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Abstract: The continuous increase in network traffic has sharply increased the demand for high-
performance packet processing systems. For a high-performance packet processing system based
on multi-core processors, the packet scheduling algorithm is critical because of the significant role
it plays in load distribution, which is related to system throughput, attracting intensive research
attention. However, it is not an easy task since the canonical flow-level packet scheduling algorithm
is vulnerable to traffic locality, while the packet-level packet scheduling algorithm fails to maintain
cache affinity. In this paper, we propose an adaptive throughput-first packet scheduling algorithm for
DPDK-based packet processing systems. Combined with the feature of DPDK burst-oriented packet
receiving and transmitting, we propose using Subflow as the scheduling unit and the adjustment unit
making the proposed algorithm not only maintain the advantages of flow-level packet scheduling
algorithms when the adjustment does not happen but also avoid packet loss as much as possible when
the target core may be overloaded Experimental results show that the proposed method outperforms
Round-Robin, HRW (High Random Weight), and CRC32 on system throughput and packet loss rate.

Keywords: packet scheduling; HRW; DPDK; throughput; packet loss rate

1. Introduction

With the ever-increasing network traffic, the demand for high-performance packet
processing systems with different purposes, such as healthcare monitoring [1], traffic
accident detection and condition analysis [2], and privacy protection [3], has sharply
increased in recent years. High parallelism provided by the multi-core processor makes
it a promising option for achieving both high throughput and good scalability since
multiple processing cores can be used to deal with the traffic in parallel [4–6]. However,
the packet processing systems based on general-purpose multi-core processors usually
depend on the TCP/IP stack of the operating system. Frequent switch between user
space and kernel space, multiple memory copies, and frequent interruptions degrade
the performance of packet processing rapidly [6–11]. Some special network processors
equipped with accelerators, such as PowerNP [12] and Cavium [13], can provide extreme
performance through targeted optimizations. The expensive price, long development,
and poor scalability make them unable to meet various requirements. Fortunately, the
emerging high-performance packet I/O engines such as DPDK (Data Plane Development
Kit) [14] and Netmap [15], using huge-pages, zero-copy, batch processing, and polling,
alleviate or avoid the issues faced by general-purpose multi-core processors, resulting in
great performance improvement. The appearance of packet I/O frameworks has made
it a reliable choice to achieve high-performance packet processing on general-purpose
multi-core processors. Besides, packet processing based on a programmable data plane is
also a promising option since it can provide line-rate packet processing performance [16].
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For high-performance packet processing systems based on multi-core processors,
the packet scheduling algorithm is vital, since it directly decides the load balance of the
system [4,5,17,18], which has a great impact on system throughput performance. A poor
scheduling algorithm may overload some cores while staves other cores, thus reducing the
performance of the system. According to the scheduling granularity, packet scheduling
algorithms can be roughly categorized into two categories: packet-level and flow-level [4,5].

Packet level-based packet scheduling algorithms, such as Round-Robin (RR) [10] and
The Least Load First [19], use the packet as the scheduling unit. They distribute each packet
independently among cores to achieve perfect load balancing. Although they achieve
better load balancing, these methods still have two shortcomings: (1) packets belonging to
the same flow are scheduled to different cores, resulting in poor data locality; and (2) since
packets of the same flow are processed in parallel on many cores, if flow statistics need to
be maintained, synchronization is needed to ensure the consistency between cores, which
is costly.

Flow level-based packet scheduling algorithms consider the flow as the scheduling
unit. Flow here means a set of bidirectional packets sharing the same N-tuple, for example,
the same 5-tuple (source/destination IP, source/destination port, protocol). Generally,
hashing is used by flow level schemes to schedule packets from the same flow to a specific
core [4,5,20–24]. One or more fields in the packet header are used by the hash function
to guide packet scheduling. According to the definition of the flow, packets belonging to
the same flow have the same packet header and will be mapped to the same target core.
Compared with packet-level methods, packets from the same flow are processed on the
same core, thus data locality can be maintained and synchronization is not needed.

Many studies demonstrate that flow-level packet scheduling is more suitable for
packet processing applications since the data and instruction locality can be explored to
optimize processing performance. However, the dynamic nature of the network traffic
and skewed flow size make flow level-based packet scheduling algorithms very easy to
overload some cores while the other cores have no work to do [6,25,26], thus resulting in
packet loss and lower throughput. Therefore, a hash-based flow-level packet scheduling
algorithm cannot guarantee achieving higher throughput and lower packet loss rates.

In this paper, we propose an adaptive throughput-first packet scheduling algorithm
for DPDK-based packet processing systems. Throughput-first means throughput is the
primary purpose of our proposed method even though in some cases load imbalance will
occur. Combining the feature of DPDK burst-oriented packet reception and transmission,
we use Subflow as our scheduling unit and adjustment unit. The definition of Subflow is as
follows: A set of packets belonging to the same flow (having the same N-tuple) in the burst
is defined as a Subflow, whose size is within the range of [1,bsz_rd], where bsz_rd is the
burst size of receiving packets. We use HRW [22] algorithm to guarantee packets belonging
to the same Subflow go to the same processing core since packets in the Subflow have the
same packet headers and thus have the same packet identifiers used to compute weights of
each processing core. By monitoring the occupancy of the core’s queue, named the load
factor in this paper, the system decides whether the adjustment is needed. It should be
noted that the adjustment is only valid for the current burst, not for others. In summary,
the main contributions of this work are as follows:

• We first propose to use Subflow as the scheduling unit, which makes the packet
scheduling algorithm maintain the advantages of flow-level packet scheduling algo-
rithms in most cases where the adjustment does not happen.

• We first propose to use Subflow as the adjustment unit, which can avoid packet loss
as much as possible when the target core may be overloaded.

• An adaptive throughput-first packet scheduling algorithm is proposed and demon-
strated that can achieve higher throughput and lower packet loss rate compared with
RR, CRC32, and HRW.

The rest of the paper is organized as follows. We introduce some related work in
Section 2. Then, we present the Subflow-based packet scheduling algorithm in Section 3.
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In Section 4, we evaluate our proposed method. We conclude our paper with a discussion
of future work in Section 5.

2. Related Works

In recent years, abundant works have been done on packet scheduling algorithms
due to the vital role they play in packet processing systems based on multi-core proces-
sors [4,5,8,9]. In this section, we briefly summarize these works.

To achieve excellent load balancing, packet-level scheduling algorithms such as Round-
Rubin [10] are applied. However, poor cache locality [6,11] and packets reordering [6]
make them unsuitable for packet processing applications. On the contrary, flow-level
packet scheduling is a more popular choice since it can achieve a high cache hit rate, thus
achieving a higher throughput [5,17,27,28]. Among these flow-level schemes, the low
overhead makes the hash-based design a canonical scheme that is used to dispatch the
packets that share the same N-tuples to a target core [5,18,20,29,30]. There are also many
studies on finding the best hash functions [19,20,31]. For example, the authors of [19]
evaluated the performance of different hash functions used in Internet traffic splitting and
showed that CRC16 outperforms the other hash schemes. A similar result is also found in
the literature [6]. Besides, the authors of [21] showed that CRC32 achieves a better load
balance performance than CRC16. High Random Weight (HRW) [22] is another well-known
hash method. The proven low overhead, better data locality, better load balancing, and
minimal disruption make it stand out [17,22].

The hash-based flow level packet scheduling algorithms such as CRC and HRW
schedule packets belonging to the same flow to the same processing core. However,
the dynamic nature of the network traffic and skewed flow size make these methods
vulnerable to lead to load imbalance [6,23]. The authors of [30] demonstrated that hash-
based packet scheduling schemes cannot balance the load among the processing cores
when the flow size distribution is skewed. Therefore, some adjustments are needed when
the load imbalance occurs.

An adaptive HRW is proposed in [23]. Faced with different traffic patterns, it monitors
the processor utilization periodically. When the load imbalance is present, which means
the processor utilization exceeds the thresholds configured in advance, the AHRW adjusts
the weights of the processing cores, which in turn schedules packets to different cores to
achieve load balancing. Instead of migrating any flows, the authors of [6,30] first identified
the aggressive flows according to the flow statistic and then strictly limited the migration
to the top aggressive flows. However, the migrated flows may overload the new allocated
core [5]. When the imbalance occurs, Kuang et al. [17] believed that the hashing decision
should be adjusted at once, and the new incoming packets should be rescheduled to a new
processing core. The real-time weighted queue length of each processing core is the signal
to show the load imbalance. Similar methods are also presented in [4,24], except that the
authors of [4] used the real system utilization to detect the load imbalance, which is costly.

Our proposed method is similar to these adaptive methods but different in the fol-
lowing aspects: First, the adjustment unit we use is Subflow, not the flow, therefore the
adjustment granularity is relatively small. Second, we adopt load factor to depict the core
utilization, which is less costly, while some others use the real system utilization. Third,
the purpose of our method is to achieve higher throughput and lower packet loss rates,
while some others are aimed to achieve better load balancing.

3. The Proposed Packet Scheduling Algorithm

To boost the packet processing performance, emerging packet I/O frameworks apply
batch processing technology to amortize the overhead of each packet processing and
improve cache locality [25,26,32–34], as does DPDK. Based on the load balancing example
provided by DPDK [35], we develop a packet processing system, as shown in Figure 1.
Combined with Figure 1, we briefly introduce the process of DPDK burst-oriented packet
receiving and sending.
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The packet processing system, as shown in Figure 1, mainly contains three parts:

• Packet Collecting Module: This module contains an I/O core, which is responsible
for receiving packets from the NIC and dispatching packets according to some load
balancing algorithms. The packet scheduling algorithm proposed in this paper is a
function of the I/O core.

• Packet Processing Module: This module is composed of some packet processing cores,
called Worker in this paper. These Worker cores are responsible for some tasks such as
protocol identifying, flow managing, payload parsing, etc.

• Log Module: This module contains a few cores, which are responsible for managing
the information from the Worker cores, merging some logs from the same flow, etc.

DPDK uses a poll-based mechanism to retrieve packets in a burst from the NIC
(Network Interface Controller). The burst size configured when the programming initializes
can be changed as needed. The number of packets fetched from the NIC should not be larger
than the burst size in each polling. The poll-based mechanism can avoid the unpredictable
overhead caused by the interruption [36]. Packets are distributed to a processing core,
also called a worker, according to some load balancing algorithms such as RSS [37,38],
HRW [22], and CRC32. Although packets are retrieved in a burst, they are still processed in
a 1-by-1 fashion. Packets dispatched to the same processing core are placed in the out queue
allocated to each processing core until the number of packets reaches the transmitting burst
size or the timer is expired [25]. At last, packets are delivered to the processing core in a
burst. The number of packets sent should not be larger than the burst size. It should be
noted that the burst size of receiving packets can be different from that of sending packets.

As mentioned in [30], the locality of network traffic makes hash-based flow-level
packet scheduling unable to achieve load balancing between processing cores. Some
overloaded cores lead to packet loss, degrading the throughput performance of the packet
processing system. However, the packet-level packet scheduling results in poor cache
locality, which cannot achieve desirable throughput performance. Thus, a new packet
scheduling algorithm that not only considers the load balancing but also the cache locality
is needed to achieve high throughput for packet processing systems.

Combined with DPDK burst-oriented packet receiving and transmitting, we propose
an adaptive Subflow-based packet scheduling algorithm. We envision the proposed method
has the following properties:

• On the one hand, it can still maintain the advantages of flow-level packet scheduling
when the adjustment does not happen.

• On the other hand, when the target core is likely to be overloaded, the proposed
scheduling algorithm can change the scheduling decision at once, avoiding the incom-
ing packets scheduled to the overloading core to achieve higher throughput and lower
packet loss rates.
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From the definition of the Subflow, using hash-based design, packets that belong to
the same Subflow in the same burst will be distributed to the same target core. In most
cases, where the adjustment is not needed, Subflows from different bursts will also be
scheduled to the same target core since these packets have the same 5-tuple. Therefore, the
proposed method can maintain the advantages of flow-level packet scheduling when the
adjustment does not happen.

When the load factor of the target core exceeds the pre-configured value, meaning
that the core is likely to be overloaded, the proposed algorithm will change the scheduling
decision at once; hence, packets in the Subflow will not be scheduled to the core. Us-
ing Subflow-based adjustment, we reduce the probability of packet loss, thus achieving
higher throughput.

The hash-based design is adopted in our proposed method with an adaptive Subflow-
based adjustment. The hash algorithm we use is High Random Weight (HRW), first
presented in [22], which is used to map a request to a specific server in the server cluster.
The lower overhead and better load balancing make it a popular choice for packet schedul-
ing [17,22,23]. In this paper, the definition of HRW function is as follows: Suppose ϑ(pi, C)
is a pseudo-random weight function, where ϑ : P× {1, 2, . . . , bsz_rd} → [0, n] . Here, C is
the set of processing cores, written as C = (c1, c2, . . . , cN), where N is the number of them.
P is the set of packets fetched from NIC. ϑ is assumed to generate a random value in [0, n]
with uniform distribution. For each packet pi in the burst, the target core is calculated
as below:

LBHRW(pi, C) = cj, (1)

where cj = max
1≤j≤N

ϑ
(

pi, cj
)

and LBHRW is the scheduling function used in this paper.

The packets sharing the same 5-tuples should have the same weight, thus the same
target core if no adjustment happens. As mentioned in [4], the pseudo-random weight
function plays a vital role in the performance of the HRW algorithm; hence, we follow the
one provided in [22]:

ϑ(pi, C) = (A·((A·T + B)⊕ D(pi)) + B)mod231, (2)

where A = 1103515245 and B = 12345. D(pi) is a 31-bit digest of the packet identifier
(ID), and the packet ID is generated based on 5-tuple of the packet. T is the ID of the
processing core.

For each packet in the burst, the LBHRW will generate a target value to which the
packet should be dispatched. When the target core is obtained, we check the number of
packets waiting in its ring, written as n_mbu f s. If n_mbu f s is larger than zero, i.e., there
are some packets queued in the ring waiting to be sent to the target core, we just add
the current packet to the ring to maintain the cache locality as much as possible. The
adjustment will only be triggered when the following two conditions are both met: (1)
n_mbu f s is zero; and (2) the utilization of the target core, named load factor in this paper,
exceeds the pre-configured threshold. Borrowed from the design of the hash function, we
use load factor to define the occupancy of the cores’ queue as follows: τ = Qused

Qtotal
, where

Qtotal is the total number of rings allocated to the core and Qused is the number of rings
occupied by the packets waiting to be processed. We discuss the selection of a suitable
threshold in the Experimental Section 4.1.

It is well known that the adjustment means another computing of the hash weight. At the
same time, there is the case that the target core generated by the LBHRW is still an overloading
core. To avoid this issue, we introduce an adaptive hash function when the adjustment is
needed. The final weight function ϑ′ can be formulated as: ϑ′

(
pi, CNi , µ

)
= µ·ϑ

(
pi, CNi

)
,

where CNi is a subset of C.
The adjustment factor µ is defined as µ = 1− τ, which shows the available position in

each queue. The adaptive scheduling function LBAHRW is depicted as:

LBAHRW
(

pi, CNi , µ
)
= cj, (3)
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where cj = max
1≤j≤Ni

ϑ′
(

pi, cj, µ
)
.

As mentioned above, our method uses the Subflow as the scheduling unit and packets
in the same Subflow have the same 5-tuple, thus producing the same processing core. In
the case where the adjustment does not happen, we can store the decision for the Subflow
to avoid computing the hash weight for each packet repeatedly. Meanwhile, when the
adjustment is needed, we still can store the adjustment decision for the Subflow since the
Subflow is also the adjustment unit, which means the adjustment for a Subflow happens
only once in the current burst. Subsequent packets in the burst belonging to the Subflow
follow the same decision. It is negligible that the memory overhead to store the decision
since our packet scheduling algorithm is based on the Subflow. Besides, it also can be used
repeatedly for different bursts.

Finally, the whole algorithm is described in Algorithm 1.

Algorithm 1 Subflow-based packet scheduling

1: target[bsz_rd]← {−1}
2: for each packet in the burst fetched from the NIC3
3: index← pi%bsz _rd
4: ci ← target[index]
5: if ci == −1
6: ci ← LBHRW(pi, C)
7: target[index]← ci
8: end if
9: n_mbufsi ← Get_pktnum(ci)
10: if n_mbufsi == 0
11: load factori ← Get_utilization(ci)
12: if load factori > Threshold
13: ci ← LBAHRW(pi, CNi ,µ)
14: target[index]← ci
15: end if
16: end if
17: end for

For a burst of packets fetched from the NIC, Line 1 clears the target array to guarantee
that the previous scheduling strategy is not active for the current burst. The initial value
can be any value except the logical number of Worker cores. For simplicity, we set the
initial values of the array to −1, indicating that the scheduling decision is not done. For
each packet in the burst, we use the packet ID to mod the size of the array to get the index
of the value, thus getting the scheduling decision, as Line 3 shows. If the decision is not
done for the packet, we use the load balancing algorithm to get the target processing core
and record the decision in the array. Lines 5–8 show the procedure. When the processing
core is obtained, we use the function provided by DPDK to get the number of packets
waiting in the out queue, as Line 9 shows. If the number of packets is larger than zero, we
apply the greed strategy and directly schedule the packet to the core; otherwise, the queue
utilization of the target core is needed, as Line 11 shows. Line 12 shows that, if the load
factor of the core is larger than a pre-configured value, the adjustment of the scheduling
decision is needed. According to the proposed method in this paper, another processing
core is chosen, and the decision is recorded in the array. Lines 12–15 show the procedure.
When Line 12 is not satisfied, meaning the target core has enough capacity to handle these
packets, we distribute the packet to it directly.

One more thing that should be noted is that the adjustment will lead to packets
belonging to the same flow being processed by different processing cores; thus, poor cache
performance degrades the throughput of the system. Furthermore, packets may need to
be reordered for some applications, but not for ours. In our packet processing system, the
processing core is responsible for parsing the payload of the packets, and the information
needed is sent to the Log module. The Log module is responsible for the integration of the
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flow information for users. Therefore, in our system, we pay no attention to the problem of
packet out-of-order.

4. Results

In this section, we evaluate our proposed method with RR, the original HRW, and
CRC32. The test server we use is an Intel server equipped with two 12-core Intel(R) Xeon(R)
Silver 4116 processors running at 2.10 GHz. We use Ixia as the packet generator and the
traffic is mirrored to our test server through specific ports on the switch by a 10 Gb/s fiber-
based link. The DPDK version we use is 17.05.2. Since our proposed method depends on
the Log cores to handle the issue of out-of-order, we assume that the processing capacity of
the Log cores is not the bottleneck of the system throughput, which can be easily achieved
by reserving enough cores.

4.1. The Selection of Threshold

As mentioned above, our proposed method will reschedule packets when some
conditions are met, one of which is the load factor of the core exceeds a pre-configured
threshold. The load factor represents the utilization of the queue of the core; thus, the
pre-configured threshold should have the same definition, which is also a representation of
the utilization of the queue. There is no doubt that the selection of the threshold has a great
impact on the adjustment frequency. Therefore, we first verify the probability of packet
drop under different thresholds. The results are shown in Table 1.

Table 1. The probability of packet loss rate under different thresholds.

Threshold (%) Probability of Packet Drop (%)

75 73.4

50 55.4

25 42.4

As we can see, when the threshold is 50%, the average probability of packet drop is
55.4%, i.e., there is a higher probability of packet loss when the occupancy of the core’s
queue exceeds 50%. The larger is the threshold, the higher is that probability that a packet
will be dropped. Meanwhile, a smaller threshold leads to adjustment happening frequently,
which incurs a large scheduling overhead. Therefore, in this paper, we set the threshold
of 25%. This is, only when the utilization of the core’ queue exceeds a quarter will our
proposed method adjust the scheduling decision.

4.2. Packet Distribution

The packet distribution is a direct flection of the load balancing performance of those
hash-based packet scheduling algorithms. In our tests, the length of packets generated by
Ixia are almost the same; therefore, we show the number of packets on each processing
core (Worker) under different network loads to describe the load balancing performance of
different scheduling algorithms, as shown in Figure 2.
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The Ideal curve represents the theoretical optimal allocation; in other words, the
number of packets on each processing core is pkt_num

core_num , where core_num is the number of
processing cores. In our test, core_num is 4. Intuitively, RR would achieve a similar distri-
bution with Ideal; however, to be consistent with our Subflow-based packet scheduling,
RR is performed on each burst, not for the whole traffic. Since the number of packets
fetched from the NIC in the burst varies with each retrieval, the load distribution of RR is
as Figure 2 shows.

As shown in Figure 2, the number of packets on each core is a little unbalanced for
HRW and the proposed method, compared with RR and CRC32. As mentioned above, the
primary purpose of our proposed method is to achieve higher throughput and lower packet
loss rates. Only when the load imbalance leads to packet loss will the scheduling decision
be adjusted. As we can see, CRC32 achieves an excellent load distribution, approaching
the Ideal distribution, which shows that it is not a bad idea to use it as the scheduling
algorithm for a packet processing system.

4.3. Throughput and Packet Loss Rate

The throughput of each method is evaluated in this subsection. Figure 3a shows the
throughput when the packet loss is zero. while Figure 3b shows the result when the packet
loss is not larger than one of ten thousand. In our tests, we maintain three counters on the
I/O core: the first one is used to record the number of packets received; the second one is
used to record the number of packets distributed to all Workers; and the last one is used to
record the number of packets dropping due to lack of position. Therefore, here, the packet
loss is the real packet dropping for the entire traffic.
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If we restrict the packet loss to zero, as shown in Figure 3a, the throughput per-
formance of our proposed method achieves an average improvement of 4.75, 0.64, and
0.77 times, respectively, compared with RR, CRC32, and HRW. If a slight packet loss is
allowed, where the packet loss rate is not larger than one of ten thousand, the through-
put performance of our method still has an average improvement of 4.75, 0.2, and 0.41,
respectively, compared with RR, CRC32, and HRW.

With the Subflow-based adjustment, some packets are rescheduled to the core, which
is capable of handling them, leading to no packet loss, and thus improves the throughput
performance of the packet processing system. As for other algorithms tested, overloaded
cores result in packet loss, thus reducing the throughput performance. One may find
that, under two cases, the throughput of RR is the same, which is lower than the other
flow level-based packet scheduling algorithm, demonstrating that flow level-based packet
scheduling algorithm is more suitable for packet processing applications.

To further evaluate the effectiveness of the proposed method, we use some special
cases where the traffic is dispatched to one or two cores, i.e., there are one or two cores
overloading while the others have no traffic. The test results are shown in Figures 4 and 5.
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Figure 4 shows the packet loss rates under different throughputs when one core is
overloaded and the others have no traffic. Even when the throughput is 300 Mbps (Million
bits per second), the packet loss rate is larger than 20% for HRW and CRC32. For our
proposed method, the packet loss remains zero from 300 to 2400 Mbps. Under this special
case, the improvement in throughput of our proposed method is around one order of
magnitude when the packet loss rate is restricted to zero.

Figure 5 shows the case where two cores overloaded, i.e., all traffic is distributed to
two cores and the remaining have no traffic to process. The result is similar to Figure 4.
When the throughput is 300 Mbps, there is a slight packet loss for HRW and CRC32, while,
for our proposed method, the packet loss rate the packet loss remains zero from 300 to
2400 Mbps. It is interesting to note that, according to the results in Figures 4 and 5, under
the condition that the throughput is the same, the packet loss rate is far smaller for the two
cores overloading case than that of one core overloading. The reason is that, compared
with the single traffic generated by Ixia for one core overloading, the packets generated for
the two cores overloading case are dispatched to each core interleaved, giving the cores
some gaps to breathe, thus having a lower packet loss rate.

The results in Figures 4 and 5 further demonstrate the effectiveness of our proposed
method. With the Subflow-based adjustment, we not only can reduce the packet loss rate
to zero when the throughput is low but also can improve the throughput to a high level.

4.4. Scheduling Overhead

Although the adjustment can reduce packet loss rate and improve the throughput, as
shown in Algorithm 1, the adjustment also needs one more HRW, causing extra overhead
of the packet scheduling algorithm. Therefore, we test the overhead of each scheduling
algorithm. The result is shown in Figure 6.

In our experiments, the average time spending on distributing each packet is 23.3,
28.4, 24.4, and 31.4 ns for RR, CRC32, HRW, and the proposed method, respectively.
The overhead of our proposed method is 1.29 times that of HRW, which is acceptable
considering the improvement in throughput. Compared with RR and CRC32, the increase
in overhead is 0.35 and 0.11 times, respectively.
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5. Conclusions and Discussion

To handle the ever-increasing network traffic, high-performance packet processing
systems based on multi-core processors are a promising option. However, how to schedule
packets to each processing core is crucial to make full use of the processing capacity of the
system. In this paper, we propose an adaptive throughput-first packet scheduling algorithm
for DPDK-based packet processing systems. Combined the burst-oriented packet receiving
and transmitting, we propose to use the Subflow as the scheduling unit as well as the
adjustment unit. By monitoring the occupancy of the core’s queue, the system makes a
scheduling decision as well as an adjustment decision if needed. With Subflow-based
scheduling and adjustment, the proposed method gives the overloaded cores some gaps
to breathe, thus reducing packet loss rate and improving the throughput of the system.
The experimental results show that, compared with HRW, the throughput of our method
achieves an average improvement of 0.77 times. Compared with RR and CRC32, the
improvement is 4.75 and 0.64 times, respectively. Under some special cases, when only one
core or two cores is overloaded, our method can achieve zero packet loss rate even under
the throughput of 2400 Mbps, while CRC32 and HRW drop packets when the throughput
is 300 Mbps. The extra overhead incurred by the adjustment is 0.29 times that of HRW,
which is acceptable considering the improvement in throughput and packet loss rate.

It is well known that the adjustment of the scheduling decision may incur out-of-
order packets. We assume that the out-of-order problem is solved by the Log module
by merging these logs from the same flow in this paper. However, the passive effects
on the Log module should be further evaluated in future work. At the same time, when
the adjustment is needed, some other factors such as the protocol the target core must
process should be considered to maintain cache affinity as much as possible. Moreover,
with different configurations of hardware and software platforms, the effectiveness of the
proposed method should be further evaluated in future works since these factors affect the
performance of packet processing systems.
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