary complexes. Changes in physico-
chemical characteristics, such as increased particle size and decreased absolute values of ζ-potential,
might be involved in the enhanced gene expression. These findings would contribute to a better
understanding of in vivo non-viral gene transfer using polymers, such as PEI and γ-PGA.

Keywords: in vivo gene delivery; γ-polyglutamic acid; plasmid DNA; anionic polyplexes; serum com-
ponents

1. Introduction

Gene therapy has the potential for causal treatments of intractable diseases, such as
cancer and congenital genetic defects [1–3]. Advances in gene transfer technologies are
essential for the development of novel therapies. Gene transfer methods can be broadly
classified as ex vivo and in vivo methods. Although ex vivo methods have fewer ethical
issues than in vivo methods, the latter are simple because they require neither specific
equipment for cell culture nor selection of desirable cells. As gene transfer methods, viral
vectors have high gene transfer efficiency and have been subjected to numerous clinical
trials [3]; however, there are several concerns, such as immunogenicity [4,5]. Therefore,
expectations from non-viral vectors with low toxicity and easy modification are high [6].
Typical examples of non-viral vectors include complexes of plasmid DNA with cationic
polymers or liposomes. In particular, various types of polymers are used for gene de-
livery, including polyethyleneimine [7–14], poly-β-amino esters [15–18], chitosan [19–22],
and dendrimers [23,24]. These complexes have been reported to exhibit high gene ex-
pression in vitro and in vivo. These complexes are prepared with excess cations over
the anionic plasmid DNA. Their positively charged surfaces allow them to easily adhere
to negatively charged cell surfaces and efficiently introduce genes into the cells. How-
ever, aggregation with erythrocytes is problematic when these complexes are systemically
administered [25,26].
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Polyethyleneimine (PEI) is a cationic polymer that is used to form complexes with
plasmid DNA. Plasmid DNA/PEI binary complexes exhibit high gene expression both
in vitro and in vivo [7,10,12,27,28]. The binary complexes bind non-specifically to nega-
tively charged cell surfaces and aggregate with blood components, such as erythrocytes [26].
Aggregation can promote their elimination from the body and cause toxicity, including
vascular embolization and inflammatory reactions [29,30].

Several methods have been investigated to reduce cytotoxicity and hemagglutination
by coating cationic complexes with anionic substances [31–33]. Moreover, we reported
the usefulness of an anionic polymer γ-polyglutamic acid (γ-PGA) [34,35]. The ternary
complexes of γ-PGA/cationic polymer/plasmid DNA did not induce hemagglutination
and resulted in high gene expression in B16-F10 melanoma cells at a level comparable to
that of the cationic polymer/plasmid DNA binary complexes. The ternary complexes are
effective in mice, particularly in the spleen [35].

It is necessary to understand the in vivo fate of these complexes before their future
clinical use. For systemic administration, interactions between blood components and the
complexes should be considered. As cationic liposome/plasmid DNA complexes have a
positively charged surface, they electrostatically interact with negatively charged biological
components such as serum proteins and blood cells. The interaction of these complexes with
erythrocyte suspensions causes aggregation [25]. Premixing the complexes with erythrocyte
suspensions decreased gene expression in the lungs after intravenous administration
in mice, whereas pre-mixing with serum did not decrease gene expression [36]. Based
on studies using cultured cells, the interaction between complexes and serum has been
considered as an inhibitory factor for transfection using cationic liposome/plasmid DNA
complexes [37]. As serum does not inhibit lipofection in vivo [36], there are discrepancies
between in vitro and in vivo studies on the role of serum. Therefore, it is important to
analyze the role of serum components in gene transfer in vivo. Regarding the effect of serum
on PEI-based transfection, similar to liposome-based transfection, serum is considered
an inhibitory factor in cell culture conditions [38]. In this study, we analyzed the role
of serum components in gene transfer using PEI/plasmid DNA binary complexes and
γ-PGA/PEI/plasmid DNA ternary complexes in mice.

2. Materials and Methods
2.1. Materials

Bovine serum albumin (BSA; fraction V) and PEI (branched; average molecular weight,
25,000) were purchased from Sigma-Aldrich (St. Louis, MO, USA). γ-PGA (linear; average
molecular weight, 10,000–100,000) was obtained from Yakult Pharmaceutical Industry Co.,
Ltd. (Tokyo, Japan).

2.2. Animals

Five-week-old male ddY mice were purchased from Kyudo Co., Ltd. (Kumamoto,
Japan). They were housed in an air-conditioned room and allowed access to water and a
standard laboratory diet (MF, Oriental Yeast, Co., Ltd., Tokyo, Japan) ad libitum. All animal
experiments were performed in accordance with the Guidelines for Animal Experimenta-
tion of Nagasaki University (approval number: 1304171055).

2.3. Plasmid DNA

Plasmid DNA encoding firefly luciferase was constructed in a previous report [39].
The plasmid DNA was amplified in Escherichia coli (DH5α) and purified using an EndoFree
Plasmid Giga Kit (QIAGEN GmbH, Hilden, Germany).

2.4. Preparation of Binary Complexes

PEI/plasmid DNA binary complexes were prepared according to a previous re-
port [34]. Briefly, plasmid DNA in a sterile 5% glucose solution (30 µg/100 µL) was
added to PEI in a sterile 5% glucose solution (31.35 µg/100 µL, pH 7.4), and the mixture
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was incubated for 15 min at room temperature (25 ◦C). The molar ratio of PEI to plasmid
DNA in the mixture was 8.0 (nitrogen of PEI to phosphate of the plasmid DNA).

2.5. Preparation of Ternary Complexes

γ-PGA/PEI/plasmid DNA ternary complexes were prepared according to a previous
report [34]. Briefly, plasmid DNA in sterile 5% glucose solution (30 µg/66.67 µL) was
added to PEI in sterile 5% glucose solution (31.35 µg/66.67 µL, pH 7.4), and the mixture
was incubated for 15 min at room temperature (25 ◦C). Then, γ-PGA in a sterile 5% glucose
solution (70.38 µg/66.67 µL) was mixed with the PEI/plasmid DNA binary complexes,
and the mixture was incubated for 15 min at room temperature (25 ◦C) to produce γ-
PGA/PEI/plasmid DNA ternary complexes. The molar ratio of γ-PGA/PEI/plasmid
DNA in the mixture was 6.0/8.0/1.0 (carboxylate of γ-PGA/nitrogen of PEI/phosphate of
plasmid DNA).

2.6. Preparation of Serum Components

Blood was collected using a syringe with a needle from the vena cava of anesthetized
mice and allowed to clot by incubation at room temperature (25 ◦C) for 3 h. The clot-
ted blood was centrifuged (15,000× g) for 5 min to obtain serum. The serum was then
incubated for 30 min in a water bath (56 ◦C) to produce heat-inactivated serum. The concen-
tration of BSA in phosphate-buffered saline (PBS) was set to 30 mg/mL as a physiological
concentration [40].

To investigate the effects of each component, we removed certain components from
serum using ion-exchange chromatography columns. To remove anionic components, equal
volumes of serum and starting buffer (20 mM Tris/HCl buffer, 110 mM NaCl, and 2 mM
EDTA; pH 7.0) were mixed, and the mixture was applied to an anion-exchange column
(Vivapure Q, Sartorius Stedim Biotech, Aubagne, France). The column was centrifuged
(2000× g, 4 ◦C, 5 min), and the flow-through fraction was recovered. The buffer of the
fraction was replaced with PBS using a desalting column (PD-10; GE Healthcare Life
Sciences (currently Cytiva), Marlborough, MA, USA). The sample was then concentrated
using a spin column (Vivaspin 500, MWCO 10,000, Sartorius Stedim Biotech), and the
volume of the sample was adjusted to the initial volume of serum to produce QF. To remove
cationic components, equal volumes of serum and starting buffer (20 mM Tris/HCl buffer,
110 mM NaCl, 2 mM EDTA, pH 7.0) were mixed, and the mixture was applied to a cation-
exchange column (Vivapure S, Sartorius Stedim Biotech, Aubagne, France). The column
was centrifuged (2000× g, 4 ◦C, 5 min), and the flow-through fraction was recovered.
The buffer of the fraction was replaced with PBS using a desalting column (PD-10; GE
Healthcare Life Sciences (currently Cytiva), Marlborough, MA, USA). The sample was then
concentrated using a spin column (Vivaspin 500, MWCO 10,000, Sartorius Stedim Biotech),
and the volume of the sample was adjusted to the initial volume of serum to produce SF.

To investigate the effect of each component, the complexes (200 µL) were incubated
with each component (100 µL) for 5 min at 37 ◦C before administration. For control
experiments, the complexes were incubated in a 5% glucose solution.

2.7. In Vivo Gene Transfer

The complexes (30 µg of plasmid DNA) with serum components were injected intra-
venously into mice. Six hours after injection, the mice were sacrificed under anesthesia
by cervical dislocation. Each tissue sample was dissected, washed with saline, and cooled
on ice. An ice-cooled lysis buffer (0.1 M Tris/HCl buffer, 0.05% Triton X-100, 2 mM EDTA,
pH 7.8) was added to each tissue at a ratio of 4 µL/mg tissue. The tissues were homog-
enized and centrifuged (15,000× g, 4 ◦C, 5 min). The resultant supernatant (20 µL) was
mixed with luciferase substrate solution (100 µL), and the produced light was measured
using a luminometer (Lumat LB9507, Berthold Technologies, Bad Wildbad, Germany).
Luciferase activity was expressed as relative light units (RLU) per gram of tissue.
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2.8. Physicochemical Characteristics Measurement

The particle size (Z-average), polydispersity index (PDI), and ζ-potential of the com-
plexes with serum components were measured using Zetasizer Pro (Malvern Panalytical
Ltd., Worcestershire, UK).

2.9. Microscopic Image Analysis

The complexes with serum components (5% glucose (control), serum, heat-inactivated
serum, BSA in PBS, and PBS) were observed using an inverted microscope (AxioVert A1,
Carl Zeiss Microscopy GmbH, Jena, Germany) with a 20× objective lens (Plan-Apochromat,
numerical aperture 0.8, differential interference contrast mode).

2.10. Plasmid DNA Accessibility

To assess the accessibility of plasmid DNA, we performed an intercalation assay using
a dsDNA-specific dye. The ternary complexes were prepared as described above. The
ternary complexes (20 µL) were incubated with 10 µL of serum components (5% glucose
(control), serum, heat-inactivated serum, BSA in PBS, and PBS) for 5 min at 37 ◦C. Then,
2 µL of the ternary complexes with serum components were mixed with 200 µL of the
dsDNA dye (QuantiFluor ONE dsDNA System, Promega Corporation, Madison, WI, USA).
Five minutes after incubation with dsDNA dye, accessible plasmid DNA was quantified
using a Quantus Fluorometer (Promega Corporation).

2.11. Statistical Analysis

Statistical analysis was performed using one-way analysis of variance with Tukey’s
post-hoc test.

3. Results
3.1. Effect of Interaction with Serum on In Vivo Transfection Using Binary Complexes

To investigate the effect of the interaction with serum on in vivo transfection using
PEI/plasmid DNA binary complexes, we incubated the complexes with serum or heat-
inactivated serum before intravenous injection into mice (Figure 1). Incubation of the
complexes with serum before administration greatly enhanced gene expression of the
luciferase gene in the liver, spleen, and lung. In contrast, heat inactivation of the serum
diminished the enhancing effects of the gene expression.

Figure 1. Effect of the interaction with serum on in vivo transfection using PEI/plasmid DNA binary
complexes. The binary complexes were incubated with 5% glucose solution (control), serum, or
heat-inactivated serum (h.i.a serum) before intravenous injection into mice. Transfection efficiencies
6 h after injection are shown. Each bar represents the mean + S.D. of at least 4 replicates. **, ***
indicate statistical differences vs. control (p < 0.01, 0.001, respectively). #, ##, ### indicate statistical
differences vs. h.i.a. serum (p < 0.05, 0.01, and 0.001, respectively).
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3.2. Effect of Interaction with Serum on In Vivo Transfection Using Ternary Complexes

Furthermore, we investigated the effect of the interaction with serum on in vivo
transfection using γ-PGA/PEI/plasmid DNA ternary complexes (Figure 2). Incubation of
the complexes with serum before administration greatly enhanced the gene expression in
the liver, spleen, and lungs. Although heat inactivation of serum completely diminished the
enhancing effects of the binary complexes on the gene expression, it retained the enhancing
effects in the ternary complexes.

Figure 2. Effect of interactions with serum on in vivo transfection using γ-PGA/PEI/plasmid DNA
ternary complexes. The ternary complexes were incubated with a 5% glucose solution (control),
serum, or heat-inactivated serum (h.i.a serum) before intravenous injection in mice. Transfection
efficiencies 6 h after injection are shown. Each bar represents the mean of +S.D. at least 4 replicates.
**, *** indicate statistical differences vs. control (p < 0.01, 0.001, respectively).

3.3. Effect of Separation of Serum Components on the Enhancing Effects of the Gene Expression for
Ternary Complexes

Next, we analyzed the serum components that affected the gene expression. Anion-
and cation-exchange columns were used to remove the cationic and anionic components
from the serum, respectively (Figure 3). Even after removing anionic and cationic com-
ponents, the gene expression in the liver and spleen did not decrease, whereas the gene
expression in the lungs decreased, compared with that in the serum group. Thus, common
components of QF and SF may contribute to the enhancement of gene expression.

Figure 3. Effect of interactions with separated serum components on in vivo transfection using
γ-PGA/PEI/plasmid DNA ternary complexes. The ternary complexes were incubated with serum,
anion-exchange column flow through the QF, or cation-exchange column flow through the SF before
intravenous injection in mice. Transfection efficiencies 6 h after injection are shown. Each bar
represents the mean + S.D. of at least 4 replicates. *, *** indicate statistical differences vs. serum
(p < 0.05, 0.001, respectively). # indicates statistical differences vs. QF (p < 0.05).
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3.4. Effect of BSA and PBS on the Enhancing Effects of the Gene Expression for Ternary Complexes

As serum albumin may be a major component of both QF and SF, we tested the effect
of BSA on the enhancing effects of the gene expression (Figure 4). BSA was dissolved in
PBS. The enhanced effects of the gene expression in the liver and spleen were reproduced
by incubation of the ternary complexes with BSA in PBS, whereas the gene expression in
the lungs did not change after incubation with BSA.

Figure 4. Effect of interactions with BSA on in vivo transfection of γ-PGA/PEI/plasmid DNA ternary
complexes. The ternary complexes were incubated with a 5% glucose solution (control), serum, or
BSA in PBS before intravenous injection into mice. Transfection efficiencies 6 h after injection are
shown. Each bar represents the mean + S.D. of at least 4 replicates. *, *** indicate statistical differences
vs. control (p < 0.05, 0.001, respectively). ### indicates statistical differences vs. serum (p < 0.001).

Subsequently, we focused on the effects of the ionic solutions. The ternary complexes
were incubated with phosphate-buffered saline (PBS) as an ionic solution before admin-
istration (Figure 5). The enhancing effects of PBS on the gene expression in the liver and
spleen were slightly lower than those of BSA in PBS and serum (Figures 4 and 5); however,
the gene expression levels in the liver and spleen of the PBS group were higher than those
in the control group. Inversely, incubation of the ternary complexes with PBS decreased
the gene expression in the lungs.

Figure 5. Effect of incubation with PBS on the in vivo transfection of γ-PGA/PEI/plasmid DNA
ternary complexes. The ternary complexes were incubated with a 5% glucose solution (control), BSA
in PBS, or PBS before intravenous injection into mice. Transfection efficiencies 6 h after injection are
shown. Each bar represents the mean + S.D. of at least 4 replicates. *, ** indicate statistical differences
vs. control (p < 0.05, 0.01, respectively). # indicates statistical differences vs. BSA in PBS (p < 0.001).
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3.5. Effect of Incubation with Serum Components on the Physicochemical Characteristics of the
Ternary Complexes

Finally, we investigated the effects of incubation with serum components on the
physicochemical characteristics of the ternary complexes (Figure 6). Incubation of the
ternary complexes increased their particle size and PDI. In the case of heat-inactivated
serum, the particle size remained unchanged, whereas PDI increased significantly. In both
the BSA in PBS and PBS groups, particle size and PDI increased significantly. Regarding
the ζ-potential, incubation of the ternary complexes decreased the absolute values of all
groups compared to the control group.

Figure 6. Effect of incubation with serum components on the physicochemical characteristics of
the γ-PGA/PEI/plasmid DNA ternary complexes. (a) Particle size (bars) and PDI (circle dots).
(b) ζ-potential. Each bar and dot represent the mean + S.D. of 3 replicates. *** indicates statistical
differences vs. control for size and ζ-potential (p < 0.001). #, ### indicate statistical differences vs.
control for PDI (p < 0.05, 0.001, respectively).

An increase in particle size after the interaction of the ternary complexes with the
serum components was also observed by microscopy (Figure 7). In the control group
(incubation with 5% glucose), some visible particles were observed, indicating the presence
of large particles over the diffraction limit. Incubation of the ternary complexes with serum
slightly increased the size of the ternary complexes. Heat inactivation of serum tended
to increase the number of large particles, consistent with the increase in PDI. Incubation
of the ternary complexes with BSA in PBS increased the particle size compared with the
control group. Incubation of the ternary complexes with PBS further increased the size and
number of large particles. Large particles, approximately 10 µm in size, were observed in
the PBS group. In addition, the particles after incubation with serum components were
still spherical.

To further evaluate the effect of serum components on the physicochemical properties
of the ternary complexes, we analyzed the accessibility of plasmid DNA in the ternary
complexes after incubating the complexes with serum components (Figure 8). In the
control group (incubation with 5% glucose), 16% of the plasmid DNA in the complexes
was accessible. Incubation with serum, heat-inactivated serum, or BSA in PBS did not
significantly change plasmid DNA accessibility. In contrast, incubation of the ternary
complexes with PBS significantly decreased the amount of accessible plasmid DNA.
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Figure 7. Microscopic images of the γ-PGA/PEI/plasmid DNA ternary complexes after incubation
with serum components. The ternary complexes were incubated with (a) 5% glucose (control),
(b) serum, (c) heat-inactivated serum, (d) BSA in PBS, and (e) PBS. Scale bar: 20 µm.
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Figure 8. Effect of incubation with serum components on plasmid DNA accessibility in the γ-
PGA/PEI/plasmid DNA ternary complexes. The ternary complexes were incubated with 5% glucose
solution (control), serum, heat-inactivated serum (h.i.a serum), BSA in PBS, or PBS for 5 min at
37 ◦C, and then accessible plasmid DNA was quantified. The total amount of plasmid DNA in the
complexes was 100 ng/µL. Each bar represents the mean + S.D. of 3 replicates. *** indicates statistical
differences vs. control (p < 0.001).

4. Discussion

Tremendous efforts have been made to understand the mechanisms underlying gene
transfer. These mechanisms include interactions with blood components, cellular associ-
ation and uptake, endocytic routes, endosomal escape, cytosolic and nuclear transport,
and dissociation of cargo from carriers [41]. In this study, we focused on the interaction of
complexes with blood components as the first step in in vivo gene transfer.

The effects of interaction with serum on the gene expression were similar for both
the binary and ternary complexes (Figures 1 and 2). However, heat inactivation of serum
produced different results for the binary and ternary complexes. The results for the binary
complexes were similar to those for the cationic liposome/plasmid DNA complexes [39,42].
Heat-labile components such as complements would contribute to in vivo gene transfer.
In the case of the cationic liposomes, the interaction between the cationic liposomes and
fibronectin contributed to the enhanced gene expression in first-pass organs [39,42]. In
this study, we administered the binary complexes intravenously; therefore, the first-pass
organ was the lung. However, the gene expression was enhanced not only in the lung
but also in the liver and spleen. Another possibility is the effect of interactions with the
complements. In the case of the cationic liposomes, complement component C3 enhances
the hepatic gene expression after intraportal administration [42]. It is still unclear whether
electrostatic interactions occur between the binary complexes and fibronectin/complement
component C3. In contrast, heat inactivation of serum did not diminish the enhancing effect
of serum on the gene expression (Figure 2). Because the ζ-potential of the ternary complexes
was strongly negative, the cationic components in serum might electrostatically interact
with the ternary complexes. To elucidate the effect of electrostatic interactions with serum
components, we used ion-exchange columns to deplete cationic and anionic components
from serum. The depletion of cationic components from the serum using a cation-exchange
column produced results different from those of the anionic component-depleted serum
(Figure 3). Cationic components may have positive effects on the hepatic gene expression,
whereas cationic components may have negative effects on the splenic gene expression.
However, the depleted serum of cationic and anionic components still possessed a high
transfection efficiency. Therefore, we analyzed the components that contributed to gene
transfer and found that serum albumin and salts in the buffer contributed to the enhanced
effects on the liver and spleen (Figures 4 and 5). In the case of the lungs, incubation with
serum albumin and PBS did not increase the gene expression; therefore, components other
than albumin and salts likely contributed to the enhanced effects in the lungs.
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Both serum albumin and salts are abundant in blood. The reason why incubation of the
ternary complexes with albumin and salts before administration enhanced the gene expres-
sion remains unclear. The major difference between the control and incubation groups (BSA
in PBS and PBS groups) was the presence or absence of erythrocytes during the interaction
with albumin and salts. In the case of cationic binary complexes, such as PEI/plasmid
DNA and cationic liposome/plasmid DNA complexes, incubation of the binary complexes
with serum components before administration may inhibit electrostatic interactions with
erythrocytes in vivo. However, the ζ-potentials of the ternary complexes were negative,
and it was unlikely that the ternary complexes electrostatically interacted with negatively
charged erythrocytes. One possible reason for the enhanced gene expression is the increase
in particle size (Figures 6a and 7), which may increase the tissue retention time owing
to reduced Brownian motion. In addition to reduced Brownian motion, filtration by the
reticuloendothelial system may increase accumulation in the liver and spleen. Microscopic
images (Figure 7) indicated that the number of large particles increased owing to the
interaction with serum components. This was consistent with the increase in the PDI
(Figure 6a). Large particles might be advantageous for endosomal escape by ensuring the
time before the fusion of endosomes with lysosomes. The increased gene expression in
the spleen and liver might be related to the increased number of large particles. Such size
effects have also been reported for cationic liposomes in vitro and in vivo [43–46]. Another
possibility might be the decreased absolute values of ζ-potential by the incubation with
serum components (Figure 6b); this weakens the electrostatic repulsion between the ternary
complexes and cells. The addition of salts to complexes such as cationic liposome/plasmid
DNA complexes changes their structures [47]. These structural changes may concertedly
contribute to these enhancing effects. Plasmid DNA accessibility in the ternary complexes
was decreased by incubation with PBS, whereas incubation with serum, heat-inactivated
serum, or BSA in PBS did not significantly change the accessibility (Figure 8). Recently,
we found that plasmid DNA accessibility was positively correlated with the transfection
efficiency of different cationic liposome/plasmid DNA complexes prepared under various
conditions, in terms of liposomal size and temperature [48]. Therefore, there was a discrep-
ancy between the ternary complexes and cationic liposome/plasmid DNA complexes in
terms of the relationship between plasmid DNA accessibility and transfection efficiency.
Since incubation of the ternary complexes with serum components did not increase plasmid
DNA accessibility, the stability of the ternary complexes in serum may be good. The good
stability might partially contribute to the enhanced gene expression in the spleen and liver.

In this study, we analyzed the effects of serum components on in vivo gene transfer in
normal mice. Gene therapy will be performed under diseased conditions; therefore, the
roles of serum components under diseased conditions may differ from those under normal
conditions. In the case of cationic liposomes, fibronectin contributes to the pulmonary gene
expression in normal mice [39]. In contrast, incubation with serum albumin before admin-
istration greatly enhances the gene expression in the lungs, liver, and spleen of hepatitis
mice [49]. This effect of serum albumin may be attributed to changes in body condition,
such as a slightly lower pH than the physiological value. Therefore, it is preferable to
investigate the effects of serum components on in vivo gene transfer under both diseased
and normal conditions.

The availability of the technique of incubating the complexes with serum components
to enhance in vivo gene transfer might be limited as follows. The use of autologous serum
for incubation with the ternary complexes before administration is cumbersome. Serum
albumin and PBS might be more suitable because of their ease of preparation. However,
the sizes of the particles were larger than that of the serum group. The shapes of the
ternary complexes after incubation with serum components were spherical (Figure 7). This
feature might be preferable, especially for large particles, to prevent capillary embolization.
However, the maximum size of the particles was observed near the erythrocytes. A
reduction in particle size while maintaining the enhanced gene expression based on the
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adjustment of salt concentration may be possible. This possibility will be pursued in the
near future.

Biomolecules, such as γ-PGA, have diverse applications [50]. In addition to DNA,
siRNA and mRNA can also be delivered using γ-PGA [51–53]. Other anionic biomolecules
include hyaluronic acid [54–58], polynucleotides [59], and chondroitin sulfate [60,61]. The
effects of biological components, such as serum, may differ among biomolecules in addition
to administration routes. To better understand the use of these biomolecules, it is necessary
to elucidate the effects of biological components on their efficacy and biodistribution.

In conclusion, thermosensitive components in the serum may be responsible for the
increased gene expression of PEI/plasmid DNA binary complexes in the liver and spleen. In
contrast, salts in serum might alter γ-PGA/PEI/plasmid DNA ternary complex-mediated
transfection, especially in the spleen. Changes in the physicochemical characteristics of the
complexes may contribute to their gene-expression-enhancing effects. This study provides
basic information for the further development of effective gene delivery carriers.
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