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Abstract: Deep-learning models require large amounts of accurately labeled data. However, for
medical image segmentation, high-quality labels rely on expert experience, and less-experienced
operators provide noisy labels. How one might mitigate the negative effects caused by noisy labels
for 3D medical image segmentation has not been fully investigated. In this paper, our purpose is to
propose a novel hybrid robust-learning architecture to combat noisy labels for 3D medical image
segmentation. Our method consists of three components. First, we focus on the noisy annotations of
slices and propose a slice-level label-quality awareness method, which automatically generates label-
quality scores for slices in a set. Second, we propose a shape-awareness regularization loss based on
distance transform maps to introduce prior shape information and provide extra performance gains.
Third, based on a re-weighting strategy, we propose an end-to-end hybrid robust-learning architecture
to weaken the negative effects caused by noisy labels. Extensive experiments are performed on two
representative datasets (i.e., liver segmentation and multi-organ segmentation). Our hybrid noise-
robust architecture has shown competitive performance, compared to other methods. Ablation studies
also demonstrate the effectiveness of slice-level label-quality awareness and a shape-awareness
regularization loss for combating noisy labels.

Keywords: deep learning; noisy labels; medical image segmentation; robust learning

1. Introduction

Medical image segmentation is of importance for clinical diagnosis, pathology research,
and the development of treatment plans. A typical situation in the medical image field
is the usage of 3D whole-volume data (e.g., CT or MRI data), where the whole volume is
a set consisting of tens or hundreds of slices for every patient. With the advent of deep
learning, numerous methods based on deep neural networks (DNNs) have been developed
and show promising performance for medical image segmentation [1–3]. The success relies
on the existence of an abundance of correctly labeled data. However, this assumption often
does not hold for real applications. The label quality heavily depends on the experience
and preferences of operators, and less-experienced annotators provide relative noisy labels.
Especially for 3D medical images, the data is annotated in 2D and slice-by-slice, resulting
in heavy labeling work and inconsistent quality among slices [4]. Many works have proven
that low-quality annotations will degrade the performance of models and lead to some
misunderstandings for subsequent computer-aided diagnoses. In this study, we aim to
develop noise-robust methods for 3D medical image segmentation with noisy labels.

Recent methods for learning from noisy labels can be roughly divided as follows.
First, a label transition matrix based on pre-defined knowledge is proposed to correct
corresponding loss functions [5–8]. The matrix is used to learn latent noise patterns between
noisy and clean annotations. However, they regard categories with clear meanings at states,
which is suitable for classification tasks but cannot be directly applied to segmentation
tasks. Second, some methods resort to redesigning robust loss functions instead of the
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conventional loss functions, such as generalized cross-entropy loss [9] and symmetric
cross-entropy loss [10]. However, the effectiveness has not been verified for medical image
segmentation tasks [11]. Third, many methods are proposed based on the loss re-weighting
strategy, which is a very popular way to assign different weights to different samples.
They make the relatively clean samples contribute more, while the relatively noisy samples
contribute less for the training. The core is designing reliable criteria to estimate and
select samples. For example, Mirikharaji et al. [12] proposed deploying a meta-learning
framework for automatically learning the weights of pixels based on gradient directions,
which was an extension of the “learning to re-weight” [13] method, from classification tasks
to segmentation tasks. However, this method requires extra, trusted subsets of samples for
training. Zhu et al. [14] introduced a pick-and-learn method with label-quality evaluation
and an over-fitting control module. The important weights were assigned for dealing
with 2D noisy-labeled image segmentation. Zhang et al. [15] proposed a tri-network by
extending co-teaching [16], where they maintained three networks simultaneously for
sample selection. This method can be regarded as hard-weighting. However, both the
pick-and-learn and tri-network methods have been developed for 2D medical images, and
cannot be directly applied for resource-intensive 3D medical image segmentation. Presently,
the related investigations for 3D biomedical segmentation with low-quality noisy labels
have not aroused enough attention.

In this paper, we concentrate on the problem of noisy-labeled medical image segmen-
tation, especially for 3D medical volumetric data with tens or hundreds of slices in every
whole volume. Specially, we propose a novel hybrid robust-learning architecture to combat
noisy labels. First, we propose a novel slice-level label-quality awareness module (LQAM),
which is jointly trained with a conventional segmentation module to predict label quality
scores for each slice. Inspired by the idea of set-to-set recognition, we regard the whole
volume of patients as a set of slices. By incorporating a 3D image segmentation module and
a 2D LQAM, our hybrid architecture could predict label quality scores of the whole-volume
slices in one shot. Second, we employ shape-awareness regularization to encourage the
introduction of prior shape information. To be concrete, we apply the Hausdorff loss, based
on distance transform maps, to boost the segmentation performance. Third, we construct
our hybrid architecture based on the inspiration of the re-weighting strategy, which could
adjust the contributions of relatively clean and noisy slices to improve the noise tolerance
of the trained method. Finally, we experiment with two representative, publicly available
datasets, i.e., liver segmentation and abdominal multi-organ segmentation. The results
have shown the competitive performance of our noise-robust hybrid architecture. The main
contributions are as follows:

(1) Different from previous studies, we target the challenging problem of 3D medical
image segmentation with noisy labels, especially the inconsistent noisy label qualities
among different slices. To address this problem, we propose a novel end-to-end hybrid
robust-learning architecture to combat noisy labels from the perspective of slice-level
label-quality awareness;

(2) We propose a novel slice-level label-quality awareness method, which automatically
generates quality scores for each slice in a set without knowing the prior noise distri-
bution. With the help of re-weighting, our method can alleviate the negative effect of
noisy labels. The design is particularly effective for 3D medical image segmentation
by satisfying the constraints of noise tolerance and the capacity limitations of GPUs;

(3) We propose a shape-awareness regularization loss to introduce prior shape informa-
tion to provide extra performance gains. In the presence of noisy labels, we regard
it as an auxiliary loss instead of the main learning targets and, further, it benefits the
model training together with slice-level label-quality awareness. To our knowledge,
this is the first attempt to apply prior shape information for the problem of learning
with noisy labels.
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2. Related Works

We review some related works for developing noise-robust methods. The represen-
tative methods can be roughly divided as follows. A label transition matrix based on
pre-defined knowledge is proposed to correct the corresponding loss function. The matrix
is used to learn latent noise patterns between noisy and clean annotations [17]. The key
is how to accurately estimate the label transition matrix. For example, Goldberger et al.
added a linear noise layer at the end of a backbone convolutional neural network to im-
plicitly estimate the matrix [18]. Patrini et al. estimated a transition matrix by forward and
backward loss-correction, which depended on strong assumptions to stack the maximum
of each class [5]. Hendrycks et al. proposed gold loss-correction via mean prediction, which
relied on extra, trusted subsets of data to accurately estimate the corrected matrix [6]. Wang
et al. adapted a meta-learning method to directly optimize a noise transition matrix with
the help of a large noisy dataset and a small trusted subset [7]. Han et al. proposed the
introduction of prior knowledge for estimating a noise transition matrix [19]. As for medical
applications, Dgani et al. followed the line of a noise-adaptation layer to represent the
transition matrix and checked its applicability for breast microcalcification classification [8].
However, the above methods regard categories with clear meanings at states, which is
suitable for classification tasks but cannot be directly applied to segmentation tasks.

Some methods focus on re-designing a robust loss function to combat noisy labels,
which means they design a new robust loss function as the alternative to the conven-
tional loss function in the presence of noisy labels. For example, Zhang and Sabuncu
et al. proposed generalized cross-entropy loss [9], which combined the advantages of
categorical cross-entropy and mean absolute error [20]. Wang et al. proposed a popular
symmetric cross-entropy loss, which was the combination of cross-entropy and reverse
cross-entropy [10]. Menon et al. leveraged gradient clipping for designing new loss func-
tions [21]. However, these robust loss functions are developed based on their specific
constraints, and the effectiveness may be reduced when encountering relatively complex
medical segmentation data [11].

Some regularization methods have also been proposed to reduce the overfitting effect
based on explicit or implicit forms. The former applies an explicit form to modify the
training loss, such as early-learning regularization [22] or trace regularization [23]. The
latter means they have the similar effect of regularization without the explicit form [24–27].
However, this kind of method should be designed with specific characteristics or it should
introduce sensitive model-dependent hyperparameters.

Some methods are proposed based on the idea of loss re-weighting. Here, they make
the relatively clean samples contribute more, while the relatively noisy samples contribute
less for the training. The core of this method is how to design the accurate criterion to
estimate and select samples. For example, Jiang et al. trained a mentor network to guide
a student network by assigning weights to samples [28]. Arazo et al. calculated sample
weights by modeling losses per-sample with a mixture model [29]. Han et al. used multiple
class prototypes to assign attention weights to data samples [30]. Lee et al. designed an
additional network to decide whether a label was noisy or not and produced the weight of
each sample to reduce the influence of noisy labels [31]. Ren et al. proposed re-weighting
samples based on their gradient directions and a meta-learning framework [13]. Under this
investigation, Shu et al. proposed an explicit mapping method for sample weighting based
on a meta-weight net [32]. However, the mentioned methods are all used for classification
tasks of a natural-image domain; they cannot be directly applied to segmentation tasks,
especially for 3D medical image segmentation tasks.

In fact, the research on medical image segmentation tasks with noisy labels is in
its infancy. For example, Mirikharaji et al. [12] proposed deploying a meta-learning
framework for automatically learning the weights of pixels based on gradient directions,
which was an extension of the ”learning to re-weight” [13] method, from classification tasks
to segmentation tasks. However, this method requires extra, trusted subsets of samples for
training. Zhu et al. introduced a pick-and-learn method with label-quality evaluation and
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an over-fitting control module [14]. Then, important weights were assigned for dealing
with 2D noise-labeled biomedical segmentation. Zhang et al. proposed a tri-network [15]
by extending co-teaching [16], where they maintained three networks simultaneously for
sample selection. This method can be regarded as hard-weighting. However, both the
pick-and-learn and tri-network methods have been developed for 2D medical images,
and they cannot be directly applied for resource-intensive 3D medical volumetric image
segmentation. From the perspective of sample selection, Min et al. [33] proposed their two-
stream networks, based on pixel-wise sample selection. They selected samples from the
disagreement area, where two predictions coming from two networks were different [34].
However, this method selected pixel-wise samples and was not suitable for estimating the
quality of every slice. Presently, the related investigations for 3D biomedical segmentation
with low-quality noisy labels has not aroused enough attention. In this paper, we target
the problem of noisy labeled 3D medical organ segmentation. In particular, we focus on
the inconsistent noisy labeled slices among the whole volume. After obtaining the quality-
awareness scores of slices, we further propose our hybrid noise-tolerance architecture with
the help ofa re-weighting strategy, which is different from previous works.

3. Methods

We aim to develop a hybrid architecture to weaken the negative effect of noisy labels.
This architecture could automatically estimate the label quality of slices without extra clean
labels. As shown in Figure 1, the novel hybrid framework contains four major modules:
(1) a 3D segmentation module, which generates whole-volume segmentation probability
maps in one shot; (2) a 2D slice-level label-quality awareness module, which predicts label
quality scores for each slice; (3) a shape-awareness regularization loss for introducing prior
information; (4) a final re-weighting module, which assigns different weights for different
slices to construct the final loss.

Figure 1. The architecture of the proposed hybrid noise-robust architecture. It includes a 3D seg-
mentation module, a 2D label-quality awareness module, a shape-awareness regularization loss,
and a loss re-weighting module. The input is whole-volume 3D medical images, which consist of
multiple slices (e.g., CT and MRI data). For the 2D label-quality awareness module, the input is the
concatenation of the image, and the foreground and background for every slice. The outputs of the
LQAM are the score set of QLQAM. The shape-awareness regularization loss LR is constructed with
distance transform maps (DTMs). The final loss L f inal is constructed with the idea of a re-weighting
strategy. Lseg means the segmentation loss, and Ltotal is the weighted sum of Lseg and LR. The ground
truths have noisy information.
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3.1. Segmentation Module

Considering the complementary relationship among slices of CT (or MRI) data, we
prefer to choose the 3D neural network as the basic segmentation module to leverage the
spatial relationship between slices, instead of the 2D segmentation model. Considering
the promising performance of U-net, we select 3D U-net as the backbone [35], which has
proven its effectiveness for 3D volumetric images. Further, we extend our backbone with
two important modules. First, we adopt a residual skip connection for each convolutional
block to aid the total training [36]. Second, we introduce 3D squeeze-and-excitation (SE)
blocks for better feature representation. Inspired by the recent proposed 2D SE module for
image classification [37], we introduce the 3D extension for our image segmentation.

3.2. Label-Quality Awareness Module

A label-quality awareness module (LQAM) is proposed to automatically learn the
quality of labels among slices, thus reducing the impact of noisy labels with the re-weighting
strategy. Considering that the slices that belong to the whole volume are annotated slice-by-
slice and in 2D by less-experienced operators, the label quality of slices may be noisy and
inconsistent. We regard the whole-volume data as the set of slices, and the quality scores of
slices as another set.

In this section, we design our label-quality awareness module to estimate label quality
of slices. The set S = {I1, I2, . . . , IN} is used to denote the set of slices with different label
qualities, which can be compared with each other. We use Ii to denote the information of
the i-th slice and use N to represent the number of slices belonging to one volume. Let
Q(S) denote the set of quality scores belonging to the whole -volume, satisfying:

Q(S) = F(I1, I2, . . . , IN), (1)

where F(·) is the quality-awareness function. The challenge is to find an optimized F(·),
which aggregates features from the whole volumetric set to obtain different quality scores.
As neural networks could approximate various functions, we obtain the quality scores
via neural network learning [30,38]. The notion is that images with higher-quality labeled
information are easier to recognize, while lower-quality labeled information are hard to
fit. This is related to the memorization of neural networks, and has been widely used
for the recognition of noisy labels in existing natural image classification tasks with noisy
labels [39]. We also use this trick to estimate the label quality of the slice set. More
specifically, the slices with noisy labels have relatively higher losses, while the slices with
well-annotated labels have relatively smaller losses during the training process. Therefore,
with the help of losses coming from the main segmentation network, the LQAM could
assess the relative quality of every slice.

We construct our label-quality awareness module using deep neural networks, which
are trained together with a main segmentation network. We focus on learning with noisy
labels where the images are intact and the labels are noisy. As for the input information
to the LQAM, we use the set S = {I1, I2, . . . , IN}. In order to deal with noisy labels, the
concatenations of image, foreground, and background are used as the whole input infor-
mation Ii of the i-th slice. We use these three components to contain enough information
about noisy labels, which is used for subsequent label-quality awareness. Moreover, the
LQAM module is jointly trained with the main segmentation. We only use this kind of
concatenation as the input to keep the number of parameters constant, regardless of the
number of organs. This construction is very helpful for satisfying the memory limitations of
GPUs [40], and is appliable for resource-intensive volumetric segmentation. After obtaining
the label quality scores of slices, the segmentation loss could be adjusted to combat noisy
labels. With the main segmentation network and the label-quality awareness network, we
construct our hybrid noise-robust architecture in Section 3.4.
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3.3. Shape-Awareness Regularization Loss

We attempt to investigate the method for considering prior shape information to pro-
vide extra performance gains. Instead of using the complex techniques that require compu-
tationally expensive optimizations, we resort to the distance transform maps (DTMs), which
have been investigated for introducing shape information for segmentation tasks [41,42].
In their studies, the segmentation labels are clean and provide accurate supervision in-
formation. However, in our study, the labels are noisy and the supervision signals are
confusing. If directly applying the DTMs as the learning targets, as with the representative
works [41,42], it will lead to unstable training or severe overfitting problems. There are
no related studies to apply DTMs for the tasks of learning with noisy labels. In order to
benefit from the shape information and exclude the negative effect of noisy labels, we
propose shape-awareness regularization loss as the auxiliary loss, which is very different
from previous studies.

Inspired by the studies of [41,42], our regularization loss LR is formulated as:

LR =
1
|Ω|∑Ω

(P− G)2 ◦ (G2
DTM + P2

DTM), (2)

where G denotes the original labels and contains noise. P means the outputs of predictions.
GDTM and PDTM denote the DTMs of original labels G and predictions P. Let Ω denote the
grid on which the slice is defined. Formally, the DTM of G is written as:

GDTM =

{
infy∈∂G ||v− y||2, v ∈ Gin;
0, others

, (3)

where ||v − y||2 is the Euclidian distance between voxels v and y, and Gin denotes the
inside of the object. GDTM computes the distance transformation of the foreground and
the presentation for PDTM is similar. We further normalize the GDTM to be in the range
(−1, 1) by dividing the maximum value. As an implicit shape representation, DTMs embed
contours in a higher dimensional space. With the aid of slice-level label-quality awareness,
the regularization loss is useful for boosting the final segmentation performance.

3.4. The Final Framework

We apply the idea of re-weighting to develop the final framework, which makes
relatively clean samples contribute more to the training and compresses the influence of
relatively noisy samples. We construct our total loss consisting of two parts. The first one
Lseg is the cross-entropy loss, which is calculated with prediction maps and the original
labels. The second one LR is defined as the shape-awareness regularization loss. The final
re-weighted loss L f inal is:

L f inal = QLQAM(Lseg + λLR), (4)

where QLQAM are the quality weights originating from the LQAM. λ is the hyper-parameter.
Our method is independent of an auxiliary clean dataset or prior information about noise
distribution, which is more applicable for 3D biomedical segmentation tasks.

4. Experiments and Results
4.1. Data and Implementation Details

We experiment with the publicly available medical dataset “Chaos” to justify the
performance of our hybrid robust framework. The Chaos challenges have been held in
The IEEE international Symposium on Biomedical Imaging (ISBI) 2019 and contain CT and
MRI datasets. More details about the original data descriptions and data acquisition can
be found in [43]. We choose CT data for liver segmentation and MRI data for abdominal
multi-organ segmentation (i.e., liver, right kidney, left kidney and spleen). Each volume in
these two datasets corresponds to a series of DICOM images belonging to a single patient.
The CT dataset consists of 20 different patients and is divided into training (12 patients) and
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testing (8 patients) in experiments. For the MRI dataset, we choose T2-SPIR (20 patients).
We divide the 12 cases for training and the remaining 8 cases for testing. We resize the CT
images as 64× 196× 196 and resize the MRI images as 32× 196× 196. We clip all values
larger than 2000 as 2000, and then pre-process the data by normalization.

As both the CT dataset and the MRI dataset have clean labels, we first generate noisy
labeled images under different noise settings. Following the previous works of [14,15],
we set the number of slices selected for noise generation as the noise rate, and set the
morphological changes within pixels for every selected slice as the noise level. For example,
we set the noise rate to 50% and noise level to 1–8 pixels, which means we randomly select
50% of the slices from the whole volume and further erode or dilate every selected slice
with 1–8 pixels.

We utilize PyTorch for realizing our experiments. The learning rate is set empirically
to 0.001. The Adam optimizer is used for optimization and the Betas of the optimizer are
set to 0.9 and 0.999. We set the maximum epoch as 10,000 in the experiments. We repeat the
experiments three times and report the average for the final performance. During training,
we select 3D SE ResUnet as the backbone with four residual and SE blocks. The backbone
consists of a contracting path and an expanding path. We prefer the contracting path as the
LQAM module. During training, the batch size for the 3D segmentation model is set to
1, which means we obtain all predictions belonging to a patient in one shot. We use the
widely used metric of dice score to measure the segmentation performance. λ is set to 0.01
for the experiments.

As for the network architecture, we use 3D Unet as the basic backbone, with residual
blocks and SE blocks. We expand the 2D squeeze, excitation, scale, and convolutional
functions to obtain the 3D SE counterparts. The encoder consists of four residual modules
with 16, 32, 32, and 64 output channels, followed by a down-sampling layer. The decoder
shares the symmetric structure, but with up-sampling layers. For each residual module, we
use two 3× 3× 3 convolution blocks, two SE modules, and corresponding up-sampling
or down-sampling layers. The down-sampling layer is achieved via 3D max-pooling with
stride 2 and the up-sampling is achieved with the strategy of nearest neighbor. Each
convolution block consists of convolutional layers, an ELU activation function, and a 3D
batch-normalization layer. We prefer the contracting path as the LQAM module.

4.2. Comparisons on Liver Segmentation Dataset

We conduct experiments on a liver segmentation benchmark to demonstrate the
effectiveness of our hybrid robust architecture. The dataset has 3D CT images. We train our
network on the noisy-labeled data under different noise settings and test the network with
clean-labeled data. Specifically, we set two noise levels (noise level 1 of 1–8 pixels and noise
level 2 of 5–18 pixels) and three noise rates (noise rate = 25%, 50%, and 75%). Following the
generation process of noisy labels [14,15], we obtain the data with simulated noisy labels.

The comparing baselines include: (1) Plain [35]: the conventional training based on a
3D segmentation model with noisy labels. We use 3D U-net with the additions of residual
blocks and 3D SE blocks as the backbone. (2) Pick-and-learn [14]: a representative method
for addressing 2D medical image segmentation with noisy labels. We regard every slice as
a 2D datum and further adopt the pick-and-learn strategy for the corresponding robust
learning. (3) Disagreement [33]: a noise-robust method from the perspective of sample
selection, which selects pixels from the disagreement area to obtain informative samples.
(4) Area-aware method proposed by [44]: the area aware-factor is calculated as the ratio
between the area of the foreground and the area of the background, and is then introduced
by a simple multiplication strategy. (5) INT [45]: this method aims to distill effective
supervision information from image-level data to develop a noise-tolerance algorithm.
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The experimental results on the liver segmentation dataset with simulated noisy labels
are illustrated in Table 1. On the clean-annotated dataset, we have the performance upper
as the dice value of 88.55. However, the liver segmentation performance for the Plain
baseline decreases sharply when adding different noise rates (from no noise to 25%, 50%,
and 75%) and noise levels (from noise level 1 of 1–8 pixels to noise level 2 of 5–18 pixels).
Comparing with other baselines, we could observe that our proposed hybrid architecture
has a consistent performance improvement. Even in the hardest case, with noise level 2
and a noise rate of 75%, our proposed method shows its robustness to noisy labels.

Table 1. Results on the CT dataset for liver segmentation under different noise settings. We report
the mean value (±std) of the dice score (%) with 3 runs.

Method
Noise Level 1 Noise Level 2

25% 50% 75% 25% 50% 75%

Plain [35] 70.94 ± 0.96 68.97 ± 0.43 65.24 ± 1.32 59.61 ± 0.41 56.82 ± 0.19 48.07 ± 2.38
Pick-and-learn [14] 65.67 ± 0.44 59.36 ± 0.73 54.10 ± 0.86 50.91 ± 0.59 47.31 ± 0.26 40.32 ± 0.45
Disagreement [33] 71.43 ± 1.10 69.88 ± 0.24 67.58 ± 0.28 66.64 ± 0.07 55.72 ± 0.19 47.23 ± 0.25

INT [45] 77.34 ± 0.14 75.33 ± 0.08 71.67 ± 0.06 70.38 ± 0.81 60.80 ± 0.64 53.56 ± 0.67
Area-aware [44] 76.62 ± 1.75 74.92 ± 1.27 69.45 ± 1.96 70.63 ± 1.32 60.44 ± 1.98 54.82 ± 1.56

Ours 78.31 ± 0.46 76.29 ± 0.63 72.78 ± 0.60 71.72 ± 0.18 64.05 ± 0.30 56.99 ± 0.66

Comparing with pick-and-learn, our method achieves performance gains, which
demonstrates that adopting a 3D network as a backbone is more appropriate because of
the implicit complementary information among slices. Comparing with the disagreement
method, our superior performance shows that our hybrid architecture could mine more
effective information, while disagreement only selects samples from a disagreement area,
resulting few samples during training. For image-level noise-robust learning, we compare
an INT (image-level noise-tolerance) method with our method. The results show the
improvement, which verifies the effectiveness of our method from the perspective of slice-
level noise tolerance. We further observe the results of our method and the area-aware
strategy, which also verifies that our slice-level label-quality awareness and regularization
loss show better performance advantages.

4.3. Comparisons on Multi-Organ Segmentation Dataset

We demonstrate the experiments on an abdomen multi-organ MRI-T2SPIR dataset,
and the corresponding organs include the liver, right kidney, left kidney, and spleen. Table 2
depicts the comparative performance of multiple methods with noise ratios of 25%, 50%,
and 75% and the noise level of 1–5 pixels. The noisy labels are generated in the same
way as the liver segmentation. We report the average dice value (%) of these four organs.
The upper bound with the average dice value of 74.48 is acquired by training the 3D
segmentation model on a clean-labeled dataset. Other results are obtained by training the
model on a dataset with corrupted labels. As illustrated, our proposed hybrid architecture
outperforms other methods, which demonstrates the effectiveness of our hybrid noise-
robust architecture.
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Table 2. Experimental results (dice %) for multi-organ segmentation on abdomen MRI-T2SPIR. We
report the performances of the liver, right kidney, left kidney, and spleen, as well as the average
values.

Noise Rates Method Liver Right Kidney Left Kidney Spleen Average

No noise Plain [35] 84.20 75.13 64.93 73.66 74.48

Plain [35] 79.36 55.09 42.88 52.51 57.46
Pick-and-learn [14] 80.31 45.79 38.33 38.44 50.72

25% Disagreement [33] 73.46 49.79 44.66 52.09 55.00
INT [45] 78.93 56.63 45.66 59.14 60.09

Area-aware [44] 75.05 52.83 54.17 51.11 58.29
Ours 78.00 60.72 49.62 60.95 62.32

Plain [35] 76.86 52.43 42.75 54.40 56.61
Pick-and-learn [14] 70.36 48.87 41.26 48.55 52.26

50% Disagreement [33] 71.37 49.87 41.26 49.55 53.01
INT [45] 79.10 55.10 46.97 56.29 59.37

Area-aware [44] 75.47 51.80 46.66 54.19 57.03
Ours 80.27 54.07 47.54 60.49 61.60

Plain [35] 75.18 56.29 41.75 52.10 56.33
Pick-and-learn [14] 70.79 48.13 36.83 44.22 49.99

75% Disagreement [33] 72.99 48.49 40.41 46.42 52.08
INT [45] 76.66 50.69 47.25 57.63 58.06

Area-aware [44] 76.47 48.99 45.12 57.20 56.94
Ours 78.62 52.08 51.84 59.62 60.54

4.4. Ablation Study and Visualization

We also show the ablation study in Figure 2. We use “Plain” to denote the basic
baseline, where the model is trained without any noise-robust strategy. We use “LQAM”
to represent our hybrid architecture with only slice-level label-quality awareness. We use
“LQAM + LR” to denote our proposed hybrid architecture with LQAM and regularization
loss LR. The experiments are conducted on a liver segmentation dataset with different
noise rates and noise levels. Comparing LQAM and Plain, we can observe that adding a
label-quality awareness module is necessary for developing noise-robust methods. The
comparisons between LQAM and LQAM + LR have shown the effectiveness of introduc-
ing shape-awareness regularization loss. This may be because the shape-awareness loss
will benefit from learning some boundary information. Together with the re-weighted
framework, the regularization loss helps to further improve the contribution of relatively
clean samples.

Figure 2. The results of ablation study. The experiments are conducted on the liver segmentation
dataset under different noise settings.
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We visualize some slices to show the effectiveness of our hybrid noise-robust architec-
ture in Figure 3. For the liver segmentation dataset, we randomly select slices with noise
levels of 5–18 pixels and a noise rate of 25%. For multi-organ segmentation, we show the
slices with a noise level of 1–5 pixels and a noise rate of 25%.

We also show some bad examples in Figure 4, where the slices are selected from multi-
organ segmentation on the abdomen MRI-T2SPIR dataset. Note that the 3D whole-volume
data is a set consisting of tens or hundreds of slices for every patient. The size variances
of organs among different slices are very obvious, and sometimes the organs present a
relatively small size on some slices. The bad case, on the left, is the example. The organ
size is relatively small in this slice, and the performance is poor. We should investigate the
segmentation of small organs to further improve the performance of learning with noisy
labels, which is the future work. When we observe the bad case on the right, the results
show that there are some overlaps among different organs based on our method. The main
reason is that the boundaries of organs in medical images are usually unclear, making it
more difficult to distinguish them in the presence of noisy labels. A possible solution is to
introduce prior information about the relationship among organs, which has the potential
to improve the segmentation performance.

Figure 3. Some visualization results. The left panel is the selected slices of liver segmentation and the
right panel shows some slices of multi-organ segmentation. Three rows denote the ground truths, the
plain baseline, and our method, respectively.

Figure 4. Some visualization results for demonstrating bad examples. The selected slices are from
multi-organ segmentation on the abdomen MRI-T2SPIR dataset.
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5. Conclusions

We concentrate on the problem of 3D medical image segmentation with noisy labels.
We present a novel noise-robust hybrid architecture to combat noisy labels. Specifically,
we propose a slice-level label-quality awareness module, which is jointly trained with a
conventional segmentation module to predict label quality scores for each slice. We further
introduce regularization loss by distance transform maps to boost the segmentation perfor-
mance. With the calculated quality scores, we apply a re-weighting strategy on the total loss
to distill effective supervision information from relatively clean samples. Our architecture
can be trained without knowing the prior noise distribution or the availability of an extra
trusted subset. Experimental results on the publicly available medical datasets (CT for liver
segmentation and MRI-T2SPIR for abdomen multi-organ segmentation) demonstrate the
effectiveness of our hybrid noise-robust architecture. In the future, we will investigate the
relationships of multiple organs and hard sample mining for learning with noisy labels.
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