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Abstract: The aim of this project was to study the influence of microneedles on 

transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride  

across porcine ear skin in vitro. Microchannel visualization studies were carried out and 

characterization of the microchannel depth was performed using confocal laser scanning 

microscopy (CLSM) to demonstrate microchannel formation following microneedle roller 

application. We also report, for the first time, the use of TA.XT Plus Texture Analyzer to 

characterize burst force in pig skin for transdermal drug delivery experiments. This is the 

force required to rupture pig skin. The mean passive flux of amantadine hydrochloride, 

determined using a developed LC–MS/MS technique, was 22.38 ± 4.73 µg/cm2/h, while 

the mean flux following the use of a stainless steel microneedle roller was 49.04 ±  

19.77 µg/cm2/h. The mean passive flux of pramipexole dihydrochloride was 134.83 ± 

13.66 µg/cm2/h, while the flux following the use of a stainless steel microneedle roller was 

134.04 ± 0.98 µg/cm2/h. For both drugs, the difference in flux values following the use of 

solid stainless steel microneedle roller was not statistically significantly (p > 0.05). 

Statistical analysis was carried out using the Mann–Whitney Rank sum test. 
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1. Introduction 

Parkinson’s Disease (PD) is a disabling, neurodegenerative disorder with no current treatment 

option to alter the progression of the disease [1,2]. In the United States, PD affects nearly 1.5 million 

Americans, and according to a recent study, approximately 50,000 new cases are diagnosed each year, 

and this number is expected to increase substantially as the median age of the population continues to 

rise [2–5]. 

Ultimately, patients suffering from PD exhibit progressive decline in motor function, resulting in 

significant disability [1,6]. Cardinal symptoms of the disease include resting tremor, bradykinesia, 

rigidity, and postural instability [7]. Although there is still no cure for PD, various symptomatic 

therapy options are available in the form of oral medications, surgery, and an FDA-approved rotigotine 

transdermal patch called Neupro®; however, its use focuses on treating idiopathic and early stage  

PD [1,8]. Available oral therapies include levodopa, dopamine agonists, monoamine oxidase type B 

inhibitors (MAO-B inhibitors), catechol-O-methyltransferase inhibitors (COMT-Inhibitors), amantadine, 

and anticholinergic agents [1,9–12]. 

In a study by the American Academy of Neurology, amantadine, dopamine agonists, and other 

common antiparkinsonian agents were examined. This study found that amantadine hydrochloride 

relieved PD symptoms by acting on certain postsynaptic receptors in the striatum, whereas dopamine 

agonists bind to and activate dopamine receptors [7,12]. In the literature, amantadine has shown to be 

effective and is mostly utilized to treat peak-dose levodopa-induced dyskinesia (LID) in patients with 

advanced stage PD [13]. 

It has been suggested that non-ergot dopamine agonists like pramipexole dihydrochloride may 

reduce the duration of “off-time” episodes [12]. 

Chase and Oh have hypothesized that nonphysiologic stimulation of striatal dopaminergic receptors 

may trigger adaptive responses in the basal ganglia, which contribute to the appearance of parkinsonian 

symptoms and later to the dyskinesias [14]. Our rationale in developing transdermal formulations for 

pramipexole is that a steady zero-order drug input is capable of reducing peak-trough variations and 

this leads to continuous stimulation of dopamine receptors [15]. This models normal physiological 

conditions in healthy individuals and from a therapeutic perspective less complications [15]. 

Transdermal drug delivery will lead to a more stable plasma concentration, reduced side effects and 

better patient compliance. Our long term goal is the development of a transdermal system for the 

delivery of pramipexole and amantadine. 

It is important to expand the scope of transdermal drug delivery options as an alternative form of 

administration. Transdermal drug delivery has expanded greatly in the last decade as an exciting 

potential therapy approach that provides considerable benefits. For instance, this route of administration 

is capable of providing drug delivery at a controlled and constant rate while also being non-invasive 

and simple to use, which would be advantageous for patients that suffer from advanced stage PD. 

Microneedle-facilitated transdermal delivery has the potential of increasing skin permeability for 

many compounds that normally do not penetrate the stratum corneum (SC), which is the outermost 

layer of the skin and the major barrier for transdermal drug delivery [16–18]. As an alternative delivery 

route, microneedle-assisted transdermal drug delivery is minimally invasive and capable of providing 

sustained drug release, thus reducing dosing frequency. When administered to the skin, these micron-
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sized needles do not reach the nerve fibers located within the dermis layer of the skin, making this 

approach a painless route of administration [19]. Additionally, a microneedle delivery system can be 

self-administered, and the ease and convenience of this application system could potentially improve 

patient adherence to medication therapy, which is especially important for patients suffering from 

advanced-stage PD, since improving quality of life is of great significance [20]. 

Pramipexole is a cationic drug with a net positive charge at physiological pH (pKa 5.0 and 9.6) and 

an octanolphosphate buffer (pH 7.4) partition coefficient of 0.135 [21]. It has a molecular weight of 

284.25 g/mol [22] and a pharmacokinetic half-life of 6–8 h [23]. A transdermal delivery system for 

pramipexole might provide benefits compared to oral dosage forms. Apart from the pharmacokinetic 

aspects, adherence to therapy is an issue for elderly patients including those that suffer from PD. Some 

elderly patients simply forget to take their medications, especially those on multiple medications. 

Amantadine has a molecular weight of 187.71 g/mol and a partition coefficient of 2.44 [24]. The 

pharmacokinetic half-life of the drug is 10 h [25]. Patience compliance will be greatly improved if 

amantadine is formulated into a transdermal patch. 

The aim of this study was to investigate the influence of microneedles on transdermal delivery of 

amantadine hydrochloride and pramipexole dihydrochloride across porcine ear skin in vitro. Stainless 

steel microneedle rollers were utilized to create microchannels in the SC to assist with the delivery of 

amantadine hydrochloride and pramipexole dihydrochloride across porcine skin. 

2. Materials and Methods 

2.1. Materials 

Stainless steel microneedle rollers (500 μm) were purchased from Pearl Enterprises LLC. 

(Lakewood, NJ, USA) Amantadine hydrochloride, pramipexole dihydrochloride, and 0.1 M isotonic 

phosphate buffered saline (PBS) were purchased from Sigma–Aldrich Co. (St. Louis, MO, USA). 

Amantadine hydrochloride and pramipexole dihydrochloride were reconstituted using PBS. The water was 

processed using NanoPure Infinity Ultrapure water purification system (Barnstead, Dubuque, IA, USA). 

2.2. Methods 

2.2.1. Skin Preparation 

Experiments were approved by the Institutional Animal Care and Use Committee (IACUC) and 

Institutional Biosafety Committee (IBC) of Touro University, Mare Island-Vallejo, CA, USA. Frozen 

porcine ears were obtained from Animal Technologies, Tyler, TX, USA. Skin pieces were thawed at 

ambient temperatures and carefully shaved using an electric clipper (Wahl, Sterling, IL, USA). Full 

thickness skin was prepared by removing the subcutaneous fat from the underlying cartilage. The 

average thickness of the skin membrane was measured with a Digimatic Micrometer (Mitutoyo, 

Tokyo, Japan). Skin samples were maintained at −20 °C for storage. Prior to experiments, the skin 

samples were thawed at room temperature before use. 
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2.2.2. In Vitro Diffusion Studies 

In vitro permeation experiments were conducted using a six-celled, static, vertical Franz diffusion 

cell system (PermeGear, Hellertown, PA, USA). Each cell contained a top donor compartment and a 

lower receptor compartment with a magnetic stirrer, sampling port, and water jacket maintained at  

37 °C to simulate normal body temperature by Thermo Haake DC10-P5/U heating circulator bath 

(ThermoFisher Scientific, Waltham, MA, USA). The receptor compartment diffusion area was  

1.77 cm2 with a volume capacity of 12 mL filled with PBS. Skin samples obtained from different  

pigs were placed between the upper donor chamber and lower receiver chamber of the vertical Franz 

diffusion cells, which were sealed using high-vacuum grease (Dow Corning, Midland, MA, USA) and 

a metal clamp. Solid microneedle rollers were used to created microchannels in porcine skin.  

Full thickness microneedle-treated porcine skins were mounted on three-receptor compartments and 

untreated porcine skins were placed on the remaining three-receptor compartments to serve as controls, 

and diffusion experiments for the two drugs were replicated six times (n = 6). The microneedle roller 

was applied fifteen times to each skin sample to increase the number of microconduits for enhanced 

transdermal drug delivery. Before each microneedle application, the skin samples were rotated 90° and 

the microneedles were applied with a force of 9.07 kg for ~1 min per application. Each experiment was 

performed using 1 mL of either amantadine (~50 mg/mL) or pramipexole (~1 mg/mL), which was 

loaded onto the skin samples via the donor compartment and covered with parafilm and aluminum foil 

to reduce evaporation. The sampling ports were also covered with parafilm to further reduce 

evaporation. Aliquots of 1 mL were removed from the sampling port at the interval of 2 h for a 12-h 

period and placed into vials for high performance liquid chromatography-mass spectrometry (HPLC–MS). 

Receptor chambers were replenished with an equal volume of fresh, pre-warmed PBS maintained at  

37 °C. All samples were stored at 4 °C until analysis by LC–MS. The cumulative amount of each drug 

permeating the excised full thickness porcine skin was plotted as a function of time. The slope and 

intercept of the linear portion were derived by linear regression analysis. Steady state flux was 

calculated from the linear portion of the cumulative amount versus time curve. The cumulative amount 

of each drug permeated (Qs, μg/cm2) for 12 h was also calculated. 

2.2.3. High-Performance Liquid Chromatography–Mass Spectrometry Analysis (HPLC–MS) 

HPLC–MS analysis was performed using an Agilent series 1200 HPLC with diode-array and 

Agilent 6320 Ion Trap mass spectrometer detectors (Agilent Technologies, Palo Alto, CA, USA). 

Chromatographic separation was carried out on the reverse-phase Agilent Zorbax Eclipse Plus C18 

(100 mm × 2.1 mm, 3.5 microns) analytical column, which was protected by a guard column with the 

same stationary phase (12.5 mm × 4.6 mm, 5 microns) (Agilent Technologies, Palo Alto, CA, USA). 

The column temperature was set at 40 °C, and the autosampler temperature was set at 4 °C. The 

mobile phase consisted of 0.1% formic acid in water (solvent A), and 0.1% formic acid in methanol 

(solvent B). The solvent gradient was performed at 0.4 mL/min with an initial condition of 5% of 

mobile phase B. Mobile phase B was increased to 95% at 2 min and held at 95% B until 6 min at 

which Mobile phase B was then reduced to 5% at 7 min. A post-run time of 2 min for mobile phase 

equilibration was used after each sample run. Calibration curve standards were freshly prepared in PBS 
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buffer solution. The MS data were collected in positive electro spray ionization tandem mass 

spectrometry (ESI MS/MS) mode. Nebulizer temperature was 350 °C, nebulizer pressure was 50 psi, 

and the drying gas flow rate was 10.0 L/min. Compounds were quantified in positive ESI MS/MS 

mode by quantifying the specific product ion. A UV spectrum was only collected for pramipexole 

dihydrochloride at the wavelength of 263 nm because the structure of amantadine hydrochloride is not 

conjugated; therefore, mass spectrometric detection was used. For amantadine hydrochloride, ion 

transitions m/z was 152.0→135.1 and for pramipexole dihydrochloride, ion transitions m/z was 

212→153. 

2.2.4. Visualization of Microchannels 

Microchannel imaging studies were conducted at the Comparative Pathology Lab of the University 

of California, Davis. Porcine skin samples were treated with a 500 μm long microneedle roller for  

~1 min and then stained with a margin marking dye (American MasterTech Scientific Inc., Lodi, CA, 

USA). Following treatment, skin samples were immediately rinsed with saline to remove excessive 

dye. As the control, untreated porcine skin samples were similarly stained with margin marking dye for 

~1 min and immediately rinsed with saline. Pictures of the treated and untreated skin samples were 

collected using a digital camera (Canon, Melville, NY, USA). 

2.2.5. Characterization of Microchannel Depth by Confocal Laser Scanning Microscopy (CLSM) 

CLSM was performed at the Cellular and Molecular Imaging Lab of the University of California, 

Davis to characterize the depth of the created microchannels. Excised full thickness porcine skin was 

treated with a microneedle roller device. The porated site was treated with 200 μL of a fluorescent dye, 

Alexafluor 488 (Life Technologies, Eugene, OR, USA) for ~1 min, after which the site was blotted 

with kimwipes to remove excess dye. Samples of microneedle treated porcine skin were mounted onto 

Tissue-Tek Cryomold (Sakura Finetek Inc., Torrance, CA, USA) and covered with OCT embedding 

media (Sakura Finetek Inc., Torrance, CA, USA) before freezing in dry ice storage at −80 °C. Skin 

samples were maintained on dry ice before cry-sectioning using a Leica CM1950 Cryostat (Leica 

Biosystems, Buffalo Grove, IL, USA). Samples were cry-sectioned to 10 μm-thick vertical sections 

and mounted onto glass slides. Transmission images of the skin samples were examined and recorded 

using a Leica TCS LSI laser scanning confocal microscope at 5× magnification. Excitation was carried 

out at 488 nm and emission at 520 nm. X-Z sectioning was performed to detect depth of dye 

fluorescent penetration. The frame size was set to 1024 × 1024 pixels, and gain and offset were 

maximized to enhance contrast of images. Depth of the microchannels was estimated indirectly based 

on migration of the Alexafluor 488 down the microchannel to indicate dye permeation. 

2.2.6. Burst Strength 

Burst strength of skin was evaluated using a TA.XT Plus Texture Analyzer (Texture Technologies, 

Hamilton, MA, USA) to measure the force required to rupture the skin. The burst strength study was 

carried out using a burst rig which uses a 5 mm spherical stainless steel ball probe attached to a probe 

adapter connected to the load cell (50 kg maximum load). 
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2.2.7. Data Analysis 

Flux values were calculated using the steady-state portion of the cumulative amount versus time 

curves. Six replicates were used for the study. Drug concentration was corrected for sampling effects 

according to Equation 1, proposed by Hayton et al and used by other investigators [26–28]. ܥ௡ଵ = ௡ܥ ൬ ୘ܸ୘ܸ െ ୗܸ൰ ቆܥ௡ିଵଵܥ௡ିଵቇ (1)

In this equation, ܥ௡ଵ	is the corrected concentration and ܥ௡ represents the measured concentration in 

the nth sample. ୘ܸ is the total volume of the receiver fluid (12 mL) and ୗܸ represents the volume of 

sample withdrawn from the receiver fluid (1 mL). While ܥ௡ିଵଵ  and ܥ௡ିଵ are corrected and measured 

concentration, respectively in (n − 1)th sample. 

2.2.8. Statistical Analysis 

Statistical analysis was performed using Sigmastat (Systat Software, San Jose, CA, USA).  

Mann–Whitney Rank sum test was carried out to determine statistical significance. Mean of replicate 

measurements (n = 6) with corresponding standard deviation was used to plot the graphs. 

3. Results 

3.1. Characterization of Microneedle Array and Microneedle Roller 

When microneedles are applied to the surface of the skin they disrupt the barrier of the SC and 

create microchannels, resulting in increased drug penetration [16,29]. A stainless steel microneedle 

roller was used in this study to deliver the antiparkinsonian agents amantadine hydrochloride and 

pramipexole dihydrochloride across porcine skin. The microneedle roller contains microneedles 

protruding from a cylindrical surface measuring 500 μm in length per microneedle with a density of 192 

needles (Figure 1). Following microneedles application, microchannels were visualized, as shown in 

Figure 2A, and the microchannel depth was characterized, as shown in Figure 3B. 

 

Figure 1. Stainless steel microneedle roller, density of 192 microneedles and 500 μm in 

length per microneedle. 
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Figure 2. Microchannel visualization using margin marking dye. (A) Porcine skin treated 

with microneedle roller. (B) Non-treated porcine skin as the control. 

 

Figure 3. Representative depth of a single microchannel by confocal laser scanning 

microscopy (CLSM). (A) Untreated porcine skin. (B) Microneedle treated porcine skin 

showing a microchannel depth of 255 μm. 
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3.2. Visualization of Microchannels 

After application of the microneedle roller across the skin surface, the created microchannels can be 

visualized. Figure 2A is a picture of full thickness porcine skin stained with margin marking dye 

following treatment with one pass of the microneedle roller. The areas of the skin that were  

disrupted by the microneedles took up the dye identifying the created microchannels immediately after 

application of the solid microneedle roller. The portion of the skin surrounding the microchannels 

maintained normal structure and intact stratum corneum. Figure 2A shows the pattern of the created 

microchannels aligned symmetrically, mirroring the pattern of the microneedle roller. A control was 

employed to demonstrate that the microchannels on the surface of the skin are due to the microneedles 

alone (Figure 2B). 

3.3. Characterization of Microchannel Depth by Confocal Laser Scanning Microscopy (CLSM) 

Porcine skin samples were imaged and recorded to characterize the depth of the microchannel 

created by the microneedle roller from the surface of the skin using CLSM (Figure 3A,B). The skin 

samples were treated with Alexafluor 488 and the binding of the Alexafluor fluorescent particle along 

the microchannels indicates the depth of the created microchannel, which resulted in a mean depth of  

319.50 ± 71.05 μm (n = 4). Figure 3 is a representative image of a single microchannel displaying the 

microchannel depth of 255 μm. In contrast, the non-disrupted skin sample served as the control, and 

results revealed no created microchannel (Figure 3A). It is important to note that microchannel depth is 

directly influenced by various factors such as the elasticity of the skin, application force [30]. 

3.4. Burst Strength 

The skin has both elastic and viscous properties and must be strong and ductile to provide 

protection to the body and prevent foreign substances from entering through the skin.  

In this study, for the first time, a Texture Analyzer was used to test the skin to measure the burst force 

from porcine skin samples. Burst force strength indicates that the skin is flexible and, at the same time, 

rigid enough to prevent the deformation from foreign objects and agents that are imposed upon the 

stratum corneum (SC) surface. Table 1 shows that the results of burst strength and distance to burst 

porcine ear skin, which indicates that the skin samples are slightly elastic and rupture with an average 

force of 187.5 N at a distance of 7.76 mm. 

Table 1. Burst force required to rupture porcine skin (n = 6). 

Initial 

Gradient (N/s) 

Mid Gradient 

(N/s) 

Final Gradient 

(N/s) 

Work to Burst 

Skin (N/s) 

Burst Force 

(N) 

Distance to 

Burst (mm) 

13.75 ± 2.11 43.98 ± 8.17 62.14 ± 11.54 341.24 ± 42.44 187.54 ± 19.38 7.77 ± 0.63 

3.5. In Vitro Diffusion Studies 

An in vitro diffusion study was carried out to identify the influence of solid microneedles on the 

transcutaneous absorption of amantadine hydrochloride and pramipexole dihydrochloride. This study 

was performed using porcine ear skin as a representative model of human epidermal membrane [31,32]. 
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In our experiments, the mean porcine skin thickness was 761 ± 0.18 µm. LC–MS was used to  

determine the concentration of the drug in the samples and flux values were determined for both  

agents using the slope of the steady-state portion of the cumulative amount versus time curves and 

concentration was corrected for sampling effects according to Equation 1. Table 2 shows a comparison 

of the final cumulative amounts of both drugs after 12 h (Qs) following microneedle treatment to 

passive permeation. A microneedle roller was applied to full thickness pig ear skin at the beginning of 

experiments, and the amounts of amantadine and pramipexole delivered after 12 h are shown in  

Table 2 (589.26 and 1583.43 µg/cm2 respectively). Table 3 shows a comparison of transdermal flux for 

both drugs. The passive transdermal flux for amantadine hydrochloride was 22.38 ± 4.73 µg/cm2/h, 

while microneedle-facilitated flux was 49.04 ± 19.77 µg/cm2/h (Figure 4). For pramipexole, passive 

transdermal flux was 134.83 ± 13.66 µg/cm2/h, while microneedle-facilitated flux was 134.04 ± 0.98 

µg/cm2/h. The percutaneous flux of each drug was plotted as a function of time (Figure 5). 

Table 2. Cumulative amount after 12 h (Qs, μg/cm2 ± SD) of amantadine and pramipexole 

following treatment with a 500 μm long microneedle roller. Passive flux values served as 

controls (n = 6). 

Amantadine Qs Passive (Control) Qs (μg/cm2) Microneedle Qs (μg/cm2) 

Mean 267.65 ± 14.07 589.26 ± 23.13 

Pramipexole Qs Passive (Control) Qs (μg/cm2) Microneedle Qs (μg/cm2) 

Mean 1607.86 ± 35.77 1583.43 ± 72.99 

Table 3. Transdermal flux (μg/cm2/h ± SD) of amantadine and pramipexole following 

treatment with a 500 μm long microneedle roller. Passive flux values served as controls  

(n = 6). 

Amantadine Flux Passive (Control) Flux (μg/cm2) Microneedle Flux (μg/cm2) 

Mean 22.38 ± 4.73 49.04 ± 19.77 

Pramipexole Flux Passive (Control) Flux (μg/cm2) Microneedle Flux (μg/cm2) 

Mean 134.83 ± 13.66 134.04 ± 0.98 
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Figure 4. In vitro transdermal permeation of passive and microneedle-facilitated amantadine 

hydrochloride after microneedle roller application across porcine ear skin (500 μm length, 

540 needles per square centimeter density). 

 

Figure 5. In vitro transdermal permeation of passive and microneedle-facilitated 

pramipexole dihydrochloride after microneedle roller application across porcine ear skin 

(500 μm length, 540 per square centimeter density). 

4. Discussion 

The skin is a composite material consisting of a collagen-rich fibrous network embedded in a 

proteoglycan-rich matrix [33]. The main fibrous constituents, collagen and elastin, provide structural 

stiffness and elasticity to the skin while the ground matrix is responsible for its viscous nature at low 

loads [33]. Effectiveness of microneedle-mediated transdermal drug delivery depends on a number of 
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factors including the mechanical properties of the skin. The inherent elasticity and irregular surface of 

the skin is a challenge for reproducibility of microneedle flux values [34]. In this paper we seek, for 

the first time, to introduce burst strength as a parameter that can be used to characterize pig skin in 

transdermal drug delivery experiments. Burst strength is the pressure at which pig skin will burst. This 

parameter measures resistance to rupture and is a function of tensile strength as well as extensibility of 

the skin. It is thus a composite strength property that is affected by other properties of the skin, 

principally tensile strength and stretch. It can be determined by using a TAXT-analyzer and is 

expressed in Newtons (N). 

The focus of our study was on transdermal delivery of therapeutic agents used in the management 

of PD. The underlying pathology of PD is due to the gradual loss of dopaminergic neurons in the 

substantia nigra pars compacta of the basal ganglia [35]. Several studies speculate that genetics, 

environmental toxins, and several pathological processes such as oxidative stress, apoptosis and 

mitochondrial DNA defects might be involved in the pathway leading to the degeneration of dopamine 

neurons; however, there is no definitive proof that any one of these is critically involved, which leaves 

the cause of PD largely unknown [4,36]. 

Levodopa is the most potent oral medication for the symptomatic treatment of PD [1,37–39]. 

However, levodopa is not commonly used as initial therapy in the treatment of PD due to its side 

effects. This phenomenon was first reported by Cotzias et al., followed by subsequent studies showing 

that long-term treatment with levodopa becomes less effective in eliminating motor symptoms and 

produced levodopa-induced dyskinesia (LID), a hyperkinetic side effect of levodopa therapy in PD 

patients [13,40–43]. Furthermore, later studies have also shown that early use of levodopa may 

predispose patients to develop long-term motor complications, such as dyskinesia, dystonia, and these 

symptoms may prematurely return or worsen before the next dose is due, which is called “wearing  

off” [13,44,45]. These complications has been reported especially in young-onset PD patients [46]. 

This growing recognition of the complexity involved in long-term management and pulsatile 

stimulation of dopamine receptors that lead to motor fluctuations that often develop and compromise 

the effectiveness of long-term levodopa administration in PD patients emphasizes the need for 

improved therapy and potential alternative drug delivery options [45]. However, developing a drug to 

be delivered across the skin for the treatment of advanced-stage PD is challenging. 

Successful transdermal absorption requires a drug to cross the stratum corneum barrier (SC), which 

is the outermost layer of the epidermis, and ultimately enter the systemic circulation [47–49]. The SC 

contains a unique structure comprised of a lipid-rich matrix embedded with corneocytes, which are 

dead, partially desiccated, and keratinized epidermal cells [17]. Although the SC layer is only about 

10–15 μm thick, and only accounts for 0.1 mm of the skin’s 1.5 mm thickness, this unique layer is the 

major barrier against drug permeation [17,48,50]. The structure of the SC can be explained in terms of 

the “brick and mortar” model, in which the corneocytes represent the bricks, and the intercellular lipid 

matrix acts as the mortar [19,51]. Due to the limiting parameters of the SC, there are currently only 

about 40 transdermal products on the market containing 19 active ingredients [17,19]. 

Amantadine is used in the treatment of tremors as well as dyskinesia, but its mechanism of action is 

not clearly elucidated [7,11,15,16]. Several literature sources report that amantadine is a  

weak noncompetitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and suggest that 

amantadine acts by blocking NMDA glutamate and acetylcholine receptors thereby promoting the 
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release of dopamine, while others suggest that the mechanism is unknown [3,17]. Regardless of the 

mechanism of action, amantadine has been shown to be effective and is mostly utilized to treat peak-

dose LID in patients with advanced stage PD [13]. On the other hand, pramipexole dihydrochloride is 

a dopamine agonist and is effective in reducing the duration of “off-time” episodes [12,38,39]. 

Ghosh and co-authors report that normal healing processes of the skin result in the resealing of 

micropores formed after application of microneedles within 48–72 h under occlusion. Therefore, a 

drug can be delivered across microneedle-treated skin for 3 days under occlusion [52]. Although we 

did not investigate the size of microchannels in our study, there is a report in the literature which 

showed that the mean diameter of microconduits created by a microneedle roller at the surface of the 

skin was approximately 70 μm [30]. In that project, the authors combined confocal microscopy with 

micron-sized fluorescent particles. 

Based on our results, the stainless steel microneedle roller was capable of creating microchannels in 

the SC as demonstrated from the microchannel visualization studies and confocal images, but there 

was no statistically significant increase in percutaneous absorption of amantadine hydrochloride or 

pramipexole dihydrochloride across porcine skin. Although there was a 1.57-fold increase in mean  

flux for amantadine hydrochloride, the difference in flux following the use of solid stainless steel 

microneedle roller was not statistically significant (p < 0.05). The difference between passive and 

microneedle-facilitated fluxes of pramipexole was also not statistically significant (p < 0.05). 

Several factors can cause lack of transdermal flux enhancement, which we witnessed in this project. 

The physiochemical properties of a drug can influence the rate of transdermal drug penetration.  

The physiochemical properties of a drug include: molecular weight, diffusion coefficient, drug 

concentration, melting point, pH, and charge [17,53,54]. 

For a drug molecule to passively diffuse across the SC, it must have a low molecular weight, 

typically less than 500 Daltons. Additionally, since inside the skin is an aqueous environment and the 

skin is made of a lipid-rich bilayer, it is important that the drug molecule possess both lipid and 

aqueous solubility that is suitable for percutaneous absorption. Thus, the ideal drug compound would 

possess an aqueous solubility of greater than 1 mg/mL and lipophilicity between 1–3 [17,55]. 

However, these properties would likely not have influenced percutaneous absorption of our 

compounds of interest, as both substances are relatively small compounds with appropriate water 

solubility and lipophilicity that are theoretically suitable for passive diffusion across the SC. As 

mentioned, the molecular weights, water solubility, and lipophilicity of amantadine hydrochloride and 

pramipexole dihydrochloride are 187.71 Da, 50 mg/mL, with a logP of 2.4 and 284.25 Da, >20 mg/mL, 

with a logP of 1.2 respectively. 

Low diffusion coefficient is a possible explanation for the low flux values observed in this study. 

Since passive drug absorption through the skin is governed by diffusion, the drug molecule of interest 

must move according to the concentration gradient from high to low [55]. Commercially, amantadine 

hydrochloride is available as 100 mg oral capsule or tablet often prescribed at twice a day as 

monotherapy and may increase to 400 mg/day in divided doses, while pramipexole dihydrochloride is 

available as immediate release in the dosage range of 0.125, 0.25, 0.5, 0.75, 1, 1.5 mg and extended 

release oral tablet in the dosage range of 0.375, 0.75, 1.5, 2.25, 3, 3.75, 4.5 mg. In the present study,  

50 mg/mL for amantadine hydrochloride and 1 mg/mL for pramipexole dihydrochloride was used. 
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While most studies using microneedles for transdermal drug delivery have reported flux 

enhancement [56,57], there are some studies that have reported lack of flux enhancement [58].  

A recent study by Vitorino et al. did not observe significant transdermal flux enhancement after 

application of microneedles. Their results showed that the application of a microneedle device as 

pretreatment led only to a slight but not statistically significant increase in the transdermal permeation 

rate of olanzapine and simvastatin. Their findings suggested that the use of a nanostructured lipid 

carrier might have a greater impact on skin permeation than the active enhancement strategy of 

microneedle application [27]. 

Furthermore, it may be possible that the low diffusion coefficient of the drugs may have led to the 

lower flux values. Equation 2 shows that there is a relationship between surface area, membrane 

thickness, partition coefficient, and diffusion coefficient [59,60]. ܬ௦௦ = ୚ℎܥܭܦܣ  (2)

This equation is derived from Fick’s first law of diffusion [59] and describes steady state flux across 

membranes. The equation describes the rate of drug flux Jss of the diffusing agent through unit area A 

of the membrane as being proportional to the velocity of molecular movement though the diffusional 

medium or diffusion coefficient D and to the concentration gradient measured across the membrane.  

In this equation D is the effective diffusional pathway of the membrane and the vehicle-membrane 

partition coefficient K, which may be further defined as the ratio between the concentration of the 

permeant in the membrane at the donor-membrane interface and the vehicle in which it is applied (CV). 

According to Lane, this equation indicates that increased flux should be achieved by a change in 

diffusion coefficient D, partition coefficient K, and applied drug concentration CV. Therefore, the low 

diffusion coefficient of the drugs we investigated in this study may have been responsible for the lack 

of flux enhancement with microneedles [60]. 

A further possible explanation for the low flux values may have been the so-called “bed of nails” 

effect. Studies such as Yan et al. and Badran et al. evaluated the effect of microneedle length and 

density on transdermal drug delivery [16,61]. Yan et al. observed significant enhancement in acyclovir 

flux across human epidermal membrane pretreated with microneedle arrays of 400 μm needle length 

and 2000 needles/cm2 in needle density, but a lower enhancement of drug flux was observed for the 

microneedles with same needle length but a with a higher needle density of 5625 needle/cm2 [61]. 

Although the applied force on the microneedles was the same per array, this study found that the force 

to an individual needle would be smaller for microneedle arrays with higher needle density. This 

phenomenon is similar to the “bed of nails” effect, in which there are a sufficient number of sharp nails 

on a bed such that the weight distributed among the nails is not sufficient to exert the pressure needed 

by each nail to break the skin. Therefore, a lower-density microneedle array would produce a more 

effective puncturing of the skin. It is possible that the application method of applying a constant force 

on all the microneedle arrays could benefit the low-density microneedles to some extent because there 

was more force applied to each single needle for the low-density microneedles. 

A similar trend was observed by Badran et al.; this study focused on the use of microneedle rollers 

(Dermaroller®) of various lengths ranging from 150, 500, and 1500 μm on drug permeation [16]. This 

study found that the use of the medium and shortest microneedle rollers enhanced drug delivery. 
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Furthermore, the shortest microneedle roller led to the highest drug deposition in the SC while the 

longer microneedle models deposited drugs in the SC in similar (500 μm) or even lower (150 μm) 

amounts when analyzed after incubation of the skin. To our knowledge, this is the first time that the 

microneedle approach has been proposed for percutaneous transport of amantadine hydrochloride and 

pramipexole dihydrochloride. Though several reports exist in the literature regarding the use of 

microneedles for transdermal drug delivery, there are still significant challenges. As seen in this 

publication and others (Vitorino et al.) the use of enhancement techniques does not always result in 

percutaneous flux increases, and so it is neither trivial nor routine to test the effect of microneedles on 

transdermal delivery of each drug. 

In summary, the results of our study using a stainless steel microneedle roller indicate that the 

microneedle roller device can be used to create microchannels in the SC and is theoretically capable of 

enhancing in vitro transport of our compounds of interest across the skin. Our ultimate goal is to 

increase the flux values for these drugs, and combined techniques with sonophoresis and chemical 

penetration enhancers will be explored. It is important to keep in mind that transcutaneous flux is a 

complex phenomenon that depends on several factors such as microneedle geometry and the 

physiochemical properties of the compound [62]. 

5. Conclusions 

Application of a microneedle roller did not lead to a statistically significant increase in transdermal flux 

values for amantadine and pramipexole in this study. The reason may be insufficient increase in diffusion 

coefficient. Our future studies will examine combined techniques such as microneedles in conjunction with 

sonophoresis or chemical permeation enhancers as a means of increasing transdermal flux. 
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Glossary 

Burst force, the peak force which the probe detected as it moved into the sample; Distance to burst, 

the distance from the start of the probe touching the sample to the peak force the probe detected (where 
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the probe penetrated the tissue); Work to burst, the area under curve from the start of the probe 

touching the sample to the peak force; Initial gradient (N/s), the slope of the line from 1% of maximum 

force to 20% of maximum force; Mid gradient, slope of the line from 40% to 60% of maximum force; 

Final gradient, slope of the line from 80% to 99% of maximum force. 
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