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Abstract: With the exhaustion of IPv4 addresses, research on the adoption, deployment, and predic-
tion of IPv6 networks becomes more and more significant. This paper analyzes the IPv6 traffic of two
campus networks in Shanghai, China. We first conduct a series of analyses for the traffic patterns and
uncover weekday/weekend patterns, the self-similarity phenomenon, and the correlation between
IPv6 and IPv4 traffic. On weekends, traffic usage is smaller than on weekdays, but the distribution
does not change much. We find that the self-similarity of IPv4 traffic is close to that of IPv6 traffic,
and there is a strong positive correlation between IPv6 traffic and IPv4 traffic. Based on our findings
on traffic patterns, we propose a new IPv6 traffic prediction model by combining the advantages of
the statistical and deep learning models. In addition, our model would extract useful information
from the corresponding IPv4 traffic to enhance the prediction. Based on two real-world datasets,
it is shown that the proposed model outperforms eight baselines with a lower prediction error. In
conclusion, our approach is helpful for network resource allocation and network management.

Keywords: IPv6 traffic analysis; self-similarity; IPv6 traffic prediction; SARIMA; LSTM

1. Introduction

The Internet has become a fundamental component in people’s daily life. More and
more users access the Internet through different kinds of networked devices, leading to an
exhaustion of IPv4 addresses. Therefore, Internet service providers (ISPs) have gradually
increased IPv6 usage [1]. As of February 2022, the percentage of users that access online
services using IPv6 has exceeded 35% of all Internet users [2]. A key difference between
IPv6 and IPv4 is the size of the address space. An IPv6 address has 128 bits, while an
IPv4 address has only 32 bits. As a result, IPv6 has many critical advantages, such as
significantly expanding the total number of IP addresses and providing better network
services. Moreover, IPv6’s privacy extensions can resist hostile tracking for better privacy
protection [3].

However, the incompatibility between IPv6 and IPv4 and equipment replacement costs
have hindered the deployment of IPv6. Although there are several transition mechanisms
helping ISPs migrate IPv4 to IPv6, such as dual-stack [4], tunnel [5], and translation
technologies [6], it will take a long time to replace all IPv4 addresses with IPv6 addresses.
The study of IPv6 networks will help us understand the Internet’s current development and
speed up the popularization of IPv6 networks. The China Education and Research Network
(CERNET), an ISP serving thousands of universities in China, is one of the early adopters
of IPv6. Studying the characteristics of IPv6-based campus network traffic in CERNET will
provide insights into understanding IPv6 users’ behavior and shed light on the further
deployment and management of IPv6. In this paper, we collect the network traffic volume
of two universities from CERNET for research. The two main research questions of this
paper are shown as follows:
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RQ1. What are the temporal characteristics of the IPv6 traffic volume?
RQ2. How to accurately predict the IPv6 traffic volume?
Analyzing and predicting network traffic is beneficial for network resource man-

agement and anomaly monitoring [7,8]. Even though many prior works have examined
IPv6 network characteristics [9–11], we still do not have a clear picture of the recent IPv6
network traffic. The network traffic volume can intuitively reflect the users’ demand,
which is an important consideration in network resource management [12]. To address
RQ1, we have conducted a comprehensive traffic volume analysis of the current situa-
tion of IPv6 campus networks. The analysis contains weekday/weekend patterns, the
self-similarity phenomenon, and the correlation between IPv6 and IPv4 traffic. Moreover,
it is worth noticing that traffic prediction is a time series prediction problem. There are
many studies on time series forecasting, and their methods are broadly divided into three
categories—statistical methods, machine learning methods, and hybrid methods. One
of the most representative statistical methods is the auto-regressive integrated moving
average (ARIMA) [13], while the long short-term memory neural network (LSTM) [14] is a
popular machine learning method in solving time series forecasting problems. The hybrid
method is a combination of statistical methods and machine learning methods. For the
traffic forecasting problem, there have been studies [15–17] using these three categories
of methods. Although these studies have improved the prediction accuracy to a certain
extent, there is a lack of a proper prediction method for IPv6 traffic. To answer RQ2, we
consider the correlation between IPv6 and IPv4 traffic and leverage the advantages of both
statistical and machine learning methods. A new model is proposed to achieve a better
IPv6 traffic volume prediction than existing methods.

The contributions of this paper are summarized as follows:

• This paper starts with analyzing the IPv6 traffic characteristics of two universities in
Shanghai, i.e., Donghua University (DHU) and East China Normal University (ECNU).
For each of these two universities, we show the weekday and weekend usage patterns
and self-similarity of the IPv6 traffic and evaluate the correlation between IPv4 traffic
and IPv6 traffic.

• In addition, we further dig into the problem of IPv6 traffic prediction. A new model
named LSTM with seasonal ARIMA for IPv6 (LS6) is proposed to predict IPv6 network
traffic with high accuracy. Considering the correlation between IPv6 and IPv4 network
traffic, LS6 uses both IPv4 and IPv6 historical traffic data as the model input and
leverages both the advantages of statistical and deep learning methods.

• To validate the effectiveness of our LS6 model, we conduct a series of experiments
on two real-world traffic datasets. We can see that LS6 performs better than several
baselines, including support vector machine (SVM), LSTM, Bi-LSTM, and phased
LSTM (PLSTM).

The rest of the paper is organized as follows. Section 2 presents a review of the analysis
and prediction of network traffic. In Section 3, we introduce the dataset and traffic usage
feature. In Section 4, we present the detail of the proposed IPv6 traffic prediction model. In
Section 5, we conduct the prediction experiment and analyze the result. We discuss several
problems in Section 6. Section 7 is the conclusion.

2. Related Work
2.1. Analysis of Network Traffic

Network traffic analysis is based on different network performance indicators, such
as traffic volume, latency, and packet loss rate [18]. Lutu et al. [19] found that the UK
government’s lockdown policy amid the COVID-19 pandemic had dramatically changed
people’s mobility patterns and Internet usage. Based on the data of UK mobile operators,
the changes in user mobility and their impact on the mobile network were analyzed in
detail. The overall user mobility declined by 50%, with deviations varying by region. While
traffic characteristics change, operators maintained stable service as radio load decreased
and per-user throughput was probably application-limited. Wang et al. [20] examined
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the WAN traffic characteristics in Baidu’s data centers network (DCN). They found that
a significant percentage of traffic left the cluster flowing from the DC to the WAN. They
further observed that traffic communications among DCs were imbalanced, i.e., a large
amount of traffic was generated by a small number of DC pairs. Meanwhile, the traffic
among DC services had stability over time and the stability made it possible to predict
overall traffic demand.

Many prior works have analyzed the characteristics of IPv6 network traffic. Li et al. [9]
studied the traffic characteristics and user behavior of the IPv4 and IPv6 networks of Xi’an
Jiaotong University. They analyzed the average packet size, flow size, flow duration,
and self-similarity of IPv4 and IPv6 traffic and found a significant difference between
IPv4 and IPv6 traffic. Sarrar et al. [21] compared the changes in IPv6 network activities
before, during, and after World IPv6 Day (8 June 2011). They found that native IPv6
traffic increased significantly while tunneled traffic did not change much during that time.
Li et al. [22] analyzed IPv6 traffic based on a large-scale IPv6-based campus network with
one-week traffic data. They investigated the development of IPv6 networks and studied
the composition of aggregate traffic. Han et al. [10] utilized the traffic data collected
on the backbone network of the China Science and Technology Network (CSTNET) and
found that IPv6 traffic had been increasing rapidly from 2011 to 2013. Strowes et al. [11]
conducted a statistical analysis of the IPv6 data in Yahoo and obtained the daily and weekly
recurring patterns.

However, IPv6 networks are developing rapidly, and past analysis findings might not
be suitable for today’s IPv6 networks. Our research analyzes the latest IPv6 traffic over
campus networks to reveal the current IPv6 traffic development and leverages various
analytical approaches from past work to provide a more comprehensive analysis of IPv6
traffic. In addition, we use two campus networks’ data over two months for analysis, which
makes our analysis results more conclusive than many previous works.

2.2. Prediction of Network Traffic

The time series forecasting problem has always been of great importance, with influen-
tial applications in various fields such as finance [23], weather [24], transportation [25], and
networking [26]. Before the era of big data, people mainly used linear models to solve time
series forecasting problems, such as autoregressive (AR) [27], exponential smoothing [28],
or structural time series models [29]. However, these traditional methods are only appli-
cable when data have an explainable structure [30]. With the increasing amount of data
and the improvement of computing capability, machine learning [31–33] has become one
of the most critical methods for time series forecasting. In addition to traditional machine
learning, such as SVM [34,35], the contribution of deep learning in time series forecast-
ing is becoming more and more valuable. For multivariate time series, researchers use
Convolutional Neural Networks (CNNs) [36] to extract features for prediction. Recurrent
Neural Networks (RNNs) [37] can learn sequence contexts and are very helpful for time
series forecasting problems. However, the flexibility of machine learning might lead to
overfitting, which makes traditional linear methods more dominant when the amount of
data is small [38]. One research trend is to use mixed models for time series forecasting.
Hybrid models combine the advantages of traditional linear models and machine learning
models to achieve better results [39–41].

In the past, researchers predicted future traffic with statistical methods and indicators
to get regression equations. Most recent studies attempted to replace statistical methods
with emerging deep learning methods to predict network traffic. Jiang [15] provided a
comprehensive evaluation of deep learning methods for network traffic prediction and
demonstrated that deep learning methods outperform statistical methods based on an Inter-
net bandwidth usage dataset. Jaffry et al. [16] used LSTM to predict cellular network traffic
and indicated the superior performance of LSTM over ARIMA. Katris et al. [17] proposed
a hybrid forecasting method that combines neural networks with fractionally integrated
ARIMA and generalized autoregressive conditional heteroskedasticity (GARCH).
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Although previous studies have made efforts on network traffic prediction, to the best
of our knowledge, there is still a lack of an approach to predict IPv6 traffic accurately. In
particular, we are the first to utilize the correlation between IPv6 traffic and IPv4 traffic to
propose a novel IPv6 traffic prediction model called LS6, which combines the advantages
of the statistical method and deep learning method and makes use of the information from
both IPv4 and IPv6.

3. Dataset and Traffic Usage Features

The traffic data used in this paper, including the IPv4 and IPv6 traffic volume data of
the campus networks of DHU and ECNU, is collected by CERNET. The time range is from
00:00 CST on 21 July 2021 to 12:00 CST on 23 September 2021. The average traffic volume
was recorded once every two hours. The IPv6 downstream and upstream network traffic is
shown in Figures 1 and 2, recorded with the unit of bits per second (bps). There are daily
and weekly traits, with higher traffic volume during the day than at night and higher traffic
volume on weekdays than on weekends.
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Figure 1. IPv6 downstream network traffic of DHU and ECNU.
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Figure 2. IPv6 upstream network traffic of DHU and ECNU.

3.1. Traffic Patterns of Weekdays and Weekends

There are apparent differences in average downstream traffic volume between week-
days and weekends. The average IPv6 traffic volume of DHU on weekdays is 320.5 Mbps,
while the average traffic volume on weekends is 203.7 Mbps. The average weekday IPv6
traffic volume of ECNU is 114.0 Mbps, while the average traffic volume during weekends
is 84.5 Mbps. In both universities, the IPv6 network traffic usage on weekdays is higher
than that on weekends. IPv6 downstream traffic patterns of weekdays and weekends are
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shown in Figure 3. For DHU, the IPv6 network traffic volume on weekdays ranges from
18.7 Mbps (average) from 04:00 to 06:00 CST to 653.0 Mbps (average) from 14:00 to 16:00
CST. The pattern is similar on weekends but lower, with a minimum of 15.0 Mbps and a
maximum of 409.0 Mbps. In ECNU, the IPv6 network traffic volume on weekdays ranges
from 23.1 Mbps (average) from 00:00 to 02:00 CST to 216.4 Mbps (average) from 14:00 to
16:00 CST. On weekends, the pattern is different as the IPv6 network traffic volume ranges
from 23.1 Mbps (average) from 06:00 to 08:00 CST to 158.0 Mbps (average) from 14:00 to
16:00 CST.

(a)

(b)

Figure 3. IPv6 downstream traffic patterns of weekdays and weekends. (a) Downstream traffic
patterns in DHU. (b) Downstream traffic patterns in ECNU.

The proportion of IPv6 downstream network traffic volume to total downstream
network traffic volume also differs between weekdays and weekends. For DHU, the
percentage of IPv6 network traffic volume on weekdays ranges from an average of 43.3%
from 04:00 to 06:00 CST to 64.8% from 20:00 to 22:00 CST. On weekends, the pattern is
different as the percentage of IPv6 network traffic volume ranges from an average of 39.3%
from 06:00 to 08:00 CST to 63.5% from 14:00 to 16:00 CST. In ECNU, the percentage of IPv6
network traffic volume on weekdays ranges from an average of 5.3% from 00:00 to 02:00
CST to 8.6% from 04:00 to 06:00 CST. The pattern is similar on weekends but with a lower
minimum of 5.2% and a higher maximum of 11.0%.

For the upstream network traffic, the average IPv6 traffic volume of DHU on weekdays
is 32.2 Mbps, while the average traffic volume on weekends is 23.4 Mbps. The average
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weekday IPv6 traffic volume of ECNU is 16.5 Mbps, while the average traffic volume
during weekends is 16.0 Mbps. In both universities, the IPv6 upstream network traffic
usage on weekdays is higher than that on weekends. IPv6 upstream traffic patterns of
weekdays and weekends are shown in Figure 4. For DHU, the IPv6 network traffic volume
on weekdays ranges from an average of 6.5 Mbps from 04:00 to 06:00 CST to 57.7 Mbps
from 14:00 to 16:00 CST. On weekends, the pattern is different as the IPv6 network traffic
volume ranges from an average of 5.8 Mbps from 04:00 to 06:00 CST to 40.8 Mbps from
18:00 to 20:00 CST. In ECNU, the IPv6 network traffic volume on weekdays ranges from
an average of 2.6 Mbps from 04:00 to 06:00 CST to 27.0 Mbps from 14:00 to 16:00 CST.
On weekends, the pattern is different as the IPv6 network traffic volume ranges from an
average of 3.0 Mbps from 04:00 to 06:00 CST to 27.3 Mbps from 16:00 to 18:00 CST.

(a)

(b)

Figure 4. IPv6 upstream traffic patterns of weekdays and weekends. (a) Upstream traffic patterns in
DHU. (b) Upstream traffic patterns in ECNU.

The proportion of IPv6 upstream network traffic volume to total upstream network traffic
volume also differs between weekdays and weekends. For DHU, the percentage of IPv6 network
traffic volume on weekdays ranges from an average of 18.5% from 00:00 to 02:00 CST to 29.8%
Mbps from 14:00 to 16:00 CST. On weekends, the pattern is different as the percentage of IPv6
network traffic volume ranges from an average of 15.9% from 00:00 to 02:00 CST to 28.0%
from 18:00 to 20:00 CST. In ECNU, the percentage of IPv6 network traffic volume on weekdays
ranges from an average of 2.2% from 04:00 to 06:00 CST to 3.7% from 14:00 to 16:00 CST. On



Future Internet 2022, 14, 353 7 of 18

weekends, the pattern is different as the proportion of IPv6 network traffic volume ranges from
an average of 2.4% from 04:00 to 06:00 CST to 4.8% from 18:00 to 20:00 CST.

The network traffic pattern on weekdays is not much different from that on weekends,
but the usage volume is smaller on weekends. Therefore, the IPv6 users from these two
universities are more active during weekdays, which is the opposite of what happens
in commercial networks [11]. In addition, we find that the percentage of IPv6 network
traffic volume in DHU decreases slightly over the weekends, while the percentage of IPv6
network traffic volume in ECNU increases slightly over the weekends.

3.2. Self-Similarity Analysis

Since studies found that the self-similarity model can describe network traffic’s char-
acteristics more accurately than the traditional Poisson traffic model, it has been widely
used in Internet-related studies [9,42,43]. The Hurst exponent (H) is a classic metric used to
describe the self-similarity characteristic of the network traffic. To calculate the R/S statistic
from a stationary process, it approximately satisfies

E[R(n)/S(n)] = CnH , n→ ∞ (1)

where H is the Hurst exponent varying between 0 and 1, n is the number of data slots in
a stationary process, R(n) is the range of the cumulative deviations from the mean in the
first n data slots, S(n) is the standard deviation of the first n data slots, E(x) is the expected
value, and C is a constant. Clearly, H > 0.5 is a necessary condition for the existence
of self-similarity, and a time series with larger H has stronger self-similarity. A value of
H = 0.5 indicates that the series is completely uncorrelated and can be described as a
random walk, whereas H < 0.5 suggests that the series tends to switch between high and
low values in the long term.

We estimate the value of the Hurst exponent [44] using the aggregate variance method
(A/V), the R/S method, and the periodogram method (P) and compare the Hurst exponents
of IPv6 and IPv4 traffic volume.

• The aggregate variance method plots the sample variance versus the block size of each
aggregation level on a log-log plot. If the series is self-similar, the plot will be a line
with slope β greater than -1. The H is estimated by H = 1 + β/2.

• R/S method uses the rescaled range statistic (R/S statistic). The R/S statistic is the
range of the cumulative deviations of a time series sequence from its mean, divided by
its standard deviation. The method plots the R/S statistic versus the number of points
of the aggregated series and the plot should be linear with a slope. The estimation of
the Hurst exponent is the slope.

• Periodogram method plots the the spectral density of a time series versus the frequen-
cies on a log-log plot. The slope of the plot is the estimate of H.

The results are summarized in Table 1. As it shows, in both universities, the IPv4 Hurst
exponents of the upstream or downstream traffic are similar to the IPv6 Hurst exponents,
while in a study on a campus network in 2012 [9], there was a big gap between the self-
similarity of IPv4 traffic and that of IPv6 traffic. The results imply the difference between
IPv6 and IPv4 traffic is much smaller than earlier results in [9].

Table 1. The values of Hurst exponents of IPv4 and IPv6 traffic.

Traffic
Category Method IPv4

Downstream
IPv6

Downstream
IPv4

Upstream
IPv6

Upstream

R/S 0.6703 0.6609 0.6962 0.6957
DHU A/V 0.6936 0.6671 0.6355 0.6984

P 0.5936 0.6315 0.5503 0.6285

R/S 0.7159 0.6990 0.8104 0.8090
ECNU A/V 0.6652 0.6698 0.8253 0.7843

P 0.5476 0.6740 0.6771 0.7349
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3.3. Correlation Analysis

In this subsection, we use Pearson [45], Spearman [46], and Kendall [47] correlation
coefficients to measure the correlation between IPv4 traffic and IPv6 traffic. All of them are
widely used in correlation analysis [48–50].

The Pearson correlation coefficient between the two time series X and Y is defined as

ρX,Y =
E[(X− µX)(Y− µY)]

σXσY
(2)

where ρX,Y is the Pearson correlation coefficient varying between −1 and 1, µX and µY are
the means of X and Y, and σX and σY are the standard deviations of X and Y.

The Spearman rank correlation coefficient between two time series X = {x1, x2, ..., xn}
and Y = {y1, y2, ..., yn} could be calculated as

ρX,Y = 1−
6 ∑ d2

i
n(n2 − 1)

(3)

where ρX,Y is the Spearman rank correlation coefficient varying between −1 and 1, di is the
difference between the ranks of corresponding values of xi and yi, and n is the length of
time series.

The Kendall rank correlation coefficient between two time series X = {x1, x2, ..., xn}
and Y = {y1, y2, ..., yn} is

ρX,Y =
1
2 n(n− 1)− d

1
2 n(n− 1)

(4)

where ρX,Y is the Kendall rank correlation coefficient varying between -1 and 1, and d is the
number of discordant pairs in all {xi, yj}, n is the length of time series.

A value of ρX,Y = 0 indicates that the two series are completely uncorrelated. The
closer the correlation coefficient is to 1(−1), the stronger the positive (negative) correlation
is. As shown in Table 2, the smallest correlation coefficients between IPv4 downstream
traffic and IPv6 downstream traffic are 0.804 and 0.740 for DHU and ECNU, respectively.
The smallest correlation coefficients between IPv4 upstream traffic and IPv6 upstream traffic
are 0.699 and 0.660 for DHU and ECNU, respectively. Therefore, there is a strong positive
correlation between the IPv4 traffic and IPv6 traffic in both universities. Additionally,
we can see that the correlation between downstream traffic is stronger than that between
upstream traffic.

Table 2. The correlation coefficient between IPv4 and IPv6 traffic.

Traffic Category Method Downstream Upstream

Pearson 0.934 0.842
DHU Spearman 0.948 0.887

Kendall 0.804 0.699

Pearson 0.907 0.779
ECNU Spearman 0.915 0.844

Kendall 0.740 0.660

4. IPv6 Traffic Prediction Model
4.1. Problem Formulation

After analyzing the characteristics of the IPv6 traffic of DHU and ECNU, we move
further into the following challenge—whether we are able to predict the traffic volume
of the next time slot based on the historical data. Specifically, we consider a one-step
prediction problem of IPv6 traffic feeding 2-h fine-grained IPv4 and IPv6 traffic time series
of length n to model and predict the IPv6 traffic volume of the next time slot. The IPv6
traffic volume to be predicted is defined as y. The input is two time series, denoted as
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V = {x1, x2, ..., xn} and V
′
= {x′1, x

′
2, ..., x

′
n}, where n is the time step, xi is the IPv6 traffic

volume and x
′
i is the IPv4 traffic volume.

4.2. The LS6 Model

This subsection introduces the detail of the proposed LS6 model. We first give the
overview of the proposed model LS6 and then introduce the components of LS6.

4.2.1. Model Overview

As shown in Figure 5, there are two key components of our approach. First, we use a
traffic encoding component to take historical traffic data as input and automatically extract
two types of features with deep learning and statistical methods. Second, we introduce
an integrated predictor component, focusing on combining the outputs of deep learning
and statistical methods to get the final prediction. In the traffic encoding component, we
leverage two independent seasonal ARIMA (SARIMA) modules and two independent
LSTM networks to predict IPv6 and IPv4 network traffic volume in the next time slot with
previous traffic volume. To capture the relationship between IPv6 and IPv4 traffic and
combine the advantages of LSTM and SARIMA, we feed yL

1 , yS
1 , yL

2 , and yS
2 , the extracted

features of IPv6 and IPv4 traffic from LSTM and SARIMA to a multilayer perceptron (MLP)
model in the integrated predictor module and get the final prediction ŷ. In the following
subsections, we introduce the two modules in detail.

Historical IPv6 Traffic Volume Historical IPv4 Traffic Volume

Integrated Predictor

SARIMA IPv4 PredictionLSTM IPv6 FeatureLSTM IPv6 Feature SARIMA IPv6 Feature    SARIMA IPv6 Feature        SARIMA IPv4 FeatureSARIMA IPv4 FeatureLSTM IPv4 FeatureLSTM IPv4 Feature

Final IPv6 Prediction y  ^  ^Final IPv6 Prediction y  ^
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Figure 5. System design of LS6.

4.2.2. Traffic Encoding

The traffic encoding component is responsible for extracting traffic features with deep
learning and statistical methods. RNNs such as LSTM can extract features automatically,
while SARIMA provides a better theoretical interpretation for time series prediction prob-
lems [15]. Thus, we consider both LSTM and SARIMA as extractors of network traffic
features in the traffic encoding module.

As traffic prediction is a time series prediction problem, an RNN, which can extract the
sequential feature, is often used to solve such problems. We pick LSTM, a representative
RNN, as the deep learning method to predict traffic volume and regard the prediction as a
feature. LSTM is a variant of RNN for vanishing gradient problems, which has been widely
used in time series prediction [23,25,51]. Figure 6a shows that each LSTM cell consists
of three gates—the forget gate, the input gate, and the output gate. The cell state Ct and
hidden state ht for the current cell are generated by Ct−1 and ht−1 from the last cell and
input xt passing through the three gates. The forget gate selectively bars the state value
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from the previous time step Ct−1. The input gate decides which information is added to Ct.
The output gate integrates the information from the forget gate and the input gate to get
the output ht. As shown in Figure 6b, one layer of the LSTM network is formed by chained
LSTM cells. Each cell receives the previous cell state and hidden state and then generates
a new cell state and hidden state for the next cell. The number of data observations used
for prediction is disclosed by the number of cells in an LSTM network. The mathematical
expressions of LSTM are shown as follows:

ft = σ(W f xt + U f ht−1 + b f ) (5)

it = σ(Wixt + Uiht−1 + bi) (6)

ot = σ(Woxt + Uoht−1 + bo) (7)

where xt is the current input and ht−1 is the previous hidden state. ft, it, and ot are the
output of the forget, input, and output gates, respectively. {W f , U f , b f }, {Wi, Ui, bi}, and
{Wo, Uo, bo} are the parameters of the forget, input and output gates, respectively.

C̃t = tanh(Wcxt + Ucht−1 + bc) (8)

Ct = ft ∗ Ct−1 + it ∗ C̃ (9)

ht = ot ∗ tanh(Ct) (10)

where C̃t is the candidate memory, Ct and ht are the current cell memory and hidden state,
and {Wc, Uc, bc} are the parameters of the candidate memory network.

x +
tanh

x

Forget 

Gate

x

Input 

Gate
tanh

Output 

Gate

(a)

LSTM LSTM LSTM

Hidden States

Network Traffic

···

(b)

Figure 6. (a) The structure of a long short-term memory cell. (b) The structure of a long short-term
memory neural network .
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In our case, input xt is the network traffic volume while the number of observations is
the number of selected time steps, n. The output of LSTM is the hidden state of the final
cell (hn) and is fed to a fully connected layer to get the prediction.

We then leverage SARIMA [13] for traffic prediction. SARIMA (or seasonal ARIMA)
is an extension of ARIMA, which can better forecast time series with periodicity. The
SARIMA model can be defined by SARIMA(p, d, q)(P, D, Q)s, where p is the order of the
non-seasonal autoregressive model, q is the order of non-seasonal moving average model,
P is the order of seasonal autoregressive model, Q is the order of seasonal moving average
model, d is the number of non-seasonal differences, D is the number of seasonal differences,
and s is the periodic term. We feed both past IPv4 and IPv6 traffic data into SARIMA and
LSTM, respectively, to acquire prediction results of the future traffic volume, which are
regarded as traffic features of the next time slot.

4.2.3. Integrated Predictor

The integrated predictor combines the advantages of LSTM and SARIMA to build an
integrated model which incorporates the deep learning approach with statistical prediction
algorithm. The integrated predictor is an MLP model, which is a fully-connected class of
feedforward neural networks. The MLP model consists of one input layer, one output layer,
and one hidden layer using nonlinear activation, for example, the ReLU function. The
input layer accepts the input information and then transforms it into a hidden layer. The
output layer performs the prediction task with the output of the hidden layer. Due to the
correlation between IPv4 and IPv6 traffic shown in Section 3.3, we consider the prediction
of IPv6 traffic by LSTM and SARIMA using both IPv4 and IPv6 traffic data. In order to
strengthen the weight of IPv4 traffic in predicting IPv6 traffic, we convert the predicted
value of IPv4 traffic into the proportion of IPv6 traffic in the total traffic. The process is
as follows:

yS
prop =

αyS
1

yS
1 + yS

2
(11)

yL
prop =

αyL
1

yL
1 + yL

2
(12)

where yS
prop is the proportion of IPv6 traffic in the total traffic with SARIMA results, yL

prop is
the proportion of IPv6 traffic in the total traffic with LSTM results, yL

1 and yL
2 are the IPv6

and IPv4 traffic predictions by LSTM, yS
1 and yS

2 are the IPv6 and IPv4 traffic predictions by
SARIMA, and α is a hyperparameter between 0 and 1, which limits the effect of proportion
on the model.

yS
prop, yL

prop, yL
1 , and yS

1 are fed to the MLP model to learn the weights of features. The
output of the MLP model is the final predicted volume of the IPv6 traffic ŷ.

4.3. Learning and Prediction

To learn the parameters of LS6, we adopt mean squared error (MSE) as the loss function
to train the model, which is formulated as:

L =
1
N

N

∑
i=1

(ŷi − yi)
2 (13)

where N is the number of training samples.

4.4. Summary

The proposed model LS6 combines the advantages of the deep learning model LSTM
and statistical model SARIMA to predict the future IPv6 traffic volume with the infor-
mation on historical IPv6 and IPv4 traffic volume. We consider LSTM and SARIMA as
feature extractors and pre-train them. We feed IPv6 and IPv4 historical traffic volume
information into LSTM and SARIMA, respectively, and get four intermediate values. The
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four intermediate values are then input into an MLP, and the contribution of each value to
the final predicted value is trained. The output of the MLP is the final predicted value. We
believe that the superiority of LS6 lies in exploiting the correlation between IPv4 and IPv6
and combining the advantages of deep learning and statistical methods.

5. Evaluation
5.1. Datasets

We use the real-world downstream traffic volume data in two campus networks of
DHU and ECNU. The time range is from 00:00 CST on 21 July 2021 to 12:00 CST on 23
September 2021. The average traffic volume was recorded once every two hours. In
chronological order, we select the traffic data within the first 70% of the time range as
training data, the following 20% as validation data, and the last 10% as test data to evaluate
the performance.

5.2. Experimental Setup

(1) Implementation details: We pre-train the two LSTM and two SARIMA models by
predicting the IPv4 traffic volume or IPv6 traffic volume of the next time slot. We train
a dedicated LS6 model for each dataset. We implement the deep learning model using
PyTorch and build the SARIMA model by Python’s statsmodels library. The experiments
are implemented on a server with an Intel i7-9750H CPU, an NVIDIA GeForce RTX 1650
8GB graphics card, and a DDR4 8GB memory. The LSTM model has a hidden layer with 10-
dimension hidden units, containing 12 LSTM cells, so the input historical time slot number
is fixed as 12. For SARIMA, we set the seasonal cycle as 12 and select the best SARIMA
model based on the Akaike information criterion (AIC) [52]. The MLP is composed of
one input and one output layer, and one hidden layer with 100 units using the ReLU
activation function. We select Adam [53] as the optimizer for the deep learning model.
The learning rate is set to 0.001 and the batch size is set to 8 in DHU and 16 in ECNU. The
hyperparameter α is set to 0.01.

(2) Baselines: To verify the prediction performance of our model, we compare LS6
with some existing approaches.

• Naive-2h: Naive-2h uses the IPv6 traffic volume of the previous time slot as the
predicted value. We use Naive-2h to show the traffic difference between adjacent
time slots.

• Naive-24h: Naive-24h uses the IPv6 traffic volume 24 h ago, in other words, the traffic
value of the corresponding time slot of the previous day, as the predicted value. We
use Naive-24h to show the traffic difference between adjacent days.

• ARIMA: We only use the previous IPv6 traffic data to fit an ARIMA model and then
predict the IPv6 traffic volume at the next time slot with ARIMA.

• SARIMA: We only use the previous IPv6 traffic data to fit a SARIMA model which is
used as a part of traffic encoding in LS6 and then predict IPv6 traffic volume at the
next time slot with SARIMA.

• SVM: SVM is a classic supervised machine learning algorithm which can be used for
regression. We only use the IPv6 traffic data to train an SVM and use the output of the
SVM as the predicted IPv6 traffic volume.

• LSTM: We only use the IPv6 traffic data to train an LSTM network which is used as
a part of traffic encoding in LS6. The output of the LSTM network is fed to a fully
connected layer to get the predicted IPv6 traffic volume.

• Bi-LSTM [54]: Bidirectional LSTM is a variant of LSTM composed of a forward LSTM
and a backward LSTM, which can save information from both the past and future. We
train it the same way we train the LSTM network. The output of the Bi-LSTM network
is fed to a fully connected layer to get the predicted IPv6 traffic volume.

• PLSTM [55]: Phased LSTM (PLSTM) is a variant of LSTM and extends the LSTM model
by adding a new time gate, which achieves faster convergence than the vanilla LSTM
on long sequences tasks. It has also been applied in time series prediction [56–59]. We
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train it the same way we train the LSTM network. The output of the PLSTM network
is fed to a fully connected layer to get the predicted IPv6 traffic volume.

(3) Metrics: The evaluation metric mean absolute percentage error (MAPE) compares
the prediction performance of different approaches. MAPE has been widely used for time
series prediction problems in a variety of domains such as network traffic [60], vehicle
speed [61], electrical power [62], and remaining service duration of bearings [63]. Denoting
the real traffic volume as y and the predicted traffic volume as ŷ, the MAPE metric is
defined as follows:

MAPE =
100%

N

N

∑
1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (14)

where N is the number of data samples in the test set. The smaller the MAPE value is, the
better the prediction performance is.

5.3. Result and Analysis

The results of MAPE are listed in Table 3. As for the baselines, SARIMA achieves
the best performance. Nevertheless, LS6 performs the best, while SARIMA ranks second
among all approaches. For both datasets, the results clearly corroborate the superiority of
the proposed LS6 in IPv6 traffic prediction. Specifically, the MAPE value of LS6 in DHU is
2.65% lower than that of SARIMA, and this number is 0.29% lower in ECNU.

Table 3. Prediction performance of LS6 and baseline methods on different datasets.

Dataset Model MAPE

Naive-2h 0.7664
Naive-24h 0.2878

ARIMA 0.7556
SARIMA 0.2675

DHU SVM 0.7471
LSTM 0.4557

Bi-LSTM 0.3678
PLSTM 0.7975

LS6 0.2410

Naive-2h 0.6062
Naive-24h 0.3546

ARIMA 0.7418
SARIMA 0.3175

ECNU SVM 0.6998
LSTM 0.3367

Bi-LSTM 0.5479
PLSTM 0.4509

LS6 0.3146

5.4. Ablation Study

To study how different components of LS6 contribute to the prediction, we conduct an
ablation study. Seven variants of LS6 are considered: (1) LS6 (w/o SARIMA_v6): the model
without the SARIMA for extracting the IPv6 traffic feature; (2) LS6 (w/o SARIMA_v4): the
model without the SARIMA for extracting the IPv4 traffic feature; (3) LS6 (w/o LSTM_v6):
the model without the LSTM for extracting the IPv6 traffic feature; (4) LS6 (w/o LSTM_v4):
the model without the LSTM for extracting the IPv4 traffic feature; (5) LS6 (w/o IPv4): the
model without the IPv4 traffic input; (6) LS6 (w/o SARIMA): the model without SARIMA;
(7) LS6 (w/o LSTM): the model without LSTM.

As shown in Table 4, all components are important for LS6. Specifically, the LSTM for
extracting the IPv6 traffic feature is the most critical part. We also find that the importance
of IPv4 traffic and SARIMA is proven.
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Table 4. Prediction performance of LS6 and variants (ECNU).

Model MAPE

LS6 (w/o SARIMA_v6) 0.4882
LS6 (w/o SARIMA_v4) 0.4108

LS6 (w/o LSTM_v6) 1.2277
LS6 (w/o LSTM_v4) 0.4045

LS6 (w/o IPv4) 0.3569
LS6 (w/o SARIMA) 0.3776

LS6 (w/o LSTM) 0.7950
LS6 0.3146

6. Discussion
6.1. Training Using Both Datasets

In Section 5, we train a dedicated model for each dataset. In this subsection, we try
to discuss the prospective improvement of training LS6 using both datasets. We combine
the training data of two datasets to increase the number of training samples. We use the
combined training data to train a new LS6 model. Finally, we evaluate the performance of
LS6 using the test data of each of the two datasets. As shown in Table 5, we find that the
LS6 trained with the combined training data performs better in both datasets. It indicates
that the ISPs could use data from different networks to train LS6 to achieve better results.

Table 5. Prediction performance of LS6 trained with a single training data and combined training data.

Dataset Model MAPE

DHU LS6 0.2410
LS6 (combine) 0.2317

ECNU LS6 0.3146
LS6 (combine) 0.2953

6.2. The Influence of the 24 h Period

From Figure 2, we can find there exists a 24 h period in the IPv6 traffic change, which
is verified by the good performance of Naive-24h. Therefore, the 24 h traffic difference,
which means the difference between the traffic volume and the traffic volume 24 h ago
could be an alternative prediction choice for improving the model performance.

In this subsection, we predict the 24 h traffic differences rather than the exact volume
of future traffic to study the influence of the 24 h period. We take the predicted 24 h
traffic difference plus the traffic volume 24 h ago as the predicted traffic volume, and then
calculate the model performance in the MAPE metric. As shown in Table 6, the MAPE
(24 h) is the model performance of predicting the 24 h traffic differences while the MAPE
(Directly) is the model performance of predicting the traffic volume directly. The baseline
machine learning models’ performance is significantly improved by predicting the 24 h
traffic differences as it can eliminate the period influence.

However, the LS6 model does not perform better while focusing on predicting the
24 h traffic differences. Still, the LS6 model predicting the exact volume of the IPv6 traffic
performs best among all models in the two training approaches. We believe it is because
the SARIMA in the LS6 can make good use of the period information. Eliminating the 24 h
period influence might not be beneficial for our LS6 model.
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Table 6. Prediction performance of LS6 and baseline methods in different training approaches.

Dataset Model MAPE (24 h) MAPE (Directly)

SVM 0.6432 0.7471
LSTM 0.4143 0.4557

DHU Bi-LSTM 0.4529 0.3678
PLSTM 0.3215 0.7975

LS6 0.3998 0.2410

SVM 0.3992 0.6998
LSTM 0.3287 0.3367

ECNU Bi-LSTM 0.3263 0.5479
PLSTM 0.3453 0.4509

LS6 0.3428 0.3146

6.3. Limitation

One main limitation of our work is that we only analyze and predict the IPv6 traffic
based on the traffic volume data of universities in Shanghai. Therefore, our analysis results
could only present the situation of universities in Shanghai, and the generalization of our
proposed prediction model remains to be further validated.

7. Conclusions and Future Work

With the development of IPv6, it is increasingly crucial to study IPv6 traffic patterns.
To this end, we analyzed the weekday/weekend patterns, the self-similarity of the IPv6
traffic, and the correlation between IPv6 and IPv4 traffic for two universities in Shanghai,
China. The network traffic distribution on weekdays is not much different from that on
weekends, while the traffic usage is smaller on weekends. It shows that the IPv6 users of
the two campus networks are more active during weekdays. We evaluate the self-similarity
by estimating the value of the Hurst exponent. The Hurst exponents of the IPv6 traffic are
similar to those of IPv4 traffic, which implies that the difference between IPv6 and IPv4
traffic is smaller than before. As the smallest correlation coefficients between IPv4 traffic
and IPv6 traffic are 0.699 and 0.660 for DHU and ECNU, respectively, there is a strong
positive correlation between IPv6 traffic and IPv4 traffic in the two universities.

To better predict IPv6 traffic, we proposed a new approach called LS6 by combining
the advantages of LSTM and seasonal ARIMA and utilizing the correlation between IPv6
and IPv4 traffic. Based on two real-world IPv6 traffic datasets, the experiments show that
LS6 achieves a lower prediction error (MAPE) than eight baselines. For example, the MAPE
value of LS6 in DHU is 2.65% lower than that of the best baseline. The results confirm that
our proposed model LS6 can better predict the IPv6 traffic volume than existing methods.

Overall, our research is beneficial for ISPs to allocate and manage network resources.
In our future work, we will try to obtain more IPv6 traffic volume datasets in other cities
worldwide. In addition, we will further study the IPv6 traffic prediction with model
combinations. We will improve the prediction performance by enhancing the LSTM model
with an additional attention layer and by considering other features, such as the Hurst
exponent and differences between weekdays and weekends.
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