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Abstract: “Hybrid Cloud Storage” (HCS) is a widely adopted framework that combines the function-
ality of public and private cloud storage models to provide storage services. This kind of storage
is especially ideal for organizations that seek to reduce the cost of their storage infrastructure with
the use of “Public Cloud Storage” as a backend to on-premises primary storage. Despite the higher
performance, the hybrid cloud has latency issues, related to the distance and bandwidth of the public
storage, which may cause a significant drop in the performance of the storage systems during data
transfer. This issue can become a major problem when one or more private storage nodes fail. In this
paper, we propose a new framework for optimizing the data uploading process that is currently used
with hybrid cloud storage systems. The optimization is concerned with spreading the data over the
multiple storages in the HCS system according to some predefined objective functions. Furthermore,
we also used Network Coding technics for minimizing data transfer latency between the receiver
(private storages) and transmitter nodes.

Keywords: cloud computing; cloud storages; optimization algorithms; network coding

1. Introduction

Cloud computing has become a trend in technology, due to providing massive, large
scale services for solving complex information technology (IT) problems. These services
present a wide range of advantages, ranging from organizational data management over
the different storages systems to providing secure access to different recourses, as well as
administrate them by using multiple groups.

As part of the cloud technologies, cloud storage systems were always an attractive
alternative to private distributed storage systems, due to their higher durability and their
lower storage cost. Nonetheless, storing the entire data in the cloud brings forth data
privacy or vendor-lock issues, which can cause unavailability or, ultimately, the loss of
data. For example, an interruption [1] in February 2017 of Amazon S3 in North Virginia
showed that even big cloud storage vendors struggle with service failures. To avoid this
problem, many organizations investigated the opportunities of integrating the cloud and
private distributed storage systems as part of the single uploading scheme. The main
problem related to this scheme is having redundancy in the system. The simplest form
of redundancy is replication of data chunks over the network. Specifically, for these
cases, erasure coding offers better storage efficiency. However, in hybrid cloud storage
systems, redundancy must be continually refreshed as nodes fail or leave the system. This
involves large data transfers across the network and requires higher recovery bandwidth
for remaining robust enough in the case of node failures. Moreover, when the recovery
bandwidth increases, the cost of data recovery expands simultaneously. All of this raises a
question about the effectiveness of current data recovery models for hybrid cloud storage
systems and triggers the idea of having an efficient model for handling the data uploading
process.
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In this paper, we address the issue of cost-effective redundancy in hybrid storage
systems. We build a new framework using “Network Coding” technology on top of the
peer-to-peer connection, between HCS nodes and categorized storage systems, in two
subgroups:

• Transfer Nodes—Data storages, which keep a combination of the chunks from different
objects; and

• Receivers Nodes—Private storages, to keep the object for user access.

If a single receiver node fails and/or is replaced with new storage, we transfer all
necessary fragments from transfer nodes to rebuild the object in the storage. Meanwhile,
when maintaining redundancy in the system, we seek storages, which we can use for
minimizing the amount of the bandwidth for object recovery in the new receiver storage.
For this, we introduced a new heuristic for finding optimal data chunks placement.

The paper treats this material in the following structure:

• in Section 2, we provide a brief literature survey,
• in Section 3, we formulate the problem of optimal file upload,
• in Section 4, we present the optimal solution to the problem, and
• in Section 5, we describe the stimulation environments and results.

2. Summary of Results

In this section, we summarize the current state-of-art solutions, in the field of dis-
tributed storage/cloud storage systems, together with their pricing models for data storage.

2.1. Background Research for Distributed and Cloud Storage Systems

Throughout the past few decades, erasure coding schemes, like Reed-Solomon codes,
were an attractive alternative to replication in distributed storage systems, due to optimal
balancing between storage cost and data durability. It was used as the main error-coding
method in various papers (e.g., References [2,3]) for reducing repair bandwidth costs.
This method, however, has a higher rate of the coding, which is not suitable for many
applications and storage systems, like “Network Attached Storage” (NAS). Moreover,
erasure coding consumes a significant amount of recourses during the replication of the
data over multiple storages [4].

The idea of implementing Network Coding to the distributed storage systems was
first proposed by Dimakis, Prabhakaran, and Ramchandran [5]. It has a number of advan-
tages over standard erasure coding methods, like recoding already encoded data without
destroying the properties of the code.

The concept of performing erasure and Network Coding to the cloud storage systems
was the main research objective for multiple papers, like [6] Reference [7]. Researchers
were mostly concerned with the optimal way of storing the data, i.e., with distributing
over the multiple cloud vendors [8]. When the data is stored on cloud storages, several
“Quality of Service Factors” factors, like availability, durability, and vendor lock-in, are
required to be taken into consideration. While striping data with traditional erasure codes
performs well for short-term data storages uploading, for long-term storage, it is not
always affordable, especially for the cases when there is a redundant storage/storage in the
system. A repair operation of the redundant cloud storage node requires retrieving the data
over the network from existing surviving cloud nodes. Because cloud vendors have high
outgoing (repair) traffic prices, moving an enormous amount of data across clouds is not
affordable (see Section 2.2). This triggered researchers to look into cost-effective alternatives
of the erasure coding methods for maintaining data redundancy and fault tolerance over
cloud storages. Further research on this topic mostly focused on minimizing repair traffic
by using Network Coding and applications of it, e.g., “NCCloud” [9], which was built
on top of a network-coding-based storage scheme called minimum-storage regenerating
(MSR) codes.
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2.2. Public Cloud Storage Cost Strategies

Most of the vendors offer a wide array of different cloud storage services, and the
price for each of those services varies from storage provider to storage provider. Because
of the large variety of cloud storage services, different pricing models are employed by
cloud vendors [10]. Nonetheless, most of the pricing models have a common substructure,
namely: they charge for the used storage, the used outgoing traffic, and the amount of
reading and write operations. Specifically, cloud vendors charge mostly for two types of
data activity:

• Data transfer cost [11]: Type of rate which is charging for every GB downloaded from
the cloud or moved to another cloud facility.

• Requests (API calls) cost [12]: Type of pricing for data operations within the storage,
e.g., copying data or adding new objects. As a rule, all requests are paid, except
commands for data deletion.

Furthermore, most cloud providers use a block rate pricing model [13], where data
storing prices decrease with storing more data. Because cloud providers have several
geographical data centers (regions) [14], they use different cost calculation models for
additional services (e.g., data migration), as well. Notably, those providers often offer
reduced prices, as well, for data migration services between regions.

Apart from the varying pricing, which is based on the regions, pricing models can also
differ by storage technologies which are using by cloud vendors. Generally, there are three
types of data storing and retrieving technologies which use by cloud providers. Those are

“Hot Data”, “Cold Data”, and “Cool Data” [15,16].
In comparison with traditional conventional storages, long-term storage solutions

have cheap storage and high traffic prices. Moreover, this type of storage has a minimum
storage duration, i.e., Billing Time Unit (BTU) [14]. BTU is independent of API calls charge,
and it will not change, whether or not the data was migrated or deleted. Because long-term
storages are used mostly for backup purposes, the BTU cloud vendors has a charge for the
minimum object size: Billing Storage Unit (BSU). BSU is a standard pricing methodology
for all types of data that have a smaller size than the BSU size. BSU size will be accepted as
a minimum for all types of data, regardless the size of the data is less than that.

While the pricing models used by cloud vendors are based on similar characteristics,
there are also significant technological and conceptual differences between them. For in-
stance, Amazon offers storage technologies, like Amazon Simple Storage Service (Amazon
S3) and Amazon S3 Standard—Infrequent Access (IA) [17], with 30 days BTU and a 128KB
BSU [18]. For these types of storages, Amazon applies block rate pricing model for the
traffic, as well as for the storage. At the same time, Google also applies the block pricing
model for their “Google Cloud Storage” but only for outgoing data transfer [19]. At the
end of the paper, we provide more information about the pricing of these cloud storage
systems.

In our paper, we introduce a new framework for hybrid cloud systems. Our research
is mostly focused on optimizing heterogeneous characteristics (throughput, storage cost,
etc.) of hybrid cloud storage systems. The main goal of this investigation was to use the
advanced performance of Network coding for resource allocation in a flexible manner
between public and private cloud storage nodes, to increase upload/download speed,
while minimizing the data upload/download and store cost. More explicitly, our approach
is to store Network Coded objects in distributed cloud storage entities, e.g., Amazon S3
and Google GCS. In Network Coding, the objects are stored as different random linear
combinations of the chunks in each cloud storage. This approach allows us to avoid
an overwhelming bookkeeping process when transferring the data between nodes and
additional delays from a highly loaded cloud storage. From Figure 1, it can be seen that the
original object, which is composed out of several chunks, is coded, and stored in multiple
cloud storages. Those chunks use recovery of the original object in the case where the
original object will be corrupted, or storage of the object will be replaced with a new one.
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Figure 1. Architecture of the data chunk placement model.

The results of this paper can be useful for organizations which use hybrid cloud
storage systems in the production environment, along with cloud vendors. In upcoming
sections, we demonstrate our measurement methods in conjunction with measurement
results, using real-life cloud providers, under a variety of scenarios.

3. The Model

In this section, we briefly explain the problem formulation, as well as the data chunk
placement model.

3.1. System Characterization

Let us first assume that the system consists of two sets of the storages:

• set θ = {θ1, . . . , θF} to denote the public cloud storages; F is a number of the nodes,
and θj denotes the jth public node, and

• set U = {U1, . . . , UT} to represent the avalaible private storages, where T is number of
the private nodes, and Ui denotes the i-th private node, while

• u = {u1, . . . , uT} represents private storages sizes.

As was mentioned before, each object consists of the same size fragments (chunks
or packets), and those fragments are transferred between the transmission and receiver
nodes, i.e., if the object consists of the set of chunks Ω = {Λ 11, Λ12, . . . . , Λµv} (where µ
represents the cloud vendor, and v is the region of the storage), then the average size of
each chunk will be:

Ψλ =
|Ω|
κ

, (1)

where кis a number of the fragments, and Ω is the object size. The costs of the data transfer
between the nodes are characterized by the following matrix:

W =

 w11 . . . . w1F
. . . . . . . . . . . .
wT1 . . . . wTF

,

where is wab represents data transfer cost (data transfer rate) between source “a” and
receiver “b”.

Since some storage nodes may fail, one of the main concerns of system design is
reliability. To avoid data loss and ensure system integrity during the building/rebuilding



Future Internet 2021, 13, 181 5 of 12

process of the objects, we performed a two-step procedure for ensuring the integrity of the
system: in the first step, we check the accessibility of all storage systems, and, if the storage
systems are fully available for data transfer, we perform the next step, in which we check
the availability of the data.

Even though cloud storage systems were designed to be nearly 100 percent durable,
multiple factors (like network failures) can disrupt accessibility of the storage. Furthermore,
the encrypted data which we store in cloud storages is vulnerable to attacks [20–22] and
can be damaged in multiple ways. If the encrypted data is damaged, we consider the data
as unavailable for rebuilding, despite the fact that there is storage available for data transfer.
For this reason, we introduced two new terms: the probability of availability (P) and the
probability of unavailability (P’). Because the system needs to be stable, we accept that the
availability probability of the storages always must be much bigger than unavailability
probability: P >> P’. The metric which we use for availability is number of nines [23]. For
example, if the availability of the system is 99.9%, then we refer it as three nines. The
system with three nines availability is expected to have 8.75 h downtime per year [24].
Thus, it represents system unavailability probability, which is equal to 0.1%. To manage
a cloud-to-cloud (public-to-private) data transfer successfully, a certain number of the
transfer nodes should be available for rebuilding the object. The overall availability-state
of the nodes is defined by an n-dimensional binary vector, where n is the number of the
nodes, and cξ = 0, if the storage is inaccessible; otherwise, cξ = 1, if is available to transfer
data. If we will consider that a cloud node has the availability probability, then, for ideal
case, the availability of the overall node will be:

P = ∑
c1+c2+...+cF

F

∏
ξ=1

pξ
cξ . (2)

Therefore, the probability of, at most, one node failing is:

P = ∑
c1+c2+...+cF≥F−1

F

∏
ξ=1

(1− pξ)
1−c

ξ pξ
cξ . (3)

If we will have, at most, N redundant transfer nodes, then the probability of the
unavailability of N+1 storages will be:

P′ = 1− ∑
c1+c2+...+cF≥F−N

F

∏
ξ=1

(1− pξ)
1−c

ξ pξ
cξ , (4)

as

P′ = 1−
N

∑
ξ=0

(
F
ξ

)
· (1− p)ξpF−ξ , (5)

where P′ < 0.001.
With summarizing above conditions, we define the reliability of the system as below:

Definition 1. (Unavailability Probability): Let P’ denote the unavailability probability of the
system. In order to keep the probability of data loss under a threshold during the rebuilding and
transferring objects, unavailability probability of the system P’ should be less than 0.001 [14].

• The “Quality of Service” (QoS) criterion on reliable file upload implies that the number
of the fragments stored in the transfer nodes must be sufficient for rebuilding the

object. Let’s assume that we have Y =
v
∑

τ=1
yτ fragments for yielding, Y ≥ Ω. For the

specific cases where we have N redundant node with probability P’, the QoS criteria

will be P(
v
∑

τ=1
yτ ≥ Ω) > 1− P′.
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3.2. Optimal Uploading Criteria

The optimal uploading criteria is formulated by the following steps:

• The chunks transfer from the public node to the receiver node is represented by a
binary matrix X, where the elements are xijg= {0, 1} being transferred from node i to
substorage g of node j.

• The overall size of the chunks, which were transferred to receiver nodes, should not
exceed the storage size. Namely, the data reliability criteria of the QoS standard should
not be violated.

3.3. Formulation of the Optimal Upload Strategy

To meet the criteria described above, we designed an optimal uploading scheme. We
can formalize our optimal uploading problem as searching for optimal Wopt as follows:

Wopt: min
T

∑
i=1

F

∑
j=1

k

∑
g=1

wijxijgΨΛig , (6)

under the conditions of

k

∑
g=1

xijgΨΛig ≤ ubj, k ≤ F, b = 1, .., d, j = 1, .., T, i= 1,.., F, (7)

T

∑
i=1

F

∑
j=1

k

∑
g=1

γijΨΛig ≤
F

∑
j=1

ubj b = 1, .., d, (8)

where γijg represents binary transfer matrix between nodes, and ubj represents the overall
size of the sub-storages in the single vendor.

P(
v

∑
τ=1

yτ ≥ Ω) ≥ P′. (9)

The main purpose of constraints (7) and (8) is to avoid exceeding the size of the sub
storage and node (where (7) was used for sub storage and (8) for the node) during the data
transfer.

4. Heuristics for Finding an Optimal Data Chunk Placement

In this section, we propose an algorithm for finding the optimal data chunk placement.
To obtain this, we should minimize the cost of the object rebuilding, while providing
full-scale search.

4.1. Data Chunk Change Criteria

Let us assume that we have an object which consists of the chunk vector
Λ′ = (Λ′1, Λ′2, . . . , Λ′n−1, Λ′n). To meet reliability criterion, let us accept that the availabil-
ity probability of all necessary storages for data transfer is p(θ′) and p(θ′) > p′(θ′). If the
probability of transferring at least Y chunks (p(Y)) is to be increased in order to fulfill the
second reliability criteria, then there is the only way to do this: by transferring chunk from
the storage θ′ (where is θ′ ∈ {θ1, . . . , θF}) to the storage U’ (where is U′ ∈ {U1, . . . , UT} ).
Therefore, when the chunk is transferring to receiver storage, the third reliability criteria
should be obtained, which means ∑

i=1
Λi ≤ u′ (where is u′ ∈ {u1, . . . , uT}).

4.2. Moving Chunks from the Transmitter to Receiver Nodes

Let us suppose that the chunk transfer combination specified as the vector
Y = (Λ′′ 1, Λ′′ 2, . . . , Λ′′ n−1, Λ′′ n) and the object itself is Ω = (Λ11, Λ12, . . . , Λδn). If the sin-
gle chunk was transferred from Y to Ω, then both vectors change as Y = (Λ1, Λ2, . . . , Λn−1)
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and Ω = (λ′11, λ′12, . . . , λ′βn, Λn), where λ′ represents existing chunks in the storage. The
reliability has been increased by this state change as an additional chunk is available for
rebuilding object in the case where the object will be corrupted or totally lost. However, in
this case, the cost object rebuilding is also increasing, but the transformation is defined in
such a way that the required minimal cost of the chunk rebuilding is defined as an optimal
for the current type operation. In the next section, we describe this process more briefly.

4.3. Data Chunk Placement Design Algorithm

To provide full-scale search, the availability probability of the storages was checked
first. If the availability is p(θ′) > p′(θ′), then set the initial cost of the transfer Wi = 0.

Start to search for the chunk to rebuild the object. If the chunk Λm was transferred,
then the overall transfer cost changes. In this case, the state matrix update for the given
transfer storage updates from “0” to “1”.

Check the conditions (8), (9), and (10); if the conditions are fulfilled, then update the
overall minimum cost for the data transfer, Wi = Wi

′. If, in the next iteration, the new
overall cost Wi

′′ < Wi, then Wi = Wi
′′ ; otherwise, the old one keeps continuing to search.

There are three conditions for the termination of the algorithm:

• Availability probability of the data transfer storages decreases to less than 0.999. This
case is violating the first reliability condition of the system.

• Probability of the successfully rebuilding object became less than the probability of
the unsuccessfully rebuild P(Y′) < p′.

• There is no more transfer storage to provide search.

5. Performance Results

The proposed algorithm in this paper was evaluated with two objectives:

• find the minimum data transferring cost for the ideal case, when all storages are
available for data transfer and rebuilding;

• find the minimum data transfer cost, when there is one or multiple storages are
redundant in the system.

To reach the optimal solution, a full-scale search was performed. However, because of
the large processing time and resource consumption required to process a large amount of
data, the optimal solution search was only run on a small data set. Our aim was to test the
algorithm on real-life scenarios; thus, we compared our results with our previous model
OUS [25], as well as with scenarios when the single cloud vendor storage (either GCP or
AWS) was used for data uploading. The common approach between these three models is
not having a recovery strategy for data uploading from the breakpoint. Moreover, while
OUS can transfer from multi-cloud vendors, AWS and GCP do not have this functionality.
OUS also distributed data over the nodes in the network, yet it did not reconstruct the
whole data in the network coding style, due nature of the model. This was a reason why
we decided to test our model for different cases and compare performance with all these
three data uploading models.

For information collecting purposes, we used existing metric systems of the cloud
providers.

5.1. Testbed Setup and Metrics

For setting up testbed and showcasing the previously presented analytic results, we
emphasized existing research studies [26,27] in the field. For encoding and decoding the
data object, we use KODO-Python: Python binding for KODO Network Coding library [28]
which was written in C++ language.

For testing purposes, we took multiple random files with the size of 16 MB, and we
split them into the chunks with the size of 512 KB. Moreover, for the current model, we
used generation size 32 and the coefficient which was chosen from the finite field with a
size of GF(28) [29].



Future Internet 2021, 13, 181 8 of 12

The model was simulated in the environment, where the server has 50 GB of RAM and
12 CPU with 6 cores per Socket. In addition to this, we also created a simulated platform of
a hybrid cloud multi-node system which consists of 8 storages (Google Nearline and S3
Standard-Infrequent Access), running in different regions, as well as 2 local storages, which
was replicated receiver nodes. Receiver storage size was artificially limited maximum to
100 MB for testing purposes.

For our experiments, we used cloud vendors to cool data pricing strategy. “Cool Data”
has a lower storage cost compared with its predecessors. However, it has extra operation
fees per request and retrieval charge for every GB of downloaded data. As was presented
above, the early deletion fee is another outlying item for “Cool Data” storage tier. No
matter that the data was stored during the period or removed before the last day of the
BTU, the minimum storing span will always go up. As an example, if the 1-GB data was
stored on day 1 and removed on day 9 in Google Cloud Storage, the charge will be:

• $0.01 (0.01$ is approximate price for GCP storage) * 1 GB * 9/30 = $3 for storing the
data from day 1 to 9;

• $0.01 * 1 GB * 21/30 = $7 for storing the data from day 9 to 21, 10$ in total.

Both of the cloud vendors which were chosen for the testing purpose have a free
tier for a certain amount of the REST API calls and data retrieval operation with multiple
restrictions, such as after 1 GB and 1000 requests to “S3 Standard-Infrequent Access”
storages, where Amazon charges 0.0001–0.1$ per 1000 requests, depending on the type of
the request [30]. The price also varies based on the regions of the cloud storage. For our
experiment, we use the same pricing scheme for per 10 requests (GET request only) and
1 MB of the data (due to a size small size of the data which we used for testing).

Further measurement was done using official Amazon “S3 Transfer Acceleration” [29]
and Google “Google Cloud’s Operations Suite” [31] tools. For storage metrics, we used
the “CloudWatch” [32] monitoring service. All metrics information which was used for
analyzing the performance of the algorithm is summarized in Tables 1 and 2.

Table 1. General metric parameters.

Parameter Name Value

Number of the Transmitter Storage 8

Number of the Receiver Storage 2

Number of the Chunks per file 32

Storage Capacity Range (KB) [4096, .... , 102,400]

Chunk size (KB) 512

Locations of the receiver Storages [Baku, Budapest]

AWS Transmitter Storages Location [Seoul, Cape Town, Frankfurt, Oregon]

GCP Transmitter Storages Location [Zurich, Mumbai, Osaka, Montreal]

Table 2. Simulating parameters (measured in real time).

Region Name GET Request From Location Data Transfer OUT/GB Storing Cost

AWS Asia Pacific (Seoul) 0.00035 $ Baku 0.126 $ 0.025 $

AWS Europe (Frankfurt) 0.00043 $ Budapest 0.09 $ 0.0245 $

AWS US West (Oregon) 0.0004 $ Budapest 0.09 $ 0.023 $

AWS Africa (Cape Town) 0.0004 $ Baku 0.154 $ 0.0274 $

GCP Europe-West6 (Zurich) 0.01 $ Budapest 0.010 $ 0.014 $

GCP Asia-South1 (Mumbai) 0.01 $ Budapest 0.010 $ 0.016 $

GCP Asia-Northeast2 (Osaka) 0.01 $ Baku 0.012 $ 0.016 $

GCPNAmerica-NorthEast1
(Montreal) 0.01 $ Baku 0.009 $ 0.013 $
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5.2. Testing Results

To test the performance of the algorithm, we took 6 files with the same size and
split them to 192 chunks with size 512 KB, as described in Table 1. As the initial step,
we distributed chunks over the transmitter storages because OUS and traditional cloud
storages have no Network Coding functionality.

In the first experiment, we wanted to determine the best data uploading strategy
based on the varying costs of the vendors for different regions and compare our result with
the single-vendor solution (either AWS or GCP) and OUS performance. In this experiment,
we assumed that there was no redundant storage in the system, and all storages were fully
available for data transfer. Besides, we accepted that each request is returning a 512 KB
single chunk, and all requests go parallel.

For the first case, both of the algorithms, OUS and DCP, performed well, with a minor
difference, compared to single cloud data transfer solutions. In contrast to manual data
uploading/downloading, where the cost of the data transfer cannot always be tracked,
OUS and DCP have better performance because both algorithms always seek the minimum
cost. Figure 2 describes how the minimum cost increased in four different environments
during object rebuilding.
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In the second phase of the test, we followed the same approach as in the first test but
with some changes. Normally, all cloud storages have an availability probability of 99.99%,
which we cannot change. For this reason, we created damaged data sets. This type of data
set cannot be used for object rebuilding because of the lack of bits.

After testing both of algorithms, we admitted that DCP had a better performance
compared to OUS and single cloud vendor solutions. Even though, in OUS, we also
calculated overall cost with using minimum data transfer cost, OUS has no option for
rebuilding an object from broken point (in this case where OUS starts the object rebuilding
process from the beginning again), thus increasing overall cost data object rebuilding
process. The second test actually shows the benefits of using Network Coding versus
traditional data transfer strategies to cloud storages. Figure 3 describes the second test
cases for the evaluation of the algorithm performance.
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From both of the experiments, it can be seen that overall performance of the DCP is
much better than OUS and single vendor data uploading strategies. Furthermore, because
of the Network Coding performance, DCP has significant benefits over the mentioned
technics.

5.3. Proposed Model Implementation

DCP can be implemented as part of both interim data transfer between public and
private cloud storage clustering, as well as part of the multi-part upload to cloud storage
systems from a single location. For the cases where the model was used for interim
data transfer, the performance shared storage system will be improved significantly due
to the provided near-optimal solution. Because the model is taking care of the nodes’
unavailability, clustered storage systems issues, like redundancy, will also be minimized.

As part of the multi-part uploading process, it is extremely essential to have a min-
imum upload cost for the POST requests. DCP can help to achieve it, with search per-
formance, where is the model looks for real-time cost-optimal storage from the provided
location. This can help to optimize the SLA agreement between provider and client.

6. Conclusions

In this paper, we introduced a novel approach for distributed storage uploading
strategy to cloud storages. The proposed optimization method is capable of rebuilding any
object with a near-minimal transfer cost. The algorithm can especially be useful for big
organizations, which are seeking a way for the integration of private cloud storages to the
public cloud with less secure concern.

With using Network Coding technics, the data chunk optimization algorithm covers
issues related to network lost during the data transferring. This functionality is essential
for organizations, where non-stop data transfer happening between internal and cloud
storage nodes.

As future work, we are going to investigate the performance of the algorithm on
different real-world tasks, in real-time. Moreover, we will analyze the performance of the
different optimization algorithms on our model and will compare the existing result with
them. In addition to this, we will try to integrate the uploading strategy to open source
libraries which are using for data uploading to cloud storages.

In addition, another challenge is cloud vendors’ pricing models, which are quite
changeable and based on the multiple factors (such as data storing prices decrease with
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increasing the size/amount of the data in the storage). As a part of further research, we
will also work on improving our model for these factors.

Besides the optimization of the data uploading process, we will also extend our
algorithm, for the data streaming process, where we will introduce an extended algorithm
for incremental data.
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