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Abstract: There is a growing trend among consumers to seek out natural foods and products with
natural ingredients. This shift in consumer preferences had a direct impact on both food and
pharmaceutical industries, leading to a focus of scientific research and commercial efforts to meet
these new demands. The aim of this work is to review recent available scientific data on foods of
interest, such as the artichoke, gooseberry, and polygonoideae plants, as well as olive oil and red
raspberries. Interestingly, the urgency of solutions to the climate change emergency has brought
new attention to by-products of grapevine bunch stem and cane, which have been found to contain
bioactive compounds with potential health benefits. There is a pressing need for a faster process of
translating scientific knowledge from the laboratory to real-world applications, especially in the face
of the increasing societal burden associated with non-communicable diseases (NCDs), environmental
crises, the post-pandemic world, and ongoing violent conflicts around the world.

Keywords: by-products; berries; artichoke; grapevine; gooseberry; polygonoideae plants; olive
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1. Introduction

Immune-mediated inflammatory diseases (IMIDs) affect 3–7% of the developed
world’s population and include approximately 80 conditions (such as multiple sclero-
sis, arthritis, inflammatory bowel disease, and psoriasis, amongst others), with increasing
prevalence [1].

A fundamentally new thinking and methodology that shifts this field from being
mainly centred on clinical signs and symptoms to one more centred on immunological and
molecular mechanisms is urgently required. For this, a new paradigm is necessary. IMIDs
may be handled as having shared common pathogenic cells and pathways, and therapeutic
efforts ought to be directed at these cells and processes instead of at clinical features and/or
symptoms [2].

Typical types of healthcare service provided for these diseases focus their management
within different medical specialties that are mostly disease-specific (such as neurology,
rheumatology, gastroenterology, dermatology), and within these disciplines, the manage-
ment may be further divided into either adults or paediatric care. Patients with a disease in
one organ (let us consider the gut, for instance) oftentimes exhibit co-morbidity in other
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organs (such as the skin, the eyes, or the joints), indicating that shared pathophysiologic
processes are being simultaneously triggered across multiple organs [3]. Anti-tumour
necrosis factor (TNF)-based treatments were introduced in clinics more than two decades
ago and have demonstrated effectiveness in several IMIDs, from arthritis to Crohn’s disease
to psoriasis [4]. Nevertheless, with the increased use of these agents, there have been re-
ports of paradoxical events, such as psoriasiform and eczematous skin lesions, arthralgias,
arthritis, sarcoid-like disease or sarcoidosis, generalized alopecia, or cutaneous vasculitis.
Some of these characteristics are similar to the ones of the underlying disease for which
these drugs are prescribed, making the control of these situations quite challenging [5]. Ad-
verse reactions to anti-TNF agents may require a cessation of therapy in 5–10% of patients,
depending on the underlying mechanism of the adverse reaction and its severity [5]. It
should be mentioned that additional targeted therapies have been authorised in subsequent
years. Still, many patients with a particular clinically defined IMID will unsuccessfully
respond to any specific targeted mechanism of action [6]. This can be justified, in part, as
each clinically defined IMID is, most of the time, a heterogeneous syndrome instead of a
molecularly defined disease entity [6].

Thus, one possible way to improve disease outcomes at a populational level considers
a precision medicine approach driven by a diagnostic biomarker based on the molecular
mechanisms that operate in individual patients within each disease category. An alter-
native form of increasing patient responsiveness would be to design innovative targeted
therapeutics that target more global processes common across various chronic IMIDs [7].
Yet another possible approach could be one where inflammation is reduced or even “turned
off” by harnessing the common mediators involved in the resolution of inflammation
across various IMIDs, instead of merely suppressing inflammation [8]. In this regard, our
diet could be an adjuvant tool of interest, where foods—as sources of antioxidants acting
by different mechanisms of action—could help in fighting oxidative stress known to be
present in chronic inflammatory diseases [9–11]. Research investigating the connection
between dietary intake and the risks of mortality from all causes and specifically from breast
cancer in a prospective cohort of breast cancer survivors proposed that a post-diagnosis
diet with anti-inflammatory properties could reduce the risk of both breast cancer and
all-cause mortality among individuals who have survived breast cancer. There was a
difference in these risks by follow-up period, and the protective effects of consumption
of an anti-inflammatory diet on the prognosis of breast cancer increased in cases with
long-term follow-ups. Following the clinical diagnosis of breast cancer, adopting a rich
anti-inflammatory diet was linked to enhanced overall survival and specific survival related
to breast cancer [12].

Further elaborating on the above, grapes, strawberries, raspberries, and nuts are
sources of ellagic acid (EA), a phenolic compound, shown in Figure 1. EA is a dietary
phenolic compound that has demonstrated the ability to attenuate oxidative stress and
chemical carcinogenesis. EA suppressed cytotoxic T lymphocyte activity and Immunoglob-
ulin M (IgM) antibody responses [13]. Another example is gallic acid (GA), which comes
from a wide range of vegetal food sources and can be found in most fruits and plants,
shown in Figure 1. GA has received increasing attention in recent years for its powerful
anti-inflammatory properties and antioxidant activities [14]. The robust anti-inflammatory
activity of GA could be used to treat a variety of inflammation-related diseases [15]. It is
extensively discussed in the literature of this field [14–18]. Other bioactive compounds from
vegetal sources have also been discussed and studied, claiming the same health benefits
and related antibacterial, cardioprotective, anti-cancer, and anti-inflammatory effects, as
well as immune system stimulating and skin protective effects [11,19].

Some weaknesses regarding the extraction efficiency and bioavailability of phyto-
chemicals are discussed as well. In this regard, the dosages were also assessed, and a
study that used sub-chronic exposure to EA for 28 days in B6C3F1 mice, which is greater
than the estimated human daily intake (approximately 940 µg/day for a 70 kg person or
13.4 µg/kg/day), was also evaluated. It was concluded that these concentrations would
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not be excessive if EA were used as a dietary supplement, chemotherapeutic agent, or
preventative dietary supplement for cancer [20].
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Figure 1. The chemical structure of some phenolic compounds.

A personalised diet as part of a holistic personalised medicine approach needs exten-
sive and rigorous knowledge about bioactive compounds present in food. This current re-
view seeks to investigate recent work that adds new data to the current body of knowledge
that the scientific community has gathered regarding some fruits, plants, and vegetables
rich in phenolic compounds with beneficial health impacts, having been tested in in silico,
in vitro, and in vivo models of disease such as diabetes, liver injury, and hepatocarcinoma,
the regenerative capacity of fibroblasts, Alzheimer disease, and metabolic syndrome, the
later also in a clinical trial, thus answering the question: which are the most recent advance-
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ments in the pharmaceutical roles and mechanisms of action of plant-derived bioactive
compounds, including plant waste?

2. Ellagic Acid (EA) and Neurologic Protection

An in vivo model of Diabetes mellitus (DM) in male Wistar rats that were adminis-
tered with vehicle, insulin, or EA (50 mg/kg/day) for eight consecutive weeks exhibited
that chronic EA administration lessened anxiety/depression-like behaviours, enhanced
exploratory/locomotor activities, and improved cognitive deficits in diabetic rats [21].

Chronic hyperglycaemia in DM may result in neurodegeneration, brain atrophy, brain
aging, and a higher probability of a wide range of behavioural and psychiatric disorders
such as stress, depression, anxiety, and locomotor and cognitive impairments [22–25]. The
total spectrum of processes through which diabetes might mediate these damages is not
yet evidently characterised. Nonetheless, it would seem that mitochondrial dysfunction,
altered neurogenesis, neuroinflammation, neurotransmitters’ changes, oxidative stress
impairments, neuronal apoptosis, loss of neurotrophic support, and dysfunction of cell
signalling pathways all contribute to the pathophysiology of brain damage and behavioural
deficits related to diabetes [24–27].

The work of Farbood and colleagues demonstrated diminished blood glucose levels,
enhanced neurotrophic support, and improvements in neuronal loss in diabetic rats chroni-
cally administered with EA; it also reduced anxiety/depression-like behaviours, enhanced
exploratory/locomotor activities, and ameliorated cognitive deficits in tested diabetic rats.
EA treatment improved behavioural deficits and counteracted neuronal loss, at least to
the same level as insulin therapy, which may be instigated by a decrease in blood glucose
level, modulation of inflammation status (reduced TNF-α and IL-6 and raised IL-10), and
an increase in tissue levels of the neurotrophic factors (NGF, BDNF, IGF-1) in diabetic rats.
It looks as if the potent anti-inflammatory, anti-hyperglycemic, and neurotrophic charac-
teristics of EA are potential mechanisms for its positive effects against diabetes-associated
behavioural deficits in rats [21].

Artichoke (Cynara scolymus) contains nutrients that are known to provide various
health benefits [28]. Three principal phenolic compounds (PCs) are found in the ethanol
extract of Egyptian artichoke waste: EA, caffeine, and benzoic acid [29]. The safety profile
of artichoke by-product (ABP) extract was reported in a previous study [29], where the
safety of artichoke extract for rats, even at high concentrations (5 g/kg), was demonstrated.
Recently, Abd El-Aziz and colleagues explored artichoke by-product extracts, identifying
the extracts’ bioactive compounds, and investigated their antioxidant and anticholinesterase
activity. The binding of EA and caffeine to the active site of human acetylcholinesterase
(AChE) was also investigated by molecular modelling [30]. This approach is helpful
regarding the interactions of targets and ligands by computer simulation of a biological
environment [31].

Abd El-Aziz and colleagues recognised the existence of 60 PCs in artichoke by-
product extract. The most abundant phenolic compounds detected were benzoic acid
(589.91 mg/100 g extract), ellagic acid (573.07 mg/100 g extract), and caffeine
(382.03 mg/100 g extract). Also, gallic acid and syringic acid at concentrations of 0.45
and 70.63 mg/100 g extract, respectively. Other compounds were identified, such as
catechol (23.64 mg/100 g extract), vanillic acid (11.24 mg/100 g extract), ferulic acid
(25.10 mg/100 g extract), and o-coumaric acid (23.62 mg/100 g extract) [30], among other
phenolic compounds [30], shown in Figure 1.

The total phenolic compounds (TPCs) concentration was 193.63 ± 2.34 µg gallic acid
equivalents (GAEs)/mg dry extract, flavonoids 71.43 ± 1.12 µg quercetin equivalent/mg
dry extract, tannins 0.038 ± 0.001 µg/mg, triterpenoids 13.49 ± 0.15 µg/mg, and sulphide
polysaccharide 115.612 ± 5.34 µg/mg [30].

Chemical analyses of antioxidant activities of artichoke by-product extract were per-
formed applying the 1,1-diphenyl-2-picryl hydrazyl (DPPH).. EA, benzoic acid, caffeine,
and donepezil (Figure 2) were evaluated, and the results demonstrated that DPPH radical
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scavenging activity increased in a dose-dependent manner. The antioxidant activity of EA
was highest, followed by benzoic acid, caffeine, total artichoke by-product extract, and
finally donepezil, with IC50 values of 16.97 ± 0.19, 26.0 ± 0.57, 27.28 ± 1.2, 31.04 ± 0.97,
and 133 ± 4.5 µg/mL, respectively [30], shown in Table 1.
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Table 1. The phytochemical characterisation of artichoke by-product extract, and the antioxidant
activities measured through DPPH assay [30].

Compound Concentration

Benzoic Acid 589.91 mg/100 g extract
Ellagic Acid 573.07 mg/100 g extract

Caffeine 382.03 mg/100 g extract
Gallic Acid 0.45 mg/100 g extract

Syringic Acid 70.63 mg/100 g extract
Catechol 23.64 mg/100 g extract

Vanillic Acid 11.24 mg/100 g extract
Ferulic Acid 25.10 mg/100 g extract

o-Coumaric Acid 23.62 mg/100 g extract
Tannins 0.038 ± 0.001 µg/mg

Triterpenoids 13.49 ± 0.15 µg/mg
Sulphide Polysaccharide 115.612 ± 5.34 µg/mg

Antioxidant Activity IC50
Ellagic acid 16.97 ± 0.19 µg/mL

Benzoic Acid 26.0 ± 0.57 µg/mL
Caffeine 27.28 ± 1.2 µg/mL

Total Artichoke By-product Extract 31.04 ± 0.97 µg/mL
Donepezil 133 ± 4.5 µg/mL

Brain AChE inhibition was tested in vitro to determine the efficiency of artichoke by-
product extract and selected phenolic compounds (benzoic acid, ellagic acid, and caffeine)
in inhibiting AChE activity. This enzyme is hyperactivated in Alzheimer’s disease (AD).
The inhibitory concentrations (IC50) of caffeine, EA, artichoke by-product extract, and
donepezil were 1.013 ± 0.001, 1.927 ± 0.025, 5.705 ± 0.0157, and 0.0034 ± 0.0 mg/mL,
respectively [30]. The in vitro tests of enzymatic kinetics revealed that artichoke by-product
extract, EA, and caffeine have AChE inhibitory activity, although they are less effective
than donepezil (donepezil is commonly used for AD treatment) at the same concentrations
(1 mg/mL). Moreover, artichoke by-product extract and EA were found to inhibit AChE
activity in a competitive manner (Km values increased by 1.20- and 1.80-fold, respectively,
with no change in Vmax values). Caffeine inhibited AChE activity in a non-competitive
manner (Vmax value decreased by 1.39-fold, with no change in Km value) [30], shown
in Figure 3. The authors, however, reported that, to date, they did not have literature
to compare these results because no previous studies have reported the mechanism of
inhibition of artichoke by-product extract and EA on AChE activity [30].
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Figure 3. Effect of phenolic compounds (benzoic acid, ellagic acid (EA), and caffeine) obtained
from artichoke by-product extract in inhibiting acetylcholinesterase (AChE) activity. This enzyme is
hyperactivated in Alzheimer’s disease (AD). AChE catalyses the hydrolysis of acetylcholine to acetate
and choline (Ch). Acetylcholine (Ach) levels are low in AD brains and cholinergic neurotransmission
is disrupted. Inhibitors of AChE mitigate these shortfalls, raising the concentration of ACh that
persists in the synaptic cleft, and interact with the receptors on the postsynaptic side. The in vitro
tests of enzymatic kinetics revealed that artichoke by-product extract, EA, and caffeine have AChE
inhibitory activity, although they are less effective than donepezil (donepezil is a drug commonly
used for AD treatment). Artichoke by-product extract and EA were found to inhibit AChE activity in
a competitive manner and caffeine inhibited AChE activity in a non-competitive manner [30].

At this point, the authors tested ellagic acid, caffeine, and acetylcholine in a docking
study against human AChE; donepezil was used as the positive control. In silico docking
analyses of caffeine and EA against Homo sapiens AChE predicted variable hydrogen
binding with higher binding energy than the native substrate (acetylcholine). The standard
drug donepezil interacted with AChE binding-site residues SER 203, HIS 447, TYR 124, and
TYR 465. The residues where EA binds to AChE were HIS 447, ARG 463, ARG 296, GLU 81,
TYR 124, SER 293, and VAL 132. Caffeine binds to AChE at ARG 463, PHE 295, VAL 132,
and SER 203 residues, as predicted by Abd El-Aziz and colleagues in in silico docking
studies. The binding energy (∆G) values of the tested ligands were −9.47, −6.07, −9.39,
and −5.69 for donepezil, caffeine, EA, and acetylcholine, respectively [30]. According
to these data, EA had the largest inhibitory potential of the tested ligands, followed by
caffeine [30]. The EA’s neuroprotective effects and anti-neurodegenerative events are due
to its mitochondrial protective effect, antioxidant effect, and iron chelating [32]. The work
of Abd El-Aziz and colleagues proves that EA activity in the protection of brain tissue in
AD goes beyond antioxidant effects.

Abd El-Aziz and colleagues [30] discussed that due to the key role of anti-acetylcholinesterase
in AD treatment, artichoke extract and artichoke by-products extract and its phenolic com-
pounds could be a good choice for developing a food supplement to complement the
pharmacological management of AD or for protecting brain tissues [30].



Pharmaceutics 2024, 16, 577 7 of 26

However, these conclusions were based on chemical results and in vitro and in silico
tests with artichoke by-products extract and phenolic compounds. More tests exploring the
toxicological profile of this extract and its phenolic compounds, including the effective and
safe doses in different cell lines and in vivo use, are necessary to reach further conclusions
and discover the impact on managing AD.

The in vivo study of Harakeh and colleagues investigated the effects of EA and EA-
loaded nanoparticles (EA-NPs) on neurotoxicity in an aluminium chloride-induced AD rat
model. Brain antioxidant biomarkers such as lipid peroxidation, total antioxidant activity,
catalase, and glutathione were evaluated. The results showed that the increase in these
antioxidant biomarkers was significant and indicated decreased thiobarbituric acid (TBA)
in the EA-loaded nanoparticles (EA-NPs) group. The other studied groups included the
healthy group, the AD rat model administered AlCl3 (50 mg/kg), the group that received
EA, the group that received EA-NP, the AD + EA group, and the AD + EA-NP group, which
was administered with EA and EA-NPs, respectively [33]. The discrimination index was
evaluated in the behavioural test, and it grew more in animals treated with EA-NPs. Senile
plaques in AD rats’ brains, AD vacuolation of the neurons, neurofibrillary tangles, and
chromatolysis were reduced, and refurbishment of Nissl granules was detected [33].

The in silico molecular docking study of Abd El-Aziz and colleagues demonstrating
the EA anti-acetylcholinesterase activity in AD treatment [30] and the in vivo study of
Harakeh and colleagues with EA-loaded nanoparticles in an AD rat model [33] bring
evidence to the possible effect of EA on AD management, as well in protection against
diabetes-associated behavioural deficits in rats [21], shown in Figure 4.
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3. Red Raspberries (Rubus idaeus L.) and the Metabolic Syndrome

Red raspberries (Rubus idaeus L.) are fruits with an array of bioactive phytochem-
icals and nutrients such as phenolic compounds (PCs) and vitamins (A and C) [34,35].
Between these phytochemicals, ellagitannins and anthocyanins have gained a lot of interest
because of their bioactivity and abundance. A Fresh Weight (FW) of 8–164 mg/100 g
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is the ellagitannins concentration range [36], 22–350 mg/100 g (FW) is the anthocyanins
content [37], and the flavonols content is less than 10 mg/100 g (FW); they are not the
principal raspberry PCs [37]. These values depend on the cultivar and geographical envi-
ronment [37], extraction protocols, and variations in the quantification methodologies used
to determine content.

The research regarding the metabolic behaviour of phytochemicals of raspberry extract
(RE) with low sugar and high anthocyanins was studied in the work of Hao and colleagues.
An in vitro digestion model was used, where gastrointestinal fluid and gastric fluid were
prepared. Faeces from four volunteers were used to anaerobically incubate the digested
sample obtained from the in vitro gastrointestinal digestion. The changes in 30 phenolic
compounds in RE before and after in vitro digestion were qualitatively and quantitatively
measured using high-performance liquid chromatography–mass spectrometry (HPLC-MS)
technology [38].

Quantitatively, the HPLC-MS analysis revealed that the 30 major phenolic compounds
obtained remained relatively stable in gastric fluid, but their levels rapidly declined in
both gastric-to-intestinal and colonic fluids. Among these compounds, 61.1% of the total
phenolic compounds content (TPCs) was attributed to five anthocyanins, with those bound
to glucose or having two hydroxyl groups on the B-ring being metabolized more swiftly.
Ellagic acid, constituting 17.7% of TPCs, underwent rapid conversion to urolithin B and
urolithin C in colonic fluid. Notably, urolithin C exhibited the highest antioxidant activity
among all EA metabolites, as determined by the DPPH assay. The metabolic behaviour of
phenolic compounds was primarily affected by pH and intestinal microbiota [38]. Under
the influence of mild alkaline conditions, digestive enzymes, and intestinal microbiota,
certain EAs and anthocyanins underwent processes such as hydrolysis, C-ring cleavage, re-
duction, and catalysis, resulting in the formation of a diverse range of low-molecular-weight
aromatic acids. These included compounds such as phenylacetic acid, phenylpropionic
acid, derivatives of benzoic acid, and urolithins [38].

As a whole, in vitro and ex vivo investigations carried out with red raspberry (Rubus
idaeus L.) extracts or purified components have shown various antioxidative, anti-inflammatory,
and metabolic characteristics through which red raspberry (Rubus idaeus L.) components
could facilitate treatment or improve immune–metabolic abnormalities [39,40]. Various
in vivo studies have validated these beneficial effects with both red raspberry (Rubus
idaeus L.) components and the entire fruit [41–43]. Additionally, a number of these find-
ings revealed the immunomodulatory impacts of red raspberry (Rubus idaeus L.) phenolic
compounds [20,44].

A randomized controlled clinical trial to investigate the health effects of red raspberry
(Rubus idaeus L.) consumption on immune–metabolic features in 59 subjects who were over-
weight or had abdominal obesity and with minor hyperinsulinemia or hypertriglyceridemia
was performed by Franck and colleagues [45]. Caucasian subjects were randomized to
consume 280 g/day of frozen raspberries (roughly 2 cups) or to maintain their usual diet
(control group) for 8 weeks. Twenty-nine participants were randomized to the red raspberry
(Rubus idaeus L.) group and thirty to the control group. Those participating were required
to stay away from the use of supplements, natural health products, wine, or products with
a phenolic profile like the one of Rubus idaeus L. and to limit the consumption of berries
other than those offered and any other products that contained berries to 2 portions per
week. They were also asked to limit their tea and coffee to 1 serving per day and alcohol to
2 drinks per week. Participants of both groups were booked for various clinical visits: at
week 0 after the run-in period, at the week 4 during the intervention, and at week 8 at the
end of the protocol.

These subjects were at risk of developing metabolic syndrome, and to describe
the mechanisms behind these effects, they were studied through transcriptomics and
metabolomics. Within the framework of personalised nutrition, this holistic approach is
part of the efforts to further comprehend the impact of nutrients or foods on metabolic
syndrome [45].
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The results presented by the study performed by Franck and colleagues show that in
spite of the effect of Rubus idaeus L. supplementation at transcriptomic and metabolomic
levels, its effect on typical metabolic syndrome features was somewhat moderate, with
no substantial impact seen on relevant metabolic outcomes [45]. β-alanine demonstrated
the greatest increase following supplementation with Rubus idaeus L. [45]. This com-
pound serves as an intermediary substance between glycine and gamma-aminobutyric acid
(GABA), and it exhibits partial antagonistic properties against GABA receptors. GABAergic
signalling is known to play a part in gastrointestinal motility through vagus nerve stimula-
tion [46]. Trimethylamine N-oxide (TMAO), a metabolite derived from gut microbiota and
originating from dietary sources such as choline, choline-containing phospholipids, betaine,
and carnitine, also exhibited a substantial increase. Previously, it has been noted that
TMAO amplifies the activation and recruitment of monocytes, resulting in the upregulation
of genes associated with inflammatory cytokines, enhanced monocyte adhesion, and the
formation of foam cells [47]. TMAO is regarded as a pro-atherogenic metabolite related to
a heightened risk of cardiovascular disease. The increase in TMAO levels can be attributed
to the participants’ higher animal protein intake, a factor not observed in the study con-
ducted by Franck and colleagues. [45]. Similarly, in a randomized controlled trial involving
individuals with metabolic syndrome who consumed 300 g/day of berries, including 100 g
of Rubus idaeus L., for a duration of 8 weeks, serum lipidomic profiling revealed distinc-
tive lipid profiles that differentiated the berry consumers from the control group. These
differences were particularly notable in cholesterol esters, phosphatidylethanolamines,
phosphatidylcholines, and triglycerides [48]. It is worth noting that both interventions in-
duced alterations in common biochemical pathways, initially affecting cholesterol ester and
triacylglycerol pathways and highlighting functional associations between phosphatidyl-
cholines, TMAO, sphingosine, and hexosylceramides. These findings, together with those
found by Puupponen-Pimiä and colleagues [48], point toward sphingolipids and choline
metabolism. As a result, previous research has linked the dysregulation of sphingolipid
metabolism to insulin resistance and the accumulation of ceramides to the inhibition of
insulin signalling [49]. Furthermore, an association between the intake of PCs and sphin-
golipid metabolism has been identified [50]. To be specific, anthocyanins were described as
attenuating insulin resistance by modulating sphingomyelin metabolism and the synthesis
of ceramide [51], shown in Figure 5, while ellagic acid has been recognized as a possible
inhibitor of sphingosine kinase [52].
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Acute Rubus idaeus L. supplementation, with daily consumptions of 125 and 250 g,
might decrease postprandial hypertriglyceridemia, hyperglycaemia, and inflammatory
response (IL-6 and TNF-α), and also systolic blood pressure when prolonged for four weeks,
in diabetic or prediabetic individuals [53,54]. Contrastingly, two other acute postprandial
studies performed on healthy subjects presented fewer convincing results, with no decreas-
ing effects on glycaemic and insulinemic responses [48,55]. Generally, the results from
clinical trials indicate that Rubus idaeus L. consumption can severely mitigate aspects of
metabolic syndrome in subjects with a pre-existing metabolic condition, reducing postpran-
dial glucose, plasma TG, and inflammatory biomarker levels. The minor clinical impact
identified by Franck and colleagues [45] as a result of Rubus idaeus L. supplementation is
unsurprising and could be attributed to the fact that participants were at risk of developing
metabolic syndrome but exhibited limited metabolic alterations. As such, it could be that
the effects of Rubus idaeus L. may be clinically evident in individuals whose homeostatic
set points have changed to altered states. Still, the substantial rise in glucose and fructose
intake noted in the Rubus idaeus L. group, ascribable to the stated rise in fruit servings,
might have masked the effects of Rubus idaeus L. on cardiometabolic health [45].

Despite the many methodologies applied in Frank and colleagues’ work [45], the
phytochemical characterization of raspberry samples was not performed. The clinical
trials with these kinds of nutritional interventions have different durations, different
consumption dosages, diverse population targets, and quite different participant numbers.
Some research made use of the fruit juice, others the fresh fruit, and others the frozen fruit,
which will be reflected in the level of bioactive compounds present in each one that will be
consumed. However, the transcriptional and metabolomic research in the work of Frank
and colleagues [45] has uncovered some of the potential mechanisms behind the health
effects of Rubus idaeus L. Clearly, some effort must be made to achieve more discussible
results between the literature data presented in this field of research.

4. Gooseberry (Ribes stenocarpum Maxim. (CBZ)) on Diabetes and Liver Injury

The gooseberry [Ribes stenocarpum Maxim. (CBZ)] is a small deciduous shrub which
belongs to the Ribes genus of the family saxifragaceae. The Ribes genus encompasses over
160 species, which thrive in colder and temperate regions of the Northern Hemisphere.
Some of these species even extend into subtropical and tropical mountainous regions,
reaching as far as the southern tip of South America [56]. Fruits from Ribes species, widely
cultivated and commercialised, are a valuable source of phenolic compounds; therefore,
these berries are considered more and more as potential sources of functional ingredi-
ents [57].

This is not an extensively studied and phytochemically characterized fruit; however,
the work conducted by Jiang and colleagues does bring us more knowledge [58]. The
phenolic compounds (PCs) in the berry fruit of Ribes stenocarpum Maxim. were studied
using ultra-high-performance liquid chromatography–quadrupole time-of-flight mass
spectrometry equipped with a binary pump and a diode array detector (UPLC-QTOF MS2).
The PDA was performed at 280 and 354 nm, and the UV–Vis spectrum was obtained from
190 to 600 nm. The total phenolic content in the extract was 115.25 ± 22.52 mg GAE/g
extract, established by the Foline–Ciocalteu colorimetric method, applying a calibration
curve with a standard solution of gallic acid. The phenolic characterisation identified a
total of 41 compounds, which included hydroxycinnamic acids, hydroxybenzoic acids,
flavonols, and dihydroflavonol [58].

The in vitro berry extracts’ inhibitory activities of a-glucosidase and a-amylase were
analysed, and the postprandial blood glucose (PBG)-lowering effect in vivo was also
evaluated by Jiang and colleagues [58].

The blood glucose levels for the healthy group increased and reached their peak at
30 min and then decreased at a gradual pace after starch/maltose/sucrose loading. The
PBG levels of mice in the acarbose (4 mg/kg) group and CBZ extract (400 mg/kg) group
were noticeably reduced when compared with that of the healthy group at 30 min after
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maltose loading. The corresponding blood glucose level in mice administered with CBZ
extract and acarbose was also considerably less when compared with that of the healthy
group. Regarding the starch and sucrose tolerance test in healthy mice, no significant
distinctions in blood glucose levels were detected with the CBZ extract and healthy group.
Healthy mice can, in effect, control postprandial blood glucose levels and maintain blood
glucose at a normal level. It will not substantially decrease postprandial blood glucose
levels in healthy mice when the effect of the CBZ extract is not especially strong [58].

In diabetic mice, the blood glucose level for diabetic control groups increased and
reached its peak at 30 min and then decreased in a gradual form after starch/maltose/sucrose
loading. Mice administrated with acarbose at 4 mg/kg and CBZ extract at 400 mg/kg
demonstrated marked reductions in the PBG levels at 30 min when compared to that of
diabetic control groups after starch/maltose/sucrose loading. Blood glucose levels treated
with CBZ extract and acarbose were also considerably lower than those of the diabetic
control group. The ability of CBZ extract to reduce the starch/maltose/sucrose-mediated
PBG levels in diabetic mice was shown with these data [58].

The authors discussed that CBZ extract had the capability to reduce PBG in healthy
or diabetic animals [58]. The control of hyperglycaemia with the help of gooseberry fruit
extract could be a food-based strategy for the management of postprandial blood glucose
levels. However, in the study by Jiang and colleagues [58], the dosage of sugars present
within the CBZ extract and the antioxidant activity evaluated through in vitro and in vivo
assessments seems advantageous. Regarding this aspect, the work conducted by Elmasry
and colleagues brings some more information about gooseberry extract health effects in an
in vivo model of liver injury [59].

The work of Elmasry and colleagues [59] used adult male Sprague Dawley rats weigh-
ing 150–160 g to study the potential hepatoprotective effects of gooseberry extract and black
mulberry extract against carbon tetrachloride (CCl4)-induced liver injury and fibrosis in
male albino rats. The antioxidant power of these extracts was carried out by 1,1-diphenyl-
2-picryl hydrazyl (DPPH) free radical scavenging activity, and the outcomes revealed that
ethanolic extracts of gooseberry (GEs) had greater antioxidant capacity than the other
extracts tested. Furthermore, the use of gooseberry and black mulberry extracts led to a
significant reduction in liver weight and hepatosomatic index in the treated groups when
compared to the CCl4 group.

Rats who received treatment with CCl4 have considerably (p < 0.05) elevated levels
of plasma alpha-fetoprotein (AFP), plasma alkaline phosphatase (ALP), plasma alanine
transaminase (ALT), and aspartate transaminase (AST), compared to the normal control
group. The treatment with gooseberry and black mulberry extracts (MEs) in conjunction
with CCl4 resulted in a significant reduction in elevated levels of ALT, AST, ALP (with the
lowest levels observed in the CCl4+ ME group), alpha-fetoprotein, and hydroxyproline
(with the lowest levels observed in the CCl4+ GE group) when compared to the hepatotoxin
group. The administration of gooseberry and black mulberry extracts led to a substantial
increase in hepatic glutathione (GSH) and glutathione peroxidase (GPx) (with the highest
levels in the water extract of gooseberry group) and a decrease in malondialdehyde (MDA)
and nitric oxide (NO) (with the lowest levels in the GE group) when compared to the
hepatotoxic group. The oxidant/antioxidant status was enhanced by treating healthy
rats with gooseberry and black mulberry extracts (the GE group demonstrated the most
improved effect) compared to the healthy control group [59]. The decreased oxidative stress
was attained through the administration of the extracts by increasing the content of hepatic
GSH and GPx, which led to a decrease in the levels of NO and MDA. In this study, the
researchers determined that the administration of aqueous and ethanolic extracts from both
berries at a daily dosage of 250 mg/kg of body weight for a period of 5 weeks conferred
hepatic protection against CCl4-induced damage. This protection was associated with a
reduction in liver injury and oxidative stress biomarkers, a decrease in inflammation-related
cytokine levels, and an improvement in liver structure [59], shown in Figure 6.
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idase; MEs—black mulberry extracts; AFP—alpha-fetoprotein; ALP—plasma alkaline phosphatase;
ALT—plasma alanine transaminase; AST—aspartate transaminase. ↑—increase; ↓—decrease.

To establish stronger proof for these conclusions, in vitro tests, which use appropriate
cell lines and extracts that reveal the biggest hepatoprotective effect in rats, are desirable.

5. Phytochemicals’ and Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)’s Action
on Hepatocarcinoma

Primary liver cancer was the sixth most diagnosed type of cancer and the third
principal cause of cancer death around the world in 2020, with around 906,000 new cases
and 830,000 deaths. The frequencies of both incidence and mortality are two to three times
greater between men than between women in most regions, and liver cancer ranks fifth in
incidence globally and second in mortality for men [60].

There are more than 500 compounds isolated from natural sources, such as plants
and microorganisms, known to have antioxidant, anti-cancer, and antiangiogenic activities.
Paclitaxel, etoposide, irinotecan, and vincristine are some of the compounds that can be
isolated from plants and are used in treating cancer [61,62].

Polygonum aviculare and Persicaria amphibia (syn. Polygonum amphibium), both belonging
to the subfamily Polygonoideae, have enjoyed a long history of use in traditional culinary
practices and folk medicine across diverse global cultures [63,64]. P. aviculare, otherwise
known as the common knotweed, is an edible and often-used salad plant in Korea, a
traditional Vietnam culinary herb, and an Australian honey plant [65–67]. In the United
States of America, P. amphibia, otherwise known as water smartweed, has been used
in the preparation of soft drinks [64]. Within the folk medicines of Austria and China,
P. aviculare and P. amphibia are used to treat some cancer types [68,69]. There are several
pharmacological studies available concerning these herbs, with several indicating that these
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plants and their active compounds may well be utilized for treating a variety of diseases,
including some forms of cancer and diabetes [70–72].

Chemotherapy regimens employing anthracycline drugs like doxorubicin (DXR) often
lead to increased hepatotoxicity. In addition to the various associated side effects, the
clinical utility of DXR is limited due to the frequent development of resistance in tumour
cells [73,74].

In the work of Jovanović and colleagues, the cytotoxic properties against hepatocarci-
noma HepG2 cells were ascertained, and the ethanolic extracts acquired from P. aviculare
(POA) and P. amphibia (PEA), either independently or combined with doxorubicin (D), were
chemically characterized [75].

Both extracts are abundant in phenolic acids and flavonoids. POA, in particular, is rich
in quinic acid [8.72 mg/g Dry Extract (DE)], kaempferol-3-O-glucoside (1.33 mg/g DE),
quercetin-3-O-glucoside (1.38 mg/g DE), and quercetin-3-O-galactoside (3.02 mg/g DE).
PEA is characterized by a high concentration of aglycones, such as quercetin (5.50 mg/g DE),
and a substantial presence of quercetin derivatives, including quercetin-3-O-galactoside
(11.90 mg/g DE), quercetin-3-O-L-rhamnoside (9.79 mg/g DE), and quercetin-3-O-glucoside
(1.49 mg/g DE). PEA is also notably rich in free gallic acid (3.49 mg/g DE) and epigallocat-
echin gallate (1.28 mg/g DE) [75], see Table 2.

Table 2. Phytochemical characterisation of P. aviculare (POA) and P. amphibia (PEA) extracts [75].

Compound Concentration (mg/g DE) Source Extract

Quinic acid 8.72 POA

Kaempferol-3-O-glucoside 1.33 POA

Quercetin-3-O-glucoside 1.38 POA

Quercetin-3-O-galactoside 3.02 POA

Quercetin 5.50 PEA

Quercetin-3-O-galactoside 11.90 PEA

Quercetin-3-O-L-rhamnoside 9.79 PEA

Quercetin-3-O-glucoside 1.49 PEA

Gallic acid 3.49 PEA

Epigallocatechin gallate 1.28 PEA

Individually employed, PEA was more effective in in vitro tests with HepG2 cells
than POA. In a mix, POAD generated a higher sensitivity of HepG2 cells in lower tested
concentrations than PEAD [75].

Concerning the interaction between the substances under investigation, the combi-
nation index (CI) at IC25 and IC50 concentrations was computed. Synergistic cytotoxicity
was detected for extracts combined with DXR. Remarkable synergism was detected for
both mixtures, POAD (CI = 0.62 and 0.13) and PEAD (CI = 0.89 and 0.39). In this context,
it is worth noting that the concentrations needed to achieve a 25% and 50% reduction
in cell viability were significantly diminished when both agents were combined. The
synergistic effects observed are linked to their impact on apoptosis-related processes, cell
cycle regulation, and the expression of Keap1-Nrf2 genes, which are involved in cellular
protection. Both co-treatments considerably raised Kelch-like ECH-associated protein
1 (Keap1) and, at the same time, lowered Nrf2 gene expression [75]. Considering that
doxorubicin’s effectiveness may be contingent on increased free radical production, the
initial reduction in antioxidant defences could render cancerous cells more vulnerable to
chemotherapeutics [76,77]. Notably, many cancer cells exhibit elevated endogenous antioxi-
dant defences due to the inherent overexpression of nuclear factor erythroid 2-related factor
2 (Nrf2), which is linked to the disruption of Keap1 [74,78]. Keap1 functions as a negative
regulator of Nrf2 and thus may function as a tumour suppressor in cancer cells. Nrf2
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serves as a redox-sensitive transcription activator that controls the expression of numerous
cytoprotective enzymes [79]. Consequently, Nrf2 has been proposed as a novel therapeutic
target for overcoming chemoresistance in various cancer types, including hepatocellular
carcinoma (HCC) [78]. Furthermore, it has been observed that certain phytochemicals have
the potential to sensitize chemoresistant HCC by suppressing Nrf2 [78].

POA and PEA extract might potentiate doxorubicin cytotoxicity in hepatocarcinoma
(HepG2) cells, as revealed by the results presented by the work of Jovanović and col-
leagues [80]. These authors discussed that their previous results are in accordance with the
present findings [80] and, accordingly, in other works, the anti-proliferative effect on HepG2
cells from Polygonum minus extract, were also reported by Ghazali and colleagues [81]. The
extract from Polygonum cuspidatum exerts an anti-proliferative effect on hepatocarcinoma
cells Bel-7402 and Hepa 1–6 [82]. In contrast, extracts obtained from Polygonum glabrum and
Polygonum orientale exhibited protective properties on normal hepatocytes in vivo [83,84].

The pro-apoptotic and cell cycle arrest effects induced by these plant extracts can be
attributed to their chemical composition. An exploration of potentially active compounds
among the major components of the tested extracts revealed free gallic acid, as well as
quercetin and its derivatives, as key candidates. These compounds are well-known for
their cytotoxicity, associated with pro-apoptotic effects and the ability to induce cell cycle
arrest. [85–87]. For instance, quercetin was found to induce cell cycle arrest in the G2/M
phase, leading to a decrease in the number of cells in the G0/G1 phase [87]. In addition,
gallic acid prompted cell cycle arrest in malignant cells, further inhibiting the proliferation
of cancerous cells [88]. Furthermore, quercetin was observed to trigger apoptosis in various
cancer cells [89,90].

A similar upregulation in Keap1 gene expression was also observed with resveratrol,
an active compound found in Polygonum cuspidatum. It was shown that resveratrol can
modulate Nrf2 expression in a time- and concentration-dependent manner [91]. Upon
thorough investigation, it becomes apparent that Nrf2 is functionally linked to various
genes known to play specific roles in the development of drug resistance. For example,
Nrf2 influences the expression of antioxidant defence enzymes, the regulation of phase II
detoxifying enzymes, and multi-drug resistance-associated proteins 1–6 (MRP 1–6) [79,92].
In summary, the regulation of Nrf2 is, at least in part, responsible for chemotherapy
resistance, underscoring the significance of identifying Nrf2 inhibitors like PEAD and
POAD [75].

However, the biological activities attributed to gallic acid, quercetin, and resveratrol,
as discussed by Jovanović and colleagues, need more experimental work to prove the
individual effect of each one of these phenolic compounds from POA and PEA extracts.

The nature of the synergistic action between compounds of each extract needs to be
clarified to understand if the effect of all active compounds together, which interact with
substantial synergy, is greater than each one individually and if it is greater than the sum
of each one individually, as demonstrated in the work of Velmurugan and colleagues [93].

A considerable amount of work exists where the chemopreventive effect of Nrf2
activators is documented, principally those that occur naturally (such as sulforaphane and
curcumin) and those found in foods [94,95]. At least in cell culture experiments, many
compounds have been documented for their potential to activate Nrf2. Conducting a
quantitative comparison of these compounds is quite challenging, primarily due to the
absence of a standardized system in which such assessments can be conducted [91].

In a two-stage mouse skin carcinogenesis model, the inclusion of Protandim in the diet,
which consists of multiple synergistic phytochemical Nrf2 activators, resulted in a notable
reduction in skin tumour incidence by 33% and a decrease in tumour multiplicity by 57%
when compared to mice following a basal diet [96]. Suppression of p53 and induction
of mitochondrial superoxide dismutase (SOD) is believed to have a significant part in
Protandim’s tumour suppressive activity [97].

In a clinical trial performed on Protandim, the average individual showed a 34%
rise in erythrocyte SOD. Given that the whole human body has approximately 7 g of
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superoxide dismutase (SOD), this 34% increase (if found in all organs) could lead to a
steady-state rise in SOD activity upwards of 6,000,000 U dispersed all over the body [98].
In this context, Nrf2-induced growth results in an astonishing over 100-fold increase in
SOD activity compared to a 15 mg injection of the purified enzyme. This, coupled with
the fact that Nrf2 regulates hundreds of other survival genes (besides SOD1), suggests
that Nrf2 activation presents an intriguing alternative to the use of antioxidant enzymes,
synthetic mimetics of antioxidant enzymes, or natural and synthetic compounds often
touted as antioxidants due to their ability to react stoichiometrically with oxidants or free
radicals [91]. It is important to note that an observed in vitro induction often leads to
the inference that the Nrf2 activator may be beneficial in vivo. However, achieving the
same concentrations in vivo as those tested in vitro can be challenging due to issues like
poor absorption, limited bioavailability, rapid metabolism, and clearance, among other
factors [91].

The study of the bioavailability of phenolic extracts is an essential step for assuming
and suggesting pharmacological applications in these kinds of studies, and clarification
regarding phenolic compounds such as Nrf2 activators or Nrf2 inhibitors is a better strategy.

6. Olive Oil and the Regenerative Capacity towards Fibroblast Cells

Wound healing is an intricate process characterised by inflammatory, proliferative,
and remodelling phases [99]. Wound healing can be affected by local factors such as oxy-
genation [100,101] or infections [102,103] and by systemic factors such as age [104,105],
stress [106,107], diabetes [108,109], obesity [110,111], drug consumption [112–114], or nutri-
tion [115–117]. Hence, several micronutrients have been identified as factors influencing
the process of wound healing. These include vitamin A [118], vitamin C [119], and vitamin
E [120], shown in Figure 7, all of which possess antioxidant properties linked to enhanced
fibroblast proliferation and differentiation, as well as increased production of collagen
and hyaluronic acid. Deficiencies in these vitamins have been associated with diminished
angiogenic activity and increased susceptibility to capillary fragility [121,122].
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In this context, Melguizo-Rodríguez and colleagues studied the regenerative charac-
teristics of certain olive oil phenolic compounds on cultured human fibroblasts [123]. In
this study, the CCD-1064Sk fibroblast cell line underwent a 24 h treatment with luteolin,
apigenin, ferulic acid, coumaric acid, or caffeic acid at 10−6 M concentrations. The impact
of these treatments on cell proliferation was assessed. Furthermore, the study examined
the expression of genes related to Fibroblast Growth Factor (FGF), Transforming Growth
Factor-β1 (TGFβ1), Platelet- Derived Growth Factor (PDGF), Vascular Endothelial Growth
Factor (VEGF), and Collagen Type I (COL-I) using real-time polymerase chain reaction
(RT-PCR). The antimicrobial properties of the phenolic compounds were evaluated using
the disc diffusion method [123]. Every compound, with the exception of ferulic acid, con-
siderably stimulated the proliferative capacity of fibroblasts, boosting the migration and
expression of the aforesaid genes. These findings illustrate the biostimulatory impact on
fibroblasts’ regenerative potential, differentiation, and migratory properties derived from
the CCD-1064Sk fibroblast cell line [123], shown in Figure 8.
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Figure 8. The CCD-1064Sk fibroblast cell line underwent a 24 h treatment with luteolin, apigenin,
ferulic acid, coumaric acid, or caffeic acid at 10−6 M concentrations. The expression of genes related to
Fibroblast Growth Factor (FGF), Transforming Growth Factor-β1 (TGFβ1), Platelet-Derived Growth
Factor (PDGF), Vascular Endothelial Growth Factor (VEGF), and Collagen Type I (COL-I) were
evaluated, using real-time polymerase chain reaction (RT-PCR). Every compound, with the exception
of ferulic acid, considerably stimulated the proliferative capacity of fibroblasts, boosting the migration
and expression of those genes.

Extensive scientific research focused on exploring phenolic compounds in olive oil
has already substantiated their antioxidant capabilities. These compounds function as
chain breakers by donating hydrogen radicals to alkylperoxyl radicals [124,125] generated
during the oxygenation of lipids, forming stable derivatives throughout the reaction. The
food and pharmaceutical industries view phenolic compounds in olive oil as potential
nutraceuticals that can offer protection against chronic, degenerative, and oxidative stress-
related diseases [126–129].

In this field, a step forward was already taken with the study performed by Mota
and colleagues, where a novel topical formulation with olive oil as a natural functional
active ingredient was designed and evaluated [130]. Due to its skin-protective and toning
properties, olive oil is a valuable ingredient for skincare. However, efficiently delivering
it into the deeper layers of the skin can be a challenge. In a study conducted by these
authors, a cosmetic formulation aimed at providing skin photoprotection and hydration
was developed, and macro-sized particles were thoroughly characterized [130]. The authors
employed alginate as the matrix for encapsulating olive oil to create these particles. The
resulting alginate beads exhibited a uniform shape and minimal oil leakage, offering
promising prospects for encapsulating lipophilic and less stable molecules, such as olive
oil. When loaded into alginate beads, olive oil revealed in vitro protection against UV rays
and encouraged photoprotection features and in vivo hydration for cosmetic applications.
Incorporating the particles laden with olive oil into a cream formulation provided notable
moisturizing properties and demonstrated potential for photoprotection when tested on
twelve healthy individuals, specifically females aged between 20 and 25 years [130]. The
olive oil encapsulated into alginate beads was discussed by the authors of this study [130]
as a possible method for new cosmetic products and sunscreens, integrating both a natural
product and a biocompatible polymer for antioxidant and anti-aging effects [131,132].

The observed biostimulatory effects from certain olive oil phenolic compounds on
the regeneration capacity, differentiation, and migration of fibroblasts from the CCD-
1064Sk fibroblast line are relevant to wound healing and the photoprotection features and
in vivo hydration for cosmetic applications of olive oil-loaded particles of alginate [123,130].
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This brings evidence to the dermatology field regarding olive oil’s potential efficacy in
skin health.

Nevertheless, in this field of research, further studies are required that should take
into account the recent data that demonstrated that the reduction in the health benefits of
extra virgin olive oil during storage is shaped by the initial phenolic profile [133]. Phenolic
compounds are responsible for the sole health claim associated with virgin olive oil (VOO),
which has been acknowledged and approved by the European Commission EU 432/2012
and the European Food Safety Authority (EFSA).

Castillo-Luna and their team investigated the decline in the phenolic content of 160 ex-
tra virgin olive oils (EVOOs) following 12 months of storage in the dark at 20 ◦C. They
observed a reduction in phenolic concentration by 42.0 ± 24.3% during this period, and
the extent of this decrease was highly reliant on the initial phenolic composition. EVOOs
primarily rich in oleacein and oleocanthal (Figure 1) experienced a more significant reduc-
tion in phenolic content compared to oils with higher concentrations of other phenolic
compounds. In a corresponding manner, the levels of hydroxytyrosol and oleocanthalic
acid (Figure 1) increased significantly in aged EVOOs, allowing for their distinction from
freshly produced EVOOs. These distinctions can be attributed to the degradation of key
secoiridoids during storage, influenced by their inherent antioxidant properties. Hydroxy-
tyrosol and oleocanthalic acid can be regarded as markers of olive oil ageing, even though
they are also able to offer information about stability or quality [133].

However, it is important to note that the health claim is applicable only to olive
oils that provide at least 5 mg of hydroxytyrosol, tyrosol, and their derivatives, with a
daily consumption of 20 g of the product at a concentration exceeding 250 mg/kg, as
specified by EU Commission Regulation No. 432/2012. This regulation establishes a list
of approved health claims for food products, excluding those related to reducing disease
risk and children’s development and health, published in 2012. This quantity relates to the
consumption endorsed by the EFSA to adhere to a diet that is healthy with a sensible fat
content [134]. Moreover, phenolic compounds have other health benefits acknowledged by
the EFSA such as their anti-inflammatory characteristics; their role in retaining an adequate
cholesterol concentration, standard blood pressure, good respiratory health and regular
gastrointestinal tract function; and their role in reinforcing the immune system [134,135].

7. From (+)-Catechin to ε-Viniferin Gastrointestinal Digestion (GID) Bioaccessibility of
Grapevine Bunch Stem and Cane By-Products

Recently, the study of grapevine residues has increased given their real potential as a
source of health-promoting bioactive compounds, which contain PCs such as flavonoids,
tannins, anthocyanins, and stilbenes, but also dietary fibres, mono sugars, and polysac-
charides. The previously mentioned bioactivities encompass antioxidant, cardiovascular-
protective, anti-inflammatory, antimicrobial, antifungal, anti-aging, and anti-cancer at-
tributes that have been documented [136–138]. Between grape waste are shoots, leaves,
stems, pomace, crushed peels, and seeds with some stalks. Grape waste constitutes around
20–25% of the total mass, so recovery of such wastes is a necessity to overcome the incidence
of severe economic and environmental problems [136].

Ferreyra and colleagues suggest that canes and bunch stem derived from Malbec
grapevines hold potential as innovative and environmentally friendly reservoirs of bioac-
tive compounds, suitable for applications as functional ingredients or nutraceuticals within
the food and pharmaceutical sectors. Ferreyra and colleagues demonstrated that these sam-
ples are good sources of PCs. In vitro, the gastrointestinal digestion (GID), phenolic profile,
and antioxidant capacity (AC) of bunch stem and cane extracts were evaluated in the study
of Ferreyra and colleagues. The studied extracts were prepared using acetone 50% (v/v) for
cane samples and ethanol/water for bunch stem samples. The TPCs were measured by
Folin–Ciocalteu assay at 750 nm, analyses of PCs were performed cromatographically, and
the different phenolic sub-classes were quantified by using different conditions. Quercetin 3-
β-D-glucoside, quercetin 3-β-D-galactoside, and (−)-gallocatechin were detected at 254 nm.
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Astilbin, syringic acid, (+)-catechin, naringin, naringenin, procyanidin B2, procyanidin
B1, (−)-epicatechin, (−)-gallocatechin gallate, (−)-epigallocatechin gallate, gallic acid, and
hydroxytyrosol were detected at 280 nm; caftaric acid, p-coumaric acid, cinnamic acid,
ε-viniferin and trans-resveratrol were detected at 320 nm; and myricetin and kaempferol
were detected at 370 nm [139], shown in Figure 1.

Cinnamic acid, trans-resveratrol, kaempferol, and hydroxytyrosol were only found
in cane extracts, while p-coumaric acid, (−)-gallocatechin, (−)-epigallocatechin gallate,
and quercetin-3-galactoside were solely found in bunch stem extracts. In grape canes,
the stilbene ε-viniferin followed by the flavanols (+)-catechin and (−)-epicatechin were
the most abundant phenolic compounds. For bunch stems, the flavanols (+)-catechin and
procyanidin B1, together with caftaric acid, were the predominant phenolic compound
constituents [139], shown in Figure 1.

The results demonstrated that PC levels were influenced by the matrices during the
digestion process. Notably, the digested extracts showed high levels of bioaccessible PCs,
mainly syringic acid, cinnamic acid, ε-viniferin, naringenin, and myricetin [139].

Despite being the most prevalent compound in the analysed cane extract, ε-viniferin
did not undergo significant degradation under simulated digestive conditions [139]. E-
viniferin possesses notable and valuable health-related attributes, particularly regarding its
cardiovascular protective and antioxidant properties, which stand out when compared to
trans-resveratrol [140,141]. Even though prior reports demonstrated that ε-viniferin has
a hard time going through the intestinal barrier to be metabolised compared with trans-
resveratrol, it may thus act at a local level on the gastrointestinal tract [142]. Throughout
the course of an in vitro assay, ε-viniferin demonstrated the greater inhibitory capacity of
intestinal glucose uptake than trans-resveratrol [143].

Extracts obtained from bunch stems have been identified to contain flavanols, flavonols,
and phenolic acids as their primary components [137,144]. The notable antioxidant activity
observed in these extracts can be attributed to their elevated content of (+)-catechin [137]. In
the work of Ferreyra and colleagues [139], the oxygen radical absorbance capacity (ORAC)
and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activ-
ity assays were applied to the determination of AC, which presented a similar tendency as
TPC for each step of digestion. In agreement with the high TPC levels found in bunch stems,
this matrix also demonstrated significantly high levels of AC. The TPC and ORAC levels
improved after in vitro GID of cane extracts, which encouraged the authors to consider this
by-product as a promising ingredient of novel functional foods. On the other hand, for
bunch stem extracts, the ORAC levels were maintained, and TPC amounts were slightly
reduced after GID; therefore, this by-product may also be suitable for the development of
functional foods [139].

Annually, the viticulture industry yields over 70 million metric tons of grapes across a
global cultivated area of 7.5 million hectares, as reported by the International Organization
of World Vitiviniculture (OIV) in 2017. This agroeconomic endeavour generates a substan-
tial amount of grapevine woody by-products, including cluster stems and canes, which
represent promising reservoirs of various phenolic compounds with potential biotechno-
logical uses. Canes result from the management practice of grapevine plants, which is
carried out yearly and aims to prune the plants to improve grape yield stability as well as
berry quality. This activity produces an amount averaging around 2.5 tonnes per hectare
every year [145]. Bunch stems are another lignocellulosic by-product that accumulates
alongside the winemaking process and represents 5% of the processed grapes come harvest
time [146]. Typically, these grapevine derivatives are either composted or burned, which
limits their potential application as a source of bioactive compounds for either the food,
pharmaceutical, or cosmetic industries [137,138].

However, although various appropriate extractive techniques exist for isolating these
bioactive compounds from agricultural by-products, their industrial application remains
without real application value and scale-up [147].
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8. Conclusions

The common thread in these studies is the exploration of natural compounds, often
found in plant-based foods, for their potential health benefits.

The phenolic compounds, antioxidants, and anti-inflammatory agents found in these
foods may contribute to various protective effects, including neuroprotection, metabolic
health improvement, anti-diabetic effects, hepatoprotection, and tissue regeneration.

The activation of cellular defence mechanisms, such as Nrf2, appears to be a recurring
theme in the potential mechanisms through which these compounds exert their effects.

While these studies individually highlight specific benefits, an overall conclusion
could be drawn around the potential of a plant-based diet rich in diverse phytochemicals
for promoting health and preventing or managing various health conditions. However, it is
essential to consider individual variations, and more research is needed for a comprehensive
understanding of these relationships.
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Abbreviations

ABP artichoke by-product
ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
AC antioxidant capacity
AChE acetylcholinesterase
AD Alzheimer’s disease
AFP alpha-fetoprotein
ALP alkaline phosphatase
ALT alanine transaminase
AST aspartate transaminase
BDNF brain-derived neurotrophic factor
CBZ gooseberry extract
COL-I Collagen Type I
DE Dry Extract
DM diabetes mellitus
DPPH 1,1-diphenyl-2-picryl hydrazyl
DXR doxorubicin
EA ellagic acid
EA-NP ellagic acid-loaded nanoparticles
EFSA European Food Safety Authority
EVOOs extra virgin olive oils
FGF Fibroblast Growth Factor
FW Fresh Weight
GA gallic acid
GAE gallic acid equivalents
GE ethanolic extract of gooseberry
GID gastrointestinal digestion
GPx glutathione peroxidase
GSH glutathione
HCC hepatocellular carcinoma
HPLC-MS high-performance liquid chromatography–mass spectrometry
IGF-1 insulin-like growth factor 1
IgM immunoglobulin M
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IL interleukin
IMIDs immune-mediated inflammatory diseases
Keap1 Kelch-like ECH-associated protein 1
MDA malondialdehyde
ME black mulberry extract
MRP 1–6 multi-drug resistance-associated proteins 1–6
NCDs non-communicable diseases
NGF nerve growth factor
NO nitric oxide
OIV International Organization of World Vitiviniculture
ORAC oxygen radical absorbance capacity
PBG postprandial blood glucose
PC phenolic compounds
PDA Photodiode Array
PDGF platelet-derived growth factor
PEA P. amphibia
PEAD P. amphibia-doxorubicin
POA P. aviculare
POAD P. aviculare-doxorubicin
RE raspberry extract
RT-PCR real-time polymerase chain reaction
SOD superoxide dismutase
TBA thiobarbituric acid
TG triglycerides
TGFβ1 Transforming Growth Factor-β1
TMAO Trimethylamine N-oxide
TNF tumour necrosis factor
TPC total phenolic compounds
UPLC-QTOF MS2 ultra-high-performance liquid chromatography–quadrupole

time-of-flight mass spectrometry
VEGF Vascular Endothelial Growth Factor
VOO virgin olive oil
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