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Abstract: Web applications are the best Internet-based solution to provide online web services, but
they also bring serious security challenges. Thus, enhancing web applications security against hacking
attempts is of paramount importance. Traditional Web Application Firewalls based on manual rules
and traditional Machine Learning need a lot of domain expertise and human intervention and have
limited detection results faced with the increasing number of unknown web attacks. To this end,
more research work has recently been devoted to employing Deep Learning (DL) approaches for
web attacks detection. We performed a Systematic Literature Review (SLR) and quality analysis
of 63 Primary Studies (PS) on DL-based web applications security published between 2010 and
September 2021. We investigated the PS from different perspectives and synthesized the results of
the analyses. To the best of our knowledge, this study is the first of its kind on SLR in this field. The
key findings of our study include the following. (i) It is fundamental to generate standard real-world
web attacks datasets to encourage effective contribution in this field and to reduce the gap between
research and industry. (ii) It is interesting to explore some advanced DL models, such as Generative
Adversarial Networks and variants of Encoders–Decoders, in the context of web attacks detection
as they have been successful in similar domains such as networks intrusion detection. (iii) It is
fundamental to bridge expertise in web applications security and expertise in Machine Learning to
build theoretical Machine Learning models tailored for web attacks detection. (iv) It is important to
create a corpus for web attacks detection in order to take full advantage of text mining in DL-based
web attacks detection models construction. (v) It is essential to define a common framework for
developing and comparing DL-based web attacks detection models. This SLR is intended to improve
research work in the domain of DL-based web attacks detection, as it covers a significant number of
research papers and identifies the key points that need to be addressed in this research field. Such
a contribution is helpful as it allows researchers to compare existing approaches and to exploit the
proposed future work opportunities.

Keywords: deep learning; systematic literature review; web applications security; web attacks
detection; web vulnerabilities

1. Introduction and Background

Due to the extensive use of websites and web applications, web vulnerabilities are con-
tinuously growing. A survey conducted in 2019 [1] found that nine of 10 web applications
are vulnerable and that sensitive data breaches are possible on 68% of web applications.
Furthermore, that network intrusion was caused by unauthorized access to web servers
in 8% of cases. The immeasurable and disparate use of the Internet makes it a hackers’
aim. The main goal of web vulnerabilities detection techniques is to protect websites and
web applications from cyber-attacks such as Cross-Site Scripting (XSS), SQL injection, etc.
The subsections below present the necessary background for understanding the remainder
of this paper, including the general architecture of web-based applications, types of web
vulnerabilities, and different web vulnerabilities prevention and detection methods.

Future Internet 2022, 14, 118. https://doi.org/10.3390/fi14040118 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14040118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-2545-2316
https://orcid.org/0000-0002-5816-0897
https://doi.org/10.3390/fi14040118
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14040118?type=check_update&version=1


Future Internet 2022, 14, 118 2 of 46

1.1. Web Applications Architecture

Web-based applications are the essential network-based solution to offer standard web
services. The development of these applications is based on client and server-side develop-
ment. The server side involves a web server, a web application, and a database server; it
utilizes backend scripting languages including .NET, PHP, and JEE (Jakarta Enterprise Edi-
tion). The client-side works on the user’s web browser with front-end scripting languages,
including CSS/HTML, Javascript, etc. These two are usually interconnected via HTTP
protocol. Figure 1 presents server-side and client-side web application architecture. Web
applications became an integral part of individuals’ daily life because of their accessibility
and convenience. However, this increased popularity is a double-edged sword. Indeed,
web-based applications are the main highway for attackers to jeopardize critical services in
vital sectors such as healthcare, education, banking, and e-commerce.

Figure 1. Overview of web architecture.

1.2. Web Vulnerabilities

The term vulnerability is a weakness, glitch, or loophole in web application develop-
ment. An exploit is when the vulnerability is exploited, and the attack succeeds. Based
on the research work [2], web application vulnerabilities can be classified into three cate-
gories (Figure 2): Improper input validation refers to an incorrect validation and sanitization
of user input. SQL injection and Cross-Site Scripting (XSS) are examples of web attacks
caused by improper input validation vulnerability. Second, Improper session management
refers to when the web session is not secured correctly, and thus, the application could not
identify if web requests are malicious until these are linked with a proper valid session
identifier. Cross-Site Request Forgery (CSRF) and session highjacking are examples of
web attacks caused by improper session management. Finally, Improper authorization and
authentication vulnerability implies a logic flaw in the exercise of access control policies
as well as functions of authenticating. Broken access control is one of the web attacks
that could happen if the web application does not correctly manage authentication and
authorization procedures.
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LDAP: Lightweight Directory Access Protocol
OS: Operating Systems
RFI: Remote File Inclusion
LFI: Local File Inclusion
DT: Directory Traversal

Figure 2. Types of web vulnerabilities [2].

1.3. Web Vulnerabilities Countermeasures

Numerous researchers have proposed different methodologies to counter web vulner-
abilities. Figure 3 presents the main web applications security approaches. These methods
can be used mutually at different stages of the web application development life-cycle,
and they can either be implemented and placed at the client side or server side of web
applications.

Figure 3. Web vulnerabilities countermeasures.

1.3.1. Secure Programming

It is a set of rules and good practices enabling the development of secure web applica-
tions. The secure coding standards include queries parametrization (i.e., query parameters
are replaced with placeholders and parameter values are supplied at execution time), in-
put validation (i.e., checks if the input meets a set of criteria such as a string contains no
standalone single quotation marks), and sanitization of user input (i.e., modifies the input
to ensure that it is valid). The OWASP project (Open Web Application Security Project)
has proposed different standards to allow developers to follow secure practices when
they are coding web applications (ASVS (Application Security Verification Standard) [3],
ESAPI (Enterprise Security API), SAMM (OWASP Software Assurance Maturity Model) [4]).
Although secure programming can help to prevent web vulnerabilities, it imparts time
overhead and is not enough because of the complexity of web applications and the diversity
of technologies and external libraries involved in the development of web applications.

1.3.2. Static Analysis

It aims at finding web vulnerabilities by inspecting source or binary code without
running it. There exist several research works on web vulnerabilities detection using static
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analysis. For instance, ref [5] proposed a contextual, inter-function, and data-flow analysis
to discover taint-style vulnerabilities such as SQL, command injection, and XSS attacks.
Ref. [6] combined source code taint-analysis (i.e., track user inputs to verify if they reach a
sensitive sink (a function that can be exploited)) to find web vulnerabilities with data mining
to reduce false positives. Ref. [7] described a static analysis method that automatically
detects access control vulnerabilities in web applications. Ref. [8] proposed a Machine
Learning-based static analysis method to discover web vulnerabilities. They precisely used
Hidden Markov Model and annotated code slices to train a model to discover vulnerabilities
in source code. Ref. [9] presented a methodology and tool based on symbolic code execution
(i.e., instead of running the program with concrete inputs, symbolic execution runs them
with symbolic ones and finds vulnerabilities along with the inputs that will trigger them)
to identify vulnerabilities in web-based applications.

Overall, static analysis-based tools are a solution to find web vulnerabilities, but they
tend to generate false positives, they are time-consuming, and they may never converge for
large code bases.

1.3.3. Dynamic Analysis

It runs the application web and tries to identify security violations by using techniques
such as code instrumentation (i.e., inserting checks into the program) and fuzzing (i.e., it
inputs random test data to a target program in order to explore all possible paths).

Ref. [10] improved the detection of XSS attacks in web applications by using dynamic
analysis and a fuzzy engine. They extracted Application Entry Points (AEP) using a web
crawler and then used a fuzzy engine that generates invalid strings for each AEP until
the Web Application Firewall is defeated, in which case its signatures database is updated.
Ref. [11] presented a method for the detection of DOM-XSS attacks: they used dynamic taint
analysis of JavaScript code (i.e., taint traces are obtained while parsing web pages), and
fuzzing to automatically derive attack vectors based on those taint traces, and then, they
verify DOM-XSS vulnerability by rendering HTTP responses on the browser. Ref. [12] used
code instrumentation to generate models that describe how and with whom client-side
components interact, which allows protecting JavaScript-based web applications against
client-side validation attacks. Refs. [13,14] presented a concolic (concrete + symbolic)
execution-based approach for the detection of XSS attacks, and SQL injection and OS
command injection, respectively.

Dynamic analysis-based approaches incur no false positives but can not achieve high
code coverage.

1.3.4. Black-Box Fuzzing

It sends random malicious data to a web application without regard to its logic and
identifies whether the application is vulnerable based on its responses. Black-box fuzzers
are generally composed of (i) a crawler which identifies all possible web pages and entry
points in the analyzed web application, (ii) a test data generator that generates random data
for each application entry point, and (iii) a monitor that detects errors in the application
runtime behavior.

Ref. [15] proposed KameleonFuzz, a black-box XSS fuzzer for web applications that
can generate malicious inputs to exploit XSS vulnerabilities and also to detect how close it
is revealing a vulnerability. They used a genetic algorithm guided by an attack grammar
for malicious inputs generation and evolution. Ref. [16] described a black-box fuzzing
approach to detect XQuery injection and parameter tampering vulnerabilities in web
applications driven by XML databases. The proposed approach takes place in two phases:
(1) a training phase in which the application behavior is learned. It involves (i) a crawler that
identifies injection points, (ii) a model constructor that constructs legitimate query models,
and (iii) an HTML/JavaScript analyzer that extracts constraints on HTTP parameters. (2)
The testing phase involves three components: (i) an attack generator that generates attack
strings related to XQuery injection and parameter tampering vulnerabilities, (ii) a model
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constructor that constructs illegitimate query models resulting from the execution of attack
queries, and (iii) a detector that identifies the type of vulnerability exploited by comparing
the query model generated during the testing phase against the appropriate query model
generated during the training phase. Ref. [17] proposed a black-box fuzzing technique
to detect logic vulnerabilities in web applications. They firstly collected HTTP traces in
which users interact with a certain application. Then, they build a navigation graph model
that synthesizes web resources (i.e., data types, URLs, forms, HTTP parameters, JSON
objects, etc.). Afterward, they extracted behavioral patterns that model actions usually
done by users and actions allowed by the navigation graph model. Then, they generated
test cases that would break those behavioral patterns. Finally, they called a test oracle
that collects from the executed test a partially ordered set of events and verifies whether
all sequences satisfy the provided LTL (Linear Temporal Logic) formula. The test oracle
returns true if a certain predefined logic property is violated and false otherwise. Likewise,
ref. [18] proposed a method for the detection of XSS vulnerability in which they used a state
automaton to obtain knowledge about the application behavior and a genetic algorithm to
automatically generate inputs with better fitness values toward triggering an instance of
the given vulnerability.

Web Vulnerability Scanning Tools can also be considered in the category of black-box
fuzzers. They scan web applications from the outside to look for security vulnerabilities.
They are frequently used by security analysts and hackers to find web application vulnera-
bilities. A large number of both commercial and open-source tools of this type are available
(e.g., Burp Suite, Nessus, Nekto, etc.).

Black-box fuzzing does not require the availability of application source code, but it
can incur a high rate of false negatives and false positives depending on the efficiency of
the crawler and the attack data generator, respectively.

1.3.5. Intrusion Detection Systems (IDS)

They are defined as systems built to monitor host systems (Host Intrusion Detection
System (HIDS)) or network communications (Network Intrusion Detection System (NIDS))
or web applications (Web Application Firewall (WAF)). HIDSs are usually employed for
malware detection (i.e., malicious software that infects computers). NIDSs usually detect
network attacks such as DoS (Denial of Service), MITM attacks (Man-In-the-Middle), as
well as some types of web attacks. WAFs help protect web applications by filtering and
monitoring HTTP traffic between a web application and the Internet. They detect client-
side (e.g., DOM-XSS attack) and server-side (e.g., SQL injection attack) web attacks. We
distinguish between traditional WAFs and WAFs based on Machine Learning (ML) ([19–21])
or Deep Learning algorithms (Figure 4 summarizes the main Deep Learning models that
might be used for web attacks detection).

Traditional WAFs (e.g., ModSecurity) use static pattern rules matching to detect attacks.
Thus, they can not detect new-unknown attacks. In addition, updating rules can be a
tedious task if the attack pattern is complicated. However, they generate a few false
positives. As for ML/DL-based WAFs, there exist three main approaches: (1) the anomaly-
based approach in which models are trained using normal data instances uniquely and
unsupervised or hybrid ML algorithms, (2) the signature-based approach (the most used) in
which models are trained with normal and abnormal data instances and offline supervised
ML algorithms, and (3) the hybrid approach, which combines the signature-based approach
and anomaly-based detection approach. The first approach can detect zero-day attacks but
suffers from a high rate of false positives because it is not obvious to define with certainty
what is normality in a certain field. The second type of approach can not detect zero-day
attacks but can detect known attacks accurately and with fewer false positives than the
first approach. The third approach can make the best of both worlds. It can achieve high
accuracy in detecting known attacks while generating low false positives in detecting new
unknown attacks. Furthermore, the IDS signature database can be improved by adding the
signature of newly detected attacks.
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LSTM: Long Short-Term Memory
GRU: Gated Recurrent Network
RNN: Recurrent Neural Networks
CNN: Convolutional Neural Networks

Figure 4. Classification of Deep Learning techniques.

In this work, we are particularly interested in exploring existing studies on web attacks
detection using Deep Learning in a systematic way. Thus, researchers and practitioners will-
ing to use Deep Learning for web attacks detection will hopefully find valuable ground on
which they can base to develop new and efficient DL-based web attacks detection models.

To the best of our knowledge, this study is the first of its kind on SLR in this field. We
studied 63 DL-based web attacks detection papers published between 2010 and September
2021. Additionally, we categorized the papers according to several perspectives and came
up with some interesting research opportunities. Our main contributions are summa-
rized below:

• Identifying the Primary Studies (PS) related to the DL-based web attacks detection
and getting different insights from the studies.

• Performing a quality analysis on the PS.
• Presenting the results of the investigation including publication information, datasets,

detection models, detection performance, research focus, and limitations.
• Summarizing the findings and identifying some interesting opportunities for future

work in the domain of DL-based web attacks detection.

The remainder of this article is organized as follows. Section 2 describes surveys
and systematic literature reviews related to DL-based web attacks detection. Section 3
presents the methodology followed in conducting this SLR. Section 4 presents the results
and analysis. Section 5 describes the limitations of this study. Finally, Section 6 concludes
this study.

2. Related Work

As far as we know, this is the first study to systematically investigate Deep Learning
for vulnerability and attack detection on Web applications. However, there are also other
interesting partial surveys in the area.

Ref. [2] conducted a survey on the detection and prevention of web vulnerabilities.
They explained in detail web vulnerabilities and the different methods used to counter them.
However, they only reviewed traditional Machine Learning-based web attacks detection
research works. Related surveys, such as [22,23], have described Machine Learning or Deep
Learning applications to cyber-security problems but without paying a particular attention
to web applications security. Refs. [24,25] are two surveys about web vulnerabilities
classification and countermeasures. They both do not focus on Deep Learning-based
approaches for web vulnerabilities detection and do not follow the SLR protocol. Ref. [26]
is an SLR on web services attacks and security. Ref. [27] is a recently published survey
presenting the latest Machine Learning and Deep Learning-based approaches used for
detecting XSS attacks.
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3. Review Methodology

The systematic review in this study conducted by adapting the strategy proposed
by [28,29] consists of three main steps; including (i) planning, (ii) conducting, and (iii)
reporting the review results. The detail of these steps is summarized in Figure 5. The
planning phase (first step) determines if there is a need to conduct a systematic review. The
second step develops a review protocol including (i) identifying research questions, (ii)
creating a search strategy, (iii) defining the study selection criteria, (iv) developing quality
assessment rules, (v) determining the data extraction strategies that will be used, and (vi)
defining the methods that will be used to synthesize the extracted data. We provide details
about the proposed protocol in the following subsections. The second phase explains the
necessary primary steps to conduct a systematic review of the study. In the two first steps
(steps 3 and 4), we select the PS by applying the selection criteria and quality assessment
rules defined in the planning phase, and then we describe their contents. In the second step
(step 5), we extract from selected PS the data that will help answer the research questions.
In the third step (step 6), we use different methods to synthesize the extracted data to
facilitate the answer to the research questions. In the fourth step (step 7), we answer the
research questions based on the synthesized data. In the reporting phase, we discuss the
review results, and we state the limitations of selected PS.

Figure 5. Systematic review process.
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3.1. Research Questions

The main focus of our study is to analyze scientific literature on web attacks detection
using Deep Learning techniques available from 2010 to September 2021 inclusively. Based
on that, we specify the research questions (RQ1–RQ10) that we detailed in Table 1.

Table 1. Research questions.

RQ No. Question Motivation

RQ1-1 What is the annual number of studies
on DL-based web attacks detection?

Estimate the published articles per
year on the DL-based web attacks

detection.

RQ1-2
What is the percentage of studies

published in journals and
conferences?

Compare the percentage of studies on
the DL-based web attacks detection

published in journals and
conferences.

RQ2
What datasets are used to evaluate

the proposed approaches for
DL-based web attacks detection?

Identify the datasets that are
commonly used in the evaluation of

prediction models.

RQ3

What frameworks and platforms are
used to implement the proposed

solutions for DL-based web attacks
detection?

Give an overview of the available
frameworks and platforms used for
developing DL-based web attacks

detection models.

RQ4
What performance metrics are used
in DL-based web attacks detection

literature?

Enumerate the most commonly used
performance metrics in web intrusion

detection systems.

RQ5

What are the feature selection and
extraction approaches used in

DL-based web attacks detection
literature?

Identify the feature extraction and
selection approaches used for

DL-based web attacks detection
models.

RQ6 What classification models are used
to detect web vulnerabilities?

Identify the classification models that
are commonly used for detecting web

attacks.

RQ7 What types of web attacks do the
proposed approaches detect?

Identify whether the proposed
solutions for DL-based web attacks
detection have a general purpose or
target a specific type of web attacks.

RQ8 What is the performance of DL-based
web attacks detection models?

Report the experimentation details of
the proposed DL-based web attacks

detection models.
RQ9 What is the research focus of the PS? Identify the main objective of the PS.

RQ10

What limitations do the proposed
solutions for DL-based web attacks

detection have according to the
authors?

Identify the limitations of the studies
as stated by their authors.

3.2. Search Strategy

We performed exhaustive searches on different online libraries. The following search
string yielded most appropriated results:

• (“deep learning” OR “neural networks”) AND (“web attacks” OR “web security” OR
“web application security” OR “web vulnerabilities”)

We adapted search strings to be suitable for each database according to their specific
requirements. Then, we queried each database by title, abstract, and keywords. The digital
libraries utilized in this study include Scopus, Web Of Science, ScienceDirect, IEEE, ACM,
and Springer. The first part of Figure 6 (blue) indicates the steps followed in conducting
the search strategy.
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Figure 6. Search and study selection process.

3.3. Study Selection

Figure 6 explains our search strategy achieved an initial set of 290 PS. Then, we apply
additional filtering that aims at:

1. Getting rid of duplicate PS.
2. Applying inclusion and exclusion criteria to determine the relevant PS.
3. Performing a quality assessment of selected PS.

Our criteria for inclusion included the following:

• Research works include web attacks and Deep Learning terms in title or abstract.
• Research works whose main topic is detecting web attacks using Deep Learning.
• Research works published between 2010 and September 2021.
• Research works that contain a quantitative evaluation of the proposed solutions.

Our criteria for exclusion included:

• Studies involve detecting web attacks using methods other than Deep Learning.
• Studies involve the development of Deep Learning models for the detection of Mal-

ware, Spam, Network intrusions, or Phishing attacks.
• Studies not considered as published journal papers or conference proceedings.
• Studies written in a language other than English.

After the phase mentioned above, we found 63 journal and conference articles fulfilling
our selection strategy. The second part of Figure 6 (green) indicates the steps followed in
conducting the study selection strategy.
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3.4. Quality Assessment Criteria

To assess the selected PS quality, we performed a quality analysis questionnaire. This
quality assessment aims at giving a quality score to each PS and not intended to eliminate
any PS selected at the previous phase of the SLR. Table 2 explains a total of eight quality
assessment questions. Each question was scored as follows: “fully answered” = 1, “partly
answered” = 0.5, “not answered” = 0. Between 0 and 8, quality scores are assigned to each
PS by summing the individual question scores. Table 3 shows the selected PS with their
QA scores.

Table 2. Quality assessment questions.

QQ No. Question

QQ1 Is the objective of the study clear?
QQ2 Is the data collection procedure clearly defined?
QQ3 Does the study provide any tool or source online?
QQ4 Is there a comparison among techniques?
QQ5 Does the author provide sufficient details about the experiment?

QQ6 Are problems of validity or trust of the results obtained adequately
discussed?

QQ7 Does the study clearly define the performance parameters used?

QQ8 Is there a clearly defined relationship between objectives, data obtained,
interpretation, and conclusions?

Table 3. Quality assurance scores of selected PS.

ID Ref Score ID Ref Score

PS1 [30] 6.5 PS29 [31] 6
PS2 [32] 5.5 PS30 [33] 6
PS3 [34] 6 PS31 [35] 4
PS4 [36] 6 PS32 [37] 4.5
PS5 [38] 4 PS33 [39] 4.5
PS6 [40] 5.5 PS34 [41] 6
PS7 [42] 5 PS35 [43] 4.5
PS8 [44] 5 PS36 [45] 4.25
PS9 [46] 5 PS37 [47] 5

PS10 [48] 5.5 PS38 [49] 5.5
PS11 [50] 5 PS39 [51] 6
PS12 [52] 5 PS40 [53] 5.5
PS13 [54] 5 PS41 [55] 5.75
PS14 [56] 6.5 PS42 [57] 6
PS15 [58] 4.5 PS43 [59] 4.5
PS16 [60] 5.5 PS44 [61] 3.5
PS17 [62] 5 PS45 [63] 6.5
PS18 [64] 7 PS46 [65] 4
PS19 [66] 5 PS47 [67] 5
PS20 [68] 5 PS48 [69] 4.5
PS21 [70] 6 PS49 [71] 6
PS22 [72] 5 PS50 [73] 4.5
PS23 [74] 4.75 PS51 [75] 5.5
PS24 [76] 6 PS52 [77] 5.5
PS25 [78] 5.5 PS53 [79] 5
PS26 [80] 5 PS54 [81] 5
PS27 [82] 5.5 PS55 [83] 8
PS28 [84] 6 PS56 [85] 5

PS57 [86] 5
PS58 [87] 4.5 PS59 [88] 7
PS60 [50] 5 PS61 [89] 6.5
PS62 [90] 6 PS63 [91] 6



Future Internet 2022, 14, 118 11 of 46

The quality analysis of selected studies shows that the DL-based web attacks detection
research domain is yet to be explored properly. Few studies obtained good scores; still,
most of the studies reported average scores.

3.5. Data Extraction

In this step, the main focus is to extract important information from each PS that helps
answer research questions and store that extracted data in spreadsheets to use in the data
synthesis process later on. Table 4 provides the data extraction form used in this SLR study.

Table 4. Data extraction form.

No Attribute Name Research Question

01. Study identifier
02. Year of publication RQ1
03. Type of study RQ2
04. Datasets RQ3
05. Frameworks RQ4
06. Performance measures RQ5
07. Feature extraction RQ6
08. Classification models RQ7
09. Type of web attacks RQ8
10. Experimental performance of proposed models RQ9
11. Limitations RQ10
12. Main objective RQ11

3.6. Data Synthesis

Data synthesis aims at using various methods to synthesize the data extracted from the
selected PS to answer the research questions. Therefore, we considered different synthesis
methods, including narrative synthesis, tables, and visualization tools such as bar charts,
pie charts, and line graphs.

4. Results and Discussion

In the following subsections, the findings of this SLR study will be presented and
discussed for each Research Question (RQ).

4.1. RQ1: What Are the Trend and Types of Studies on DL-Based Web Attacks Detection?

This question aims at reviewing bibliometric studies in the DL-based web attacks
detection domain; the answers reflect publication information of Primary Studies.

RQ1-1: What is the annual number of studies on DL-based web attacks detection?
Figure 7 is the year-by-year presentation of selected studies. The year started in 2010
and ended in September 2021, and we have shown ten years of data of 63 articles. The
figure shows the disparate distribution of papers according to the years. In 2012, we found
the first and only one research article on the DL-based web attacks detection. Since that
day, several research articles have been published on the topic. The number of papers
published reaches the maximum in 2019 and then decreased in 2020. We finished the SLR
by September 2021. Thus, the 12 papers published in 2021 are not representative of the
papers published in that year. This scenario suggests that the distribution of published
research papers is not equal, and web vulnerability detection topics using Deep Learning
will gain more attention in coming years.
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Figure 7. Year-wise distribution of studies.

RQ1-2: What is the percentage of studies published in journals and conferences?
Figure 8 shows that 57% of PS are published in conferences while 43% are published in
journals.

Figure 8. Percentage of studies published in journals and conferences.

The RQ1 answer indicates that interest in detecting web vulnerabilities using Deep
Learning models is very recent; since 2019, the number of articles published in this research
field has increased significantly. In addition, the number of journal articles is less than the
number of conference papers.

4.2. RQ2: What Datasets Are Used to Evaluate the Proposed Approaches for DL-Based Web
Attacks Detection?

In Machine Learning approaches, the choice of the dataset is a key point in the
evaluation of detection models’ performance. Thus, this question aims at reviewing and
discussing the limitations of datasets commonly used in web attacks detection.

According to the dataset type, we shaped the studies into the following two classes: (i)
public datasets—free and open access and (ii) private datasets—not open access.

We found that some studies combine more than one public dataset or even use private
and public datasets at the same time to conduct the experiments. Figure 9 gives an overview
of the datasets percentage utilized in articles reviewed in this study.
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Figure 9. Histogram of datasets used in selected PS.

We found that 37 studies used private datasets, 29 studies used the CSIC-2010 dataset,
three studies used the ECML/PKDD 2007 dataset, two studies used KDD-Cup99, six studies
use the CICIDS 2017 dataset, and six studies used publicly available datasets not very
commonly used in research works (e.g., xssed.com, Apache 2006/2017, HttpParams). We
detail below the public datasets that have been used in the majority of the reviewed studies:

• KDD-Cup99: The dataset contains 41 features. It can get in three following versions:
(i) complete training set, (ii) 10% of the training set, and (iii) testing set. It is mainly
used for building networks intrusion detection models.

• UNSW-NB15: The dataset combines actual modern normal activities and synthetic
contemporary attack behaviors. It has nine types of attacks, which are mostly re-
lated to network intrusion. The training dataset includes 175,341 instances whereas
82,332 instances are in the testing set. It is also mostly used in networks intrusion
detection.

• CICIDS-2017: The Canadian Institute for Cybersecurity created this dataset. It has
2,830,540 distinct instances and 83 features containing 15 class labels (1 normal + 14
attack labels). The dataset contains only 2180 web attacks instances, which means it is
insufficient for evaluating a web attacks detection model.

• CSIC-2010: The dataset contains the generated traffic targeted to an e-commerce web
application. It is an automatically generated dataset that contains 36,000 normal
requests and more than 25,000 anomalous requests (i.e., web attacks).

• ECML/PKDD 2007: The dataset is part of ECML and PKDD conferences on Machine
Learning. The dataset contains 35,006 normal traffic and 15,110 malicious web requests.
The dataset was developed by collecting real traffic and then processed to mask
parameter names and values—replacing them with random values.

DL-based web attacks detection models development faces the limitation of prob-
lems related to datasets available for evaluating detection models’ performance. In fact,
existing public datasets are outdated and simplistic, meaning that they do not include
newly discovered web attacks and they do not reflect the complexity of real-world web
applications. Moreover, comparing research works in this field is almost impossible because
most researchers use private datasets, and even when they adopt public datasets, they use
different portions and apply different pre-processing techniques, which results in different
versions of the same dataset. Additionally, public datasets need thorough pre-processing.
Otherwise, evaluation results can not reflect the real models’ performance. For instance, a
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dataset with many duplicated instances results in biased accuracy. More, a poor feature
selection/extraction strategy can produce over-fitted or under-fitted models.

4.3. RQ3: What Frameworks and Platforms Are Used to Implement the Proposed Solutions for
DL-Based Web Attacks Detection?

The main objective behind this research question is (i) to give an overview of software
and platforms commonly used in DL-based web attacks detection models development
and (ii) to gauge the interest of researchers to give technical implementation details.

Figure 10 summarizes the frequency of usage of frameworks and platforms that are
used for developing DL-based web attacks detection models. First, it shows that the most
used frameworks and platforms are Keras and TensorFlow. Then, various frameworks such
as PyTorch, Theano, Scikit-learn, Weka, and MATLAB are used by few studies. However,
23 studies did not provide implementation details.

Figure 10. Histogram of frameworks and platforms used in selected PS.

4.4. RQ4: What Performance Metrics Are Used in DL-Based Web Attacks Detection Literature?

The objective of this research question is to present and discuss the performance
metrics that are commonly used to evaluate DL-based web attacks detection models.

Using DL models for web attacks detection amounts to developing a classification
model that can identify whether a web application is vulnerable or not (i.e., binary classifi-
cation), or whether it is vulnerable to a specific web attack (e.g., vulnerable or not to XSS
attacks), or determine to which web attack it is vulnerable (multi-classification problem).

Different performance metrics have been used in the literature to evaluate DL-based
web attacks detection models. However, we detail below the most widely used metrics as
reported in Figure 11.
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Figure 11. Histogram of performance metrics used in selected PS.

• Accuracy: measures the ratio of the number of samples classified correctly over the
total number of samples. Accuracy is not useful when the classes are unbalanced (i.e.,
there are a significantly larger number of examples from one class than from another).
However, it does provide valuable insight when the classes are balanced. Usually, it is
recommended to use recall and precision along with accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

• Recall or Sensitivity or True Positive Rate or Detection Rate: measures the proportion
of actual positives that are correctly identified.The higher value of sensitivity would
mean a higher value of true positive and lower value of false negative. The lower
value of sensitivity would mean lower value of true positive and higher value of
false negatives.

Recall =
TP

TP + FN
(2)

• Precision: measures the number of positive class predictions that actually belong to
the positive class. Precision does not quantify how many real positive examples were
predicted as belonging to the negative class, that is why it is advisable to compute the
True Negative Rate (TNR) metric.

Precision =
TP

TP + FP
(3)

• F1-score: weighted harmonic mean of precision (P) and recall (R) measures. It is
recommended to use F1-score rather than accuracy if we need to seek a balance
between precision and recall and there is an uneven class distribution:

F1-score =
1

α. 1
P + (1 − α). 1

R
(4)
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α is chosen such that recall is considered α times as important as precision. If α is 1
2 ,

then precision and recall are given equal importance. The choice of α, and thus the
trade-off between precision and recall, depends on the classification problem.

• False Positive Rate: the ratio of all benign samples incorrectly classified as malicious.
It is used to plot the ROC curve:

FPR =
FP

FP + TN
(5)

In intrusion detection systems, it is important to have a low FPR. Otherwise, the
detection system is considered not reliable.

• Area Under the Curve (AUC): measures two-dimensional area under the ROC curve,
ranging from 0 to 1, indicating a model’s ability to distinguish between classes. Mod-
els should have a high value of AUC, so-called models with good skill. The ROC
(Receiver Operating Characteristic) curve is the plot between the TPR (y-axis) and the
FPR (x-axis).

• True Negative Rate or Specificity: measures the proportion of actual negatives correctly
identified. The higher value of specificity would mean a higher value of true negative
and lower false positive rate. The lower value of specificity would mean a lower value
of true negative and higher value of false positive.

TNR =
TN

FP + TN
= 1 − FPR (6)

For multi-classification problems, it is straightforward to calculate accuracy; however,
metrics such as precision, recall, FPR, F1-Score, and AUC cannot be calculated easily
because TP and TN do not exist for such problems. These metrics can only be determined
for three or plus class problems by collapsing the problem into a two-class problem (i.e.,
all classes versus one class), where the metrics are calculated for each class. Usually, for
multi-class problems, only accuracy is used.

4.5. RQ5: What Are the Feature Selection and Extraction Approaches Used in DL-Based Web
Attacks Detection Literature?

Although Deep Learning performs automatic feature selection and extraction during
models training, in the context of web attacks detection, the model input is textual in most
cases, which means that prior to model training, the input should be processed beforehand.
In this research question, we will shed the light on the feature selection and extraction
approaches that are used to process the input to DL-based web attacks detection models.

Feature engineering is an essential step in the construction of Machine Learning
models. It includes feature selection and feature extraction. Feature selection starts from a
set of attributes and retains the most relevant ones. Feature extraction starts from a set of
attributes and derives attributes intended to be informative and non-redundant.

According to reviewed papers, we can group feature selection and extraction ap-
proaches into three categories. (1) In intrinsic feature selection and extraction, features
are selected and extracted in the course of model training, thereby, the feature selection
and extraction are performed by the DL classification model. In this category, the model
input is either a set of numerical features likely selected using a feature selection method,
or a result of a simple conversion from textual to numerical format. (2) Extrinsic and
intrinsic feature selection and extraction consists of applying external feature selection and
extraction methods on the input; then, the resulting features are fed to the DL classification
model, which extracts and selects more abstract and complex features during training.
In this category, the external feature extraction methods are more sophisticated; they are
either based on techniques that are employed in Natural Language Processing (NLP) prob-
lems, namely word-level and character-level embedding, or on manual feature extraction
(i.e., features can be extracted using automatic tools, but these tools are built according
to experts instructions). (3) In extrinsic feature selection and extraction, feature selection
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and extraction are external to the classification model construction. It can involve text
classification techniques, manual feature extraction, and/or DL models. In this category, a
traditional Machine Learning model is used for classification.

As seen in Figure 12, extrinsic and intrinsic feature selection and extraction is the
most used approach in reviewed studies, which is followed by intrinsic feature selection
and extraction, and then extrinsic feature selection and extraction. As for external fea-
ture extraction techniques, we can see from Figure 13 that the most used methods are
word-level embedding, followed by manual feature extraction, and then character-level
embedding and Encoder–Decoder models. Feature selection came in the fourth position
after manual feature extraction, but only one study among the seven studies has identified
the technique used.

Figure 12. Histogram of feature selection and extraction categories used in selected PS.

Figure 13. Histogram of feature selection and extraction methods used in selected PS.
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We observed that most reviewed studies do not discuss feature engineering in detail.
Indeed, even if Deep Learning can extract abstract and complex features in the course
of model training, it is important to identify whether the input to the DL model is a
result of external feature extraction and selection or of a simple conversion from textual to
numerical format and that feature selection and extraction is performed by the classification
model during training. Yet, the studies that pay more attention to feature engineering are
those using traditional ML models for classification and DL models for feature selection
and extraction.

4.6. RQ6: What Classification Models Are Used to Detect Web Vulnerabilities?

The main objective of this research question is to identify DL models used for the
classification of web attacks.

In this section, we extract from the selected PS the classification models used for
detecting web attacks. As seen in Figure 14, there exist different Deep Learning models
with the exception of a few models such as Generative Adversarial Network and variants
of Encoder–Decoders models. Few studies use Deep Learning models as feature extractors
and Machine Learning (ML) algorithms as web attacks classifiers. This is why they were
part of this study. Finally, we noticed that CNN, LSTM, and DFFN are the most Deep
Learning models used in the reviewed studies.

Figure 14. Histogram of classification models used in selected PS.

Since Generative Adversarial Network and Encoder–Decoder models have shown
promising results in networks intrusion detection (e.g., [92–95]), exploring these models in
web attacks detection is an important area for improvement.

4.7. RQ7: What Types of Web Attacks Do the Proposed Approaches Detect?

In this research question, we attempt to identify the types of web attacks that reviewed
studies try to detect using Deep Learning models.

As seen in Figure 15, most studies develop Deep Learning models for detecting
web attacks without targeting a specific type of web attacks. Still, some studies focus on
detecting specific web attacks, namely query injection attacks, XSS attacks, and file and
path injection attacks. Moreover, 46 studies develop binary classification models, while
only 15 studies develop multi-classification models (Figure 16).

Since most if not all studies do not mention whether the proposed DL models were
trained on a dataset that contains an even number of instances for each type of web attack,
it is important to evaluate how well these DL models will perform in detecting specific
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types of web attacks. This can be achieved by giving more attention to the development of
multi-classification models.

Figure 15. Histogram of web attacks types used in the selected PS.

Figure 16. Percentage of studies proposing binary or multi-classification models.

4.8. RQ8: What Is the Performance of DL-Based Web Attacks Detection Models?

In this research question, we report the experimentation details of DL-based web
attacks detection models proposed in the selected PS.

Table 5 summarized the experiments conducted in the reviewed studies: targeted
web attacks, classification models, datasets, performance metrics, as well as limitations of
studies as stated by their authors. If a given reviewed study performed many experiments,
we report the experiment that yielded the best results.
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Table 5. A summary of experiments conducted in selected PS.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS1 [30] SQLI CNN

Combination of
CSIC-2010, KDD-Cup99,

UNSW-NB15, and
private dataset

binary

-Accuracy: 0.9950
-Precision: 0.9898

-F1-score: 0.99
-TPR: 1

-Restricted datasets
-Limited to one type of attack

PS2 [32] Web attacks injected in
HTTP requests CNN CSIC-2010 binary

-Accuracy: 0.9820
-TPR: 0.98
-TNR: 0.97

-Online learning
-Adversarial attacks

PS3 [34] JavaScript attacks Logistic regression Private dataset binary
-Accuracy: 0.9482
-Precision: 0.949

-TPR: 0.94

-Minification and obfuscation of JS code
-Long training time

PS4 [36] Malicious HTML pages DFFN Private dataset binary -ROC: 0.975 -Establishing the ground truth

PS5 [38] Web attacks injected in
HTTP requests CNN CSIC-2010 binary

-Accuracy: 0.9649
-TPR: 0.934
-FPR: 0.13

-Consider the whole HTTP request message in
the detection system.

PS6 [40] Web attacks injected in
HTTP requests

Weighted average ensemble of
ResNet CSIC-2010 binary -Accuracy: 0.9941

-TNR: 0.99

-Evaluate other ensemble models and
experiment with other feature representation

techniques

PS7 [42] Web attacks injected in
HTTP requests CNN + GRU CSIC-2010 binary

-Accuracy: 0.99
-Precision: 0.9982
-F1-score: 0.987

-TPR: 0.97

Not Available

PS8 [44] XSS attacks CNN + LSTM xssed.com binary

-Accuracy: 0.993
-Precision: 0.999
-F1-score: 0.995

-TPR: 0.99
-AUC: 0.95

Scarcity of datasets in the field of web security

PS9 [46] Web attacks injected in
HTTP requests Neural Network CSIC-2010 binary

-Accuracy: 0.84
-Precision: 0.83
-F1-score: 0.79

-TPR: 0.82
-AUC: 0.86

Not available
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Table 5. Cont.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS10 [48] SQLI

CNN Private dataset binary

-Accuracy: 0.953
-Precision: 0.954
F1-score: 0.734

-TPR: 0.59

MLP Private dataset binary

-Accuracy: 0.953
-Precision: 0.91
-F1-score: 0.746

-TPR: 0.637

-Collect a dataset for SQL injection attack
detection

-Build a word2vec model for PHP source code
-Use Control Flow Graph attributes

PS11 [50] Web attacks injected in
HTTP requests CNN CSIC-2010 binary

-Accuracy: 0.9797
-Precision: 0.9743
-F1-score: 0.975

-TPR: 0.97
-FPR: 0.03
-TNR: 0.96
-AUC: 0.96

-Datasets available for evaluating DL-based
web attacks detection model are limited

-Consider multi-class classification instead of
binary classification

PS12 [52] SQLI and DDoS Neural Network Private dataset multi-class -Accuracy: 0.97 -Variable size network
-Memory and time constraints

PS13 [54]

CSIC-2010 binary -Accuracy: 0.9098
Web attacks injected in

HTTP requests
Ensemble classification of Neural

Network and ML algorithms ECML-PKDD binary -Accuracy: 0.9056

-Compare the proposed method with other
ensemble classification models

-Apply the proposed method in malware

PS14 [56]

-Password guessing and
authentication

-SQLI
-Application

vulnerability attack

CNN + LSTM Private dataset multi-class

-Accuracy: 0.9807
-Precision: 0.9706
-F1-score: 0.981

-TPR: 0.99
-TNR: 0.99

-Re-validation and retraining of DL-based
misuse intrusion detection tools

-Combine misuse detection tools and signature
based tools

PS15 [58] Web attacks injected in
HTTP requests Isolation Forest CSIC-2010 binary

-Accuracy: 0.8832
-Precision: 0.8029
-F1-score: 0.841

-TPR: 0.88
-TNR: 0.88

-Use other deep learning techniques
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Table 5. Cont.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS16 [60] Web attacks injected in
GET HTTP requests

LSTM + Multi-Layer Perceptron
(MLP) CSIC-2010 binary

-Accuracy: 0.9842
-TPR: 0.97
-TNR: 0.99

GRU + MLP Private dataset binary
-Accuracy: 0.9856

-TPR: 0.98
-TNR: 0.98

-Long URLs are not handled very well
-The proposed model can not dynamically
leverage between true positives and false

positives

PS17 [62] Web attacks injected in
HTTP requests LSTM CSIC-2010 binary

-Accuracy: 0.9997
-Precision: 0.995

-TPR: 0.995
Not Available

PS18 [64] Web attacks injected in
system calls LSTM Private dataset binary -AUC: 0.96

-Certain classes of attacks could be missed
-Privacy leakage

-Retraining ML models for each new
considered web application

-Adversarial attacks

PS19 [66]
-SQLI
-XSS

-Brute-Force

GRU based Encoder-Decoder with
attention mechanism

CSIC 2010 + CICIDS
2017 multi-class -TPR: 0.94

-FPR: 0.003 Not Available

PS20 [68] Web attacks injected in
HTTP requests Bi-directional LSTM CSIC 2010 binary

-Accuracy: 0.9835
-Precision: 0.99
-F1-score: 0.985

-TPR: 0.98
-FPR: 0.014

Not Available

PS21 [70] Web attacks injected in
HTTP requests CNN + LSTM CSIC 2010 binary

-Accuracy: 0.9779
-Precision: 0.9854
-F1-score: 0.9872

-TPR: 0.9604

-Include more web attacks in the dataset
-Consider scenario based attacks (i.e.,

correlated requests)
-Deploy the model in a practical web service

PS22 [72] Web attacks hidden in
HTTP requests GRU Private dataset binary -Accuracy: 0.985 Not Available
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Table 5. Cont.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS23 [74] Web attacks hidden in
HTTP requests

CNN CSIC 2010 binary

-Accuracy: 0.9726
-Precision: 0.9771
-F1-score: 0.965

-TPR: 0.95
-FPR: 0.01

-HTTP requests are misclassified if containing
strings that never appear in the training set

LSTM CSIC 2010 binary

-Accuracy: 0.9699
-Precision: 0.9882
-F1-score: 0.962

-TPR: 0.937
-FPR: 0.007

-The way in which the request is split into a
sequence of words influences false positives

occurrence

CNN-LSTM CSIC 2010 binary

-Accuracy: 0.9550
-Precision: 0.9463
-F1-score: 0.944

-TPR: 0.94
-FPR: 0.03

-Inspect all the fields of the HTTP request

LSTM-CNN CSIC 2010 binary

-Accuracy: 0.9602
-Precision: 0.9652
-F1-score: 0.950

-TPR: 0.935
-FPR: 0.02

-Use more sophisticated models

PS24 [76] XSS attacks LSTM Private dataset binary

-Precision: 0.995
-F1-score: 0.987

-TPR: 0.979
-AUC: 0.98

-Collect more XSS attacks

PS25 [78] Web attacks hidden in
HTTP requests CNN-GRU Private dataset binary

-Accuracy: 0.9961
-Precision: 0.9963
-F1-score: 0.9961

-TPR: 0.9958

-Reduce memory consumption
-Online update of the trained model

PS26 [80] Web attacks hidden in
HTTP requests SVM CSIC 2010 binary

-Accuracy: 0.9897
-Precision: 0.9970

-TPR: 0.986
Not Available
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Table 5. Cont.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS27 [82] SQLI

Random Forest SQL injection datasets
published in Github binary

-Accuracy: 0.998
-Precision: 0.999
-F1-score: 0.999

-TPR: 0.986
-TNR: 0.999
-AUC: 0.999 -Non-malicious data is biased toward

domain-specific traffic

DFFN SQL injection datasets
published in Github binary

-Accuracy: 0.984
-Precision: 0.934
-F1-score: 0.873

-TPR: 0.820
-TNR: 0.995
-AUC: 0.992

PS28 [84]
-SQLI
-XSS

-Object de-serialization
Stacked Denoising Auto-Encoder Private dataset multi-class

-Precision: 0.906
-F1-score: 0.918

-TPR: 0.928

-Investigate more complex neural networks
-Detect zero-day attacks

-Online updating of trained models
-Distributed machine learning analysis

PS29 [31] DDOS Stacked Auto-Encoder Private dataset multi-class -TPR: 0.98
-FPR: 0.012 Not Available

PS30 [33] SQLI

LSTM Private dataset binary

-Accuracy: 0.9917
-Precision: 0.9110

-TPR: 0.99
-FPR: 0.90 Not Available

MLP Private dataset binary

-Accuracy: 0.9975
-Precision: 0.9727

-TPR: 0.99
-FPR: 0.26

PS31 [35] SQLI MLP Private dataset binary
-Accuracy: 1

-TPR: 1
-TNR: 1

Not Available

PS32 [37] Web attacks hidden in
web logs

DFFN Apache 2006 binary

-Accuracy: 0.9973
-Precision: 0.9976
-F1-Score: 0.995

-TPR: 0.99 Not Available

DFFN Apache 2017 binary

-Accuracy: 0.9838
-Precision: 0.9984
-F1-score: 0.972

-TPR: 0.94
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Table 5. Cont.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS33 [39] Web attacks hidden in
HTTP requests

LSTM CSIC 2010 binary
-Precision: 0.977
-F1-score: 0.978

-TPR: 0.979

Not AvailableCNN CSIC 2010 binary
-Precision: 0.986
-F1-score: 0.985

-TPR: 0.983

LSTM+ CNN CSIC 2010 binary
-Precision: 0.989
-F1-score: 0.989

-TPR: 0.988

PS34 [41]
-Malicious URLs

-Malicious registry keys
-Malicious file paths

CNN Private dataset multi-class

-TNR: 0.993 (URLs detection) -Poor detection performance of some web
attacks

-TNR: 0.978 (file paths detection) -Long URLs length induce computational cost
overhead

-TNR: 0.992 (registery keys detection)

PS35 [43] Web attacks hidden in
network traffic LSTM

CICIDS 2017 binary
-Accuracy: 0.9908

-TPR: 0.987
-TNR: 0.992

-Available datasets for web attacks detection
are restricted

NSL-KDD binary
-Accuracy: 0.9914

-TPR: 0.995
-TNR: 0.996

CICIDS 2017 multi-class
-Accuracy: 0.9910

-TPR: 0.994
-TNR: 0.993

-Reduce detection time by using GPU

NSL-KDD multi-class
-Accuracy: 0.994

-TPR: 0.985
-TNR: 0.992

PS36 [45] Web attacks hidden in
network traffic

Genetic algorithm and Shallow
Neural Network (SNN)

CICIDS-2017 multi-class

-Accuracy: 0.9790 (web attacks
detection)

0.9676 (web attacks detection)
-TPR: 0.97 (web attacks detection) Not Available

CICIDS-2017 multi-class
-Accuracy: 0.9758 (normal traffic)
-Precision: 0.9540 (normal traffic)

-TPR: 0.96 (normal traffic)
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Table 5. Cont.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS37 [47] Web attacks hidden in
HTTP requests

Stacked-AE + Isolation Forest (IF) CSIC 2010 binary

-Accuracy: 0.8924
-Precision: 0.8158
-F1-score: 0.853

-TPR: 0.894
-TNR: 0.8911
-AUC: 0.96

-Extract effective features

Deep Belief Network (DBN) + IF CSIC 2010 binary

-Accuracy: 0.8687
-Precision: 0.8109
-F1-score: 0.813

-TPR: 0.815
-TNR: 0.89
-AUC: 0.94

-Port the WAF as cloud service

Stacked-AE + Elliptic Envelop ECML-PKDD binary

-Accuracy: 0.8378
-Precision: 0.8240
-F1-score: 0.842

-TPR: 0.863
-TNR: 0.8117
-AUC: 0.92

-Extend the proposed method for big data
environments and data streams

DBN + Elliptic Envelop ECML-PKDD binary

-Accuracy:0.8413
-Precision: 0.8086

-F1-score:0.849
-TPR: 0.895
-TNR: 0.78
-AUC: 0.94

PS38 [49]

CNN CSIC 2010 multi-class

-Accuracy: 0.998
-Precision: 1

-F1-score: 0.991
-TPR: 0.982

-FPR: 0 -The proposed system can only deal with SQLI
and XSS attacks-SQLI

-XSS attacks

CNN Private dataset multi-class

-Accuracy: 0.999
-Precision: 1

-F1-score: 0.999
-TPR: 0.986

-FPR: 0
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Table 5. Cont.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS39 [51] Malicious JS code Bi-directional LSTM Private dataset binary

-Accuracy: 0.9771
-Precision: 0.9868
-F1-score: 0.9829

-TPR: 0.979

-Static analysis cannot detect malicious JS code
generated dynamically

-Experiment more complex neural networks

PS40 [53] CNN Private dataset multi-class

-Precision: 1 (benign)
-TPR: 0.99 (benign)
FPR: 0.02 (benign)

-Test the model performance in more practical
applications

-Precision: 1 (Directory Traversal (DT))
-TPR:1 (DT)

-Precision: 0.9983 (Remote File
Inclusion (RFI))

-TPR:1 (RFI)

-SQLI
-RFI
-XSS
-DT

-Precision: 0.9979 (SQLI)
-TPR:1 (SQLI)

-Precision: 1 (XSS)
-TPR:1 (XSS)

PS41 [55] XSS DFFN Private dataset binary

-Accuracy: 0.9932
Precision: 0.9921
-F1-score: 0.987

-TPR: 0.98
-FPR: 0.31
-AUC: 0.99

-Deploy the proposed model in a real-time
detection system

PS42 [57]
Web attacks injected in

web logs and HTTP
requests

CNN

Apache 2006 binary

-Accuracy: 0.9971
-Precision: 0.9964
-F1-score: 0.9921

-TPR: 0.9879

-Exploit model uncertainty in other security
scenarios

CSIC 2010 binary

-Accuracy: 0.9581
-Precision: 0.8612
-F1-score: 0.987

-TPR: 0.9291

-Combine softmax output and the model
uncertainty as a unified standard to evaluate

the prediction confidence

Apache 2007 binary

-Accuracy: 0.9959
-Precision: 0.9878
-F1-score: 0.9931

-TPR: 0.9984
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Table 5. Cont.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS43 [59] XPath injection LSTM Private dataset binary
-TPR: 0.84
-FPR: 0.16
-TNR: 0.83

-Use other techniques and algorithms to
enhance accuracy while considering the

important factor of response time

PS44 [61] Web attacks hidden in
URLs

SAE Private dataset binary -Accuracy: 0.99 -Identify other types of web attacks that appear
in user agent strings and cookiesRNN Private dataset binary -Accuracy: 0.93

PS45 [63] SQLI CNN Private dataset binary

-Accuracy: 0.9993
-Precision: 0.9996

-F1-score: 0.99
-TPR: 0.99
-TNR: 0.99

-Implement a multi-classification model that is
not limited to SQL injection attacks detection

PS46 [59] SQLI DFFN Private dataset binary -Accuracy: 0.968
-TPR: 0.032 Not Available

PS47 [67] SQLI LSTM Private dataset binary
-Accuracy: 0.9535
-Precision: 0.9651

-TPR: 0.96
-Use real PHP applications to generate datasets

PS48 [69] Web attacks hidden in
HTTP requests CNN CSIC 2010 binary -Accuracy: 0.988 Not Available

PS49 [71] Web attacks hidden in
HTTP requests Encoder–Decoder Private dataset binary

-Precision: 0.9937 (average value)
-F1-score: 0.993 (average value)

-TPR: 0.99 (average value)

-Class imbalance problem
-Poisoning attack

PS50 [73] SQLI DBN Private dataset binary -Accuracy: 0.96 Not Available

PS51 [75]

MLP network as an ensemble
classifer of: CNN, LSTM, and a
variation of Residual Networks

(ResNet)

CSIC 2010 multi-class

-Accuracy: 0.9947
-Precision: 0.9970

-TPR: 0.99
-FPR: 0.00

Private dataset multi-class

-Accuracy: 0.9998
-Precision: 0.9997

-TPR: 1
-FPR: 0.04

-Explore other DL models-XSS
-SQLI

Private dataset multi-class

-Accuracy: 0.9917
-Precision: 0.9917

-TPR: 0.99
-FPR: 0.00

-Detect other web attacks
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Table 5. Cont.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS52 [77] Web attacks hidden in
network traffic

Tree CNN with Soft-Root-Sign
(SRS) activation function CICIDS 2017 multi-class -Accuracy: 0.99 -Test other activation functions

Tree CNN with SRS activation
function private dataset multi-class

-Accuracy: 0.98
-Precision: 0.95
-F1-score: 0.97

-TPR: 0.97

-Existing datasets do not have characteristics of
IoT devices

Tree CNN with SRS activation
function private dataset multi-class

-Accuracy: 0.99
-Precision: 0.98
-F1-score: 0.98

-TPR: 0.98

PS53 [79] Web attacks hidden in
HTTP requests CNN CSIC 2010 binary

-Accuracy: 0.981
-Precision: 0.977
-F1-score: 0.962

-TPR: 0.97

-Time overhead in the training and testing
phases

PS54 [81] Web attacks hidden in
HTTP requests

CNN with word-level embedding CSIC 2010 binary -Accuracy: 0.976
-Investigate new embedding approachesCNN with character-level

embedding CSIC 2010 binary -Accuracy: 0.961

PS55 [83] DOM-XSS attack DFFN
private dataset
(Unconfirmed
vulnerabilities)

binary -Precision: 0.267
-TPR: 0.95 -Browser-specific vulnerabilities

PS56 [85] Web attacks hidden in
IoT networks DBN CICIDS 2017 multi-class

-Accuracy: 0.987
-Precision: 0.972
-F1-score: 0.97

-TPR: 0.98

-Detect other attacks against IoTs
-Evaluate the model against other intrusion

detection datasets

PS57 [86] Web attacks
DFFN (8 input neurons) private dataset binary -TPR: 0.92

-FPR: 0.07 -Consider every parameter in web pages
-Achieve more coverage of users behavior

DFFN (7 input neurons) private dataset binary -TPR: 0.95
-FPR: 0.04
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Table 5. Cont.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS58 [87] Web attacks hidden in
HTTP requests CNN

CSIC 2010 (train/test
split) binary

-Accuracy: 0.9812
-Precision: 0.9483
-F1-score: 0.962

-TPR: 0.97 -ASCII code based conversion causes a time
overhead in the training and testing phasesCSIC 2010 (5-fold

cross-validation) binary -Accuracy: 0.9824
-AUC: 0.97

CSIC 2010 (10-fold
cross-validation) binary -Accuracy: 0.9820

-AUC: 0.97

PS59 [88] XSS hidden in PHP and
JS code

Path Attention [96]
(DFFN-based network with

attention mechanism)

Private D1 (PHP
included as code) and

word2vec used for
vectorization

binary

-Accuracy: 0.733
-Precision: 0.68
-F1-score: 0.70

-TPR: 0.735

-Created datasets consider synthetic data only

Private D2 (PHP
included as text) and
word2vec used for

vectorization

binary

-Accuracy: 0.707
-Precision: 0.724
-F1-score: 0.615

-TPR: 0.534

-The current code representation techniques do
not take into account the invocation between
different files: they only analyze single files

Private D1 (JS included
as code) and word2vec
used for vectorization

binary

-Accuracy: 0.720
-Precision: 0.728
-F1-score: 0.676

-TPR: 0.631

Private D2 (PHP
included as code) and

code2vec used for
vectorization

binary

-Accuracy:0.9538
-Precision: 0.9538
-F1-score: 0.918

-TPR: 0.999

-The current code representation techniques do
not scale to large source code files

Private D1 (JS included
as code) and code2vec
used for vectorization

binary

-Accuracy: 0.797
-Precision: 0.894
F1-score: 0.740

-TPR: 0.632
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Table 5. Cont.

ID Paper Targeted Web Attacks Classification
Model Dataset Classification

Type Performance Metrics Limitations

PS60 [50] Web attacks hidden in
HTTP requests CNN CSIC 2010 binary

-Accuracy: 0.9684
-Precision: 0.9743
-F1-score: 0.9751

-TPR: 0.9759
-FPR: 0.0368
-TNR: 0.9631
-AUC: 0.9696

-Consider multi-classification technique using
the proposed model

PS61 [89]
-Different web attacks
injected in HTTP Web

requests
Bi-LSTM

private dataset binary

-Accuracy: 0.975
-Precision: 0.976
-F1-score: 0.975

-TPR: 0.975

-Training Bi-LSTM models consume time and
computational resources

ECML-PKDD binary

-Accuracy: 0.995
-Precision: 0.994
-F1-score: 0.996

-TPR: 0.998

-The DA-SANA method does not consider the
files uploaded as part of the web HTTP request

length

ECML-PKDD binary

-Accuracy: 0.927
-Precision: 0.926
-F1-score: 0.923

-TPR: 0.927

-The DA-SANA method does not consider the
files uploaded as part of the Web Http request

length

CSIC2010 multi-class

-Accuracy: 0.986
-Precision: 0.982
-F1-score: 0.981

-TPR: 0.984

PS62 [90]

-Malicious HTTP
requests

-XSS
-SQLI
-DT

CNN private binary and
multi-class

-Precision: 0.9333
-F1-score: 0.9340

-TPR: 0.9348

-Consider complex web attacks such as
webshell

-Detect encrypted malicious HTTP requests
-Consider datasets with only normal samples

(i.e., anomaly-based detection)
-Consider non-textual elements of the HTTP

request

PS63 [91] Web attacks CNN

private dataset binary

-Accuracy: 0.9994
-Precision: 0.9995
-F1-score: 0.9993

-TPR: 0.992 -Implement a deception mechanism that
analyzes the characteristics of detected web

attacks
CSIC2010 binary

-Accuracy: 0.987
-Precision: 0.994
-F1-score: 0.991

-TPR: 0.988
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Due to different performance measures and datasets, it is hard to compare and rank
studies. However, we observed that most if not all reviewed studies achieved high-
performance metrics, but few of them had discussed the threats to validity of their experi-
ments (i.e., what are the things that may invalidate the results of the experiments).

4.9. RQ9 and RQ10: What Is the Research Focus and Limitations According to the PS?

In this section, we report the research focus as well as the limitations of the studies
as stated by their authors. This part will help researchers and practitioners to have an
idea of what is already done in previous research works and to develop more effective
and improved detection models. We organize this section according to the Deep Learning
classification models used in the reviewed studies. In the end, we discuss papers that used
Deep Learning feature extraction methods for traditional Machine Learning algorithms.

4.9.1. CNN or CNN Combined with LSTM or GRU

Ref. [30] proposed a CNN-based method for detecting SQLI. They showed that the
proposed model outperforms ModSecurity—a rule matching-based firewall for detecting
web attacks.

Ref. [32] introduced a method for detecting malicious HTTP GET requests using
a new architecture of CNNs for classification, and they used NLP-based analysis and
Auto-Encoders for URL representation and extraction. However, the authors state that the
proposed model can not be updated easily when new training data are available and can
be defeated by adversarial attacks.

Ref. [38] described a method for detecting web attacks injected in web HTTP requests
using word embedding and CNNs. The proposed method can not detect web attacks
hidden in parts of the HTTP request message other than the URL.

Ref. [42] proposed a method for detecting web attacks using CNN and GRU along
with word-level embedding-based features augmented with manually extracted features.

Ref. [44] provided a method for detecting XSS attacks using CNN, LSTM, and word-
level embedding. They identify the problem of scarcity of datasets in the field of web
security as a limitation of their study.

Ref. [48] worked on the detection of SQL injection attacks in PHP code. They compared
different classification algorithms and feature representation techniques. They reported
that the best algorithms are CNN and Multi-Layer Perceptron (MLP) applied to manually
extracted features and TF-IDF bag of words model. As future work, they propose to collect
a dataset for SQL injection attack detection and to build a Word2vec model for PHP source
code as well as to develop an SQL injection attack detection model using CFG (Control
Flow Graph) attributes.

Ref. [50] detected web attacks hidden in web HTTP requests using Bag of Words and
CNN models. They plan to consider multi-class classification instead of binary classification
in future works.

Ref. [56] introduced AI-IDS, which is a Deep Learning model for detecting three
types of web attacks: password guessing and authentication bypass, SQL injection, and
application vulnerability attack. The proposed model works in parallel with a signature-
based NIDS to correct or improve its detection rules. Thus, after repeated manual re-
validation and daily retraining, the model can be used as a standalone tool when it reaches
an acceptable rate of false positives. The study limitations include the need to re-validate
and retrain Deep Learning-based misuse intrusion detection tools due to the low tolerance
for a high rate of false alarms. Moreover, their study shows that misuse detection tools can
be used in parallel with signature-based tools to improve the detection rules of the latter
and the detection quality of the former by checking the malicious events that are detected
by one and not by the other.

Ref. [70] introduced an anomaly detection method of web attacks using character-level
embedding and CNN followed by LSTM. They trained the model on a dataset that contains
only two out of three attacks and then tested the model on the attacks that did not belong to
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the training set in order to enhance the model’s capability to detect unknown attacks. One
significant issue of this work is that more web attacks need to be included in the dataset. In
addition, scenario-based attacks through several correlated requests need to be considered,
and the deployment of the model in a practical web service is to be tested.

Ref. [74] evaluated different Deep Learning models based on LSTM, CNN, and CNN
combined with LSTM, for the detection of web attacks hidden in HTTP GET and HTTP
POST requests. Moreover, they analyzed some false positives and found that they occur
because either the HTTP requests contain strings that never appear in the training set or
because of the way the request is split into a sequence of words. Therefore, they should
inspect all the fields of the HTTP request and use more sophisticated models to convert
request strings to numerical vectors.

Ref. [78] used character and keyword level embedding along with CNN without a
pooling layer followed by GRU to detect web attacks through the classification of URLs
into different categories: normal or type of attack. To improve their proposed model, they
should consider reduced memory consumption and online update of trained models.

Ref. [39] implemented and compared three Deep Learning models for the detection
of web attacks. First, they empirically showed that the classification performance of CNN
combined with LSTM is better than that of LSTM or CNN. In addition, they showed how
the dropout rate, the number and width of filters, the number of hidden units, and the size
of local max-pooling influence the performance of CNN, LSTM, and CNN combined with
LSTM models, respectively.

Ref. [41] used character-level embedding with CNN to extract relevant features from
URLs, registry keys, and File paths. Then, they fed the output features to three fully
connected layers to classify URL, registry keys, or File paths as normal or malicious. They
showed that compared with other feature extraction methods, the proposed method has
better classification performance but incurs a computational overhead if training long
strings. They faced difficulties in collecting and labeling registry keys and file paths
datasets, which resulted in poor classification performance in comparison with results
obtained for URLs classification.

Ref. [51] proposed a CNN-based system for detecting web attacks. The system com-
prises two networks that are trained separately; the first one locates suspicious payloads
in the HTTP request by identifying their start and end positions. They took the top three
suspicious payloads returned by the first network and passed them to the second network,
which identifies the attack type in each payload. If the three payloads are benign, the
request is classified normal; otherwise, it is anomalous. Although the proposed system can
only detect SQLI and XSS attacks, it reduces the computational cost by 82.6% and increases
the detection accuracy by 22.3% compared with character-level CNN.

Ref. [55] proposed a multi-classification system for detecting malicious HTTP requests
by identifying malicious HTTP parameters. The system is composed of a character-level
embedding layer and a convolutional-pooling layer. Compared with SVM and Random
Forest, the proposed system is better with respect to different performance metrics. In
addition, the proposed model can be updated by retraining the model with new or rectified
instances of HTTP requests. Finally, they should consider testing the performance of the
model in more practical applications.

Ref. [63] proposed a novel CNN-based model for the detection of SQL injection attacks.
The approach novelty consists of modifying the pooling layers so as to retain the maximum
of information about the SQL query string. However, they plan to implement a multi-
classification model that is not limited to identifying SQL injection attacks.

Ref. [69] proposed a Deep Learning-based approach for the detection of web attacks.
They concatenated four models with the same architecture—a character-level embedding
layer, two convolutional-pooling layers, and a dense layer. Then, they fed the four outputs
to a dense layer. They demonstrated that the proposed model is more accurate and takes
less time and memory resources than if only one model is used.
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Ref. [77] proposed an IDS for detecting web attacks, DDoS, Infiltration, and Brute Force,
based on the analysis of IoT networks traffic. The IDS consists of a trained Tree-CNN model
that uses Soft-Root-Sign (SRS) activation function. They justified this choice by the fact that
Tree-CNN shows better performance in other fields such as image classification and that
the SRS activation function allows faster training and detection time. They compared the
proposed model with other ML algorithms, Deep Belief Network, as well as Tree-CNN that
uses other activation functions (RELU, Softmax). The results showed the out-performance
of the proposed model. However, the evaluation of proposed detection models is limited
by the scarcity of IoT-based datasets.

Ref. [79] developed a Deep Learning-based model for the detection of malicious HTTP
requests. They used an ASCII code to convert the HTTP requests to a two-dimensional
matrix and then fed it to a CNN network. They showed that the proposed model is more
accurate than other state-of-the-art models. However, compared with word-level and
character-level embedding, the ASCII code-based conversion causes a time overhead in the
training and testing phases.

Ref. [81] aimed at finding the best hyper-parameters and the embedding approaches
that should be advised for building CNN models that help to improve web attacks de-
tection accuracy and to reduce detection time overhead. To this end, they built different
CNN models using character-level and word-level embedding, different values of hyper-
parameters (activation functions, kernel sizes, optimizers, number of layers, etc.), and
validation methods. The comparison showed that word-level embedding, Relu function,
Adam optimizer, two fully connected layers, 128 filters for each kernel size (2, 3, 4), and
10 fold cross-validation method bring the best detection accuracy with less time overhead.
They plan to investigate new embedding approaches that could outperform word-level
and character-level embedding.

Ref. [87] proposed a new method for representing HTTP web requests, which consists
of substituting each character or symbol in the HTTP web request with its corresponding
ASCII code. Then, they fed the resulting integer vector into a CNN network to classify
HTTP web requests into benign and malicious. They compared the proposed method with
word-level and character-level embedding and showed that it produces better classification
results. They raise the problem of time overhead incurred by the new method at the training
and testing phases.

In [37,57], the authors introduced a model uncertainty to web attacks detection that
aims at finding annotations errors in web log datasets: they wrongly tagged some web logs
of the dataset (normal web logs are tagged attacked and attacked web logs are tagged safe),
and they included these web blogs in both the training and testing set. Then, they trained a
CNN network followed by two fully connected layers on the resulting dataset to classify
web logs as attacked or safe. Afterwards, they computed a Bayesian variance of classified
web logs, which represents the model uncertainty; that is how the model is confident about
its predictions. They showed that web logs with high variance are most likely to be wrongly
labeled, which can help security experts to correct the dataset and retrain the model on
more clean data. They compared the model proposed with Softmax (i.e., if the softmax
output is 0.5, it means the model is not sure about the prediction), and they showed that in
most cases, the model uncertainty finds more annotation errors because mislabeled inputs
have the highest variances in most cases. As for the prediction time, the model uncertainty
takes a long time compared with Softmax, but the time overhead is nearly imperceptible
for the user. The authors plan to exploit model uncertainty in other security scenarios such
as locating the adversarial web request samples and to combine softmax output and the
model uncertainty as a unified standard to evaluate the prediction confidence.

In [50], the authors presented a method for classifying malicious HTTP requests based
on the URL and payload. They used the Bag of Words technique to convert the textual
input to a two-dimensional numerical matrix, which they input to a two-layer CNN. They
evaluate the model using the CSIC2010 dataset, and they compare it with state-of-the-art
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methods. The proposed approach achieved the best performance results, but it only handles
binary classification.

In [90], the authors propose a novel approach for the detection of malicious HTTP
requests in the particular case where the datasets available for the target system are limited
in size and of low degree of diversity to build performant DL models. The approach consists
of three phases. (i) In model initialization, a large public dataset is used to build a DL model
that detects malicious HTTP requests. They used word2vec for the vectorization of HTTP
payloads and TextCNN for their classification. (ii) In data augmentation, noise is added
to the original samples of the targeted system-based dataset while keeping the keywords
unchanged. This way, the samples get diversified but keep their semantic meaning. They
used TF-IDF to define keywords. (iii) Third, in Transfer Semi-Supervised Learning, they
froze the first n layers of the TextCNN model built at the first phase, and they trained the
rest on the original and generated labeled and unlabeled targeted system-based datasets.
This way, the obtained model has the knowledge learned by the initial model and adapted
to the new target system without the risk of over-fitting due to the small size of the dataset.
The results of the conducted experiments show that the proposed approach achieved better
performance in comparison with other baseline models and methods such as Bi-LSTM,
SVM, AE, character-level embedding, and N-gram. However, as future work, they plan to
(i) include more complex web attacks, (ii) handle encrypted malicious HTTP requests, (iii)
consider non-textual elements of the HTTP web requests, and (iv) build anomaly-based
detection models.

4.9.2. Recurrent Neural Networks

Ref. [60] introduced an anomaly detection method that used (i) word-level embedding
to represent URLs, (ii) two separate GRU or LSTM networks to predict the next token in
the URLs path or query parameter given a set of previous tokens, and finally, (iii) an MLP
to predict if a URL is normal or anomalous based on the probabilities vectors returned by
the GRU or LSTM networks. However, the proposed model can not handle some kind of
long URLs properly and also can not dynamically leverage between true positives and
false positives.

Ref. [62] proposed an anomaly detection method of web attacks using the LSTM
network and lexical and statistical features extracted manually from HTTP web requests.
They showed that compared with other methods where selecting a subset of extracted
features was necessary to increase the classification model accuracy, the LSTM model was
able to achieve high accuracy without feature selection.

Ref. [64] suggested APPMINE, an anomaly-based method for web vulnerabilities
detection which uses an LSTM network and web application system calls as features.
However, APPMINE could miss certain classes of attacks not manifested in the system
call sequences generated by the web application. Moreover, APPMINE has other issues,
including privacy leakage: monitoring a system to collect application system calls could
impact users’ privacy. In addition, the training of APPMINE should be done for each web
application to detect anomalies specific to that web application. Finally, APPMINE is also
prone to adversarial attacks.

Ref. [68] presented an anomaly detection method of web attacks using a word-level
embedding for feature extraction and bi-directional LSTM for the classification of mali-
cious URLs.

Ref. [72] proposed a multi-classification model that can detect six categories of web
attacks hidden in URLs using one-hot encoding and GRU networks. Furthermore, they
showed that GRU networks outperform Random Forest in terms of accuracy even when
small training sets are used.

Ref. [76] proposed an anomaly detection method to detect XSS attacks using LSTM
and word-level embedding. However, they need more XSS-oriented datasets to assess
the model.
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Ref. [33] implemented and compared two Deep Learning models, namely MLP and
LSTM, for the detection of SQL injection attacks. They used statistical features of URLs as
input to the MLP model, whereas they used lexical features as input to the LSTM. They
found that MLP is better than LSTM both in classification performance and time. They
used an external dataset different from the training and test set to evaluate the capability of
the models to detect unknown attacks.

Ref. [43] filtered out known attacks using a signature-based intrusion detection system.
Afterward, they used a trained two-layer LSTM model as an anomaly-based intrusion
detection system to detect attacks that the misuse detection system could not identify.
Then, a signature generation module is called to update the signature repository with
new signatures extracted from the new attacks detected by the anomaly-based IDS. They
compared the proposed model with other traditional Machine Learning algorithms, and
they showed that it is better in every performance metric.

Ref. [53] proposed a Deep Learning-based approach for the detection of malicious
JavaScript programs. The pre-processing phase is based essentially on a static analysis
of JavaScript code that consists of six main steps—(i) JavaScript de-obfuscation, (ii) Ab-
stract Syntax Tree (AST) generation, (iii) Program Dependency Graph (PDG) generation,
(iv) Program slices generation, (v) Tokenization and generalization of program slices,
(vi) Vectorization—and outputs an 80-dimensional vector. Then, they applied a two-layer
Bi-LSTM on the output vector to classify JavaScript codes as malicious or benign. Compared
with other Machine Learning algorithms and signature-based open-source antivirus tools,
the proposed model achieves the best detection performance provided that the JavaScript
code is de-obfuscated. The limitation of this study is induced by the limitation of static
analysis which does not allow to detect malicious JavaScript code that is generated dynam-
ically. In future work, they will explore other types of Neural Networks such as tree and
graph structure neural networks.

Ref. [59] proposed a modular neural network for the detection of XPath injection
attacks. The model comprises two LSTM networks; the first one classifies login attempts as
valid or malicious. The second network classifies user input as valid, invalid, or malicious.
The final decision about the user request is made based on the classification output of the
two LSTM models. If the user request is classified as malicious, fake data are returned in
place of real data. If the user request is classified as invalid, a message error is returned;
otherwise, the user request is processed by the web server.

Ref. [67] proposed a Deep Learning approach for the detection of SQLI vulnerability
in PHP codes. They used a tool that captures the opcode of PHP code before it is executed.
Then, they converted the opcode slice to an integer vector that they pass to an embedding
layer to obtain a matrix that they fed to an LSTM layer followed by two dense layers. The
issue in that study is training and testing sets are generated from the same dataset. Thus, it
is possible that the selected dataset may not reflect real PHP applications.

4.9.3. Encoder–Decoder Models

Ref. [66] proposed an anomaly detection method of web attacks based on a GRU-
Encoder–Decoder model with an attention mechanism. They justify the use of the attention
mechanism with the fact that malicious strings may occur in different locations of the
HTTP request payload. Therefore, it is essential to consider all hidden states instead of
the last hidden state only. In addition, the attention mechanism allows verifying if the
model is well-trained thanks to the visualization techniques that can be built using the
attention weights.

Ref. [84] proposed an anomaly-based detection method of web attacks. They collected
traces of normal behavior of java web applications and trained a Stacked Denoising Auto-
Encoder to distinguish normal requests from malicious requests based on execution traces.
In the test phase, the trained model takes as input a trace vector and tries to reconstruct it; if
the reconstruction error is more significant than a certain threshold, then the web request is
classified as abnormal; otherwise, it is normal. The threshold is defined during the training
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phase so that the F1-score remains maximal. However, they should investigate more
complex networks, such as LSTM Auto-Encoder or CNN Auto-Encoder, and evaluate the
performance of the proposed model on zero-day attacks. Moreover, they should consider
updating trained models using online data from actual world usage without incorporating
attack data into the normal behavior dataset.

Ref. [31] trained a Stacked Auto-Encoder with Logistic Regression classifier to distin-
guish DDOS attacks from normal web requests based on eight features representative of
DDOS attacks. The Stacked Auto-Encoder is intended to extract an abstract representation
of features, while Logistic Regression is used for binary classification.

Ref. [61] implemented two Deep Learning models to detect web attacks hidden in
URLs. The first one is the Stacked Auto-Encoder model, and the second is an RNN. In
addition, they should consider identifying other types of web attacks that appear in URLs
and user-agent strings and cookies.

Ref. [71] proposed a zero-wall system for the detection of web attacks. It operates
behind a signature-based Web Application Firewall (WAF). The WAF drops known attacks,
and the zero-wall systems intercept allowed web requests and classifies them as benign
or malicious. If it is malicious, then the web requests are analyzed by security experts to
ensure it is not a false positive. If it is a false positive, then a rule set is added to a white list
so it is not rejected again by the zero-wall system. If it is a true positive, then a rule set is
added to the WAF signature database. The zero-wall system uses an LSTM-based Encoder–
Decoder model to distinguish between benign and malicious web requests. Indeed, if it
fails to reconstruct the input token sequence corresponding to a web request, then the
latter is considered malicious. To speed up the detection time taken by the zero-wall
system, they used hash tables to not process web requests that have already been seen and
classified by the system. However, the system has a few issues, including class imbalance
problem—too small volume of training data, and poisoning attack—an attacker may inject
many malicious samples in the normal traffic hoping the system would learn from the
wrong dataset.

4.9.4. Deep Belief Networks

Ref. [73] used a deep belief network along with word2vec and statistical features to
detect SQL injection attacks hidden in GET or POST web requests.

Ref. [85] developed a Deep Belief Network-based IDS for the detection of different
types of attacks including web attacks in IoT systems. They showed that the proposed
model outperforms different Machine Learning algorithms such as RNN and SVM. They
plan to improve their work by detecting other attacks against IoTs and by evaluating the
proposed model using other datasets.

4.9.5. Ensemble Classification Models

Ref. [40] focused on detecting web attacks in HTTP requests sent by edge devices to
the cloud using a weighted average ensemble model composed of two Residual Networks
(ResNet) that use different feature representations of URLs. As with previous studies, the
online updating of detection models and adversarial attacks are two problems that are not
addressed by this work.

Ref. [54] implemented a detection method of web attacks in heterogeneous and ad-
versarial environments using an adaptive IDS, which is an ensemble classification model
that aims at tracking the best classification model for each data instance. As future work,
they plan to apply the proposed method to malware and network intrusion detection and
compare it with other ensemble classification algorithms.

Ref. [75] proposed a web attacks detection system for IoT networks, which consists
of an ensemble classifier that identifies malicious URLs based on the predictions obtained
from three sub-models—CNN, LSTM, and ResNet—and an update module that fine-tunes
each sub-model in order to detect novel web attacks. Moreover, they showed that the
proposed system outperforms each sub-model as well as other state-of-the-art classification
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models. However, they plan to explore other alternative Deep Learning models to improve
the performance of the overall system as well as to detect web attacks other than XSS
attacks and SQL injection attacks.

In [89], the authors proposed a data-augmentation method based on self-adapting
noise adding, which consists of adding noisy data to web attacks datasets in proportion with
the web HTTP request length. The method aims at overcoming the problem of classification
in unbalanced datasets. They evaluated the method by implementing different state-
of-the-art DL models and comparing their classification performance with and without
data augmentation on public datasets as well as on a synthetic dataset for both binary
classification and multi-classification problems. The results showed that the Bi-LSTM
model with the DA-SANA method has the best classification performance values. The
method presents the limitations of time cost and computational resources required to train
Bi-LSTM models. In addition, the DA-SANA method does not consider the files uploaded
as part of the web HTTP request length.

In [91], the authors propose a detection, mitigation, and attacker profiling system
for securing web applications against web attacks. The system is composed of a Cookie
Analysis Engine (CAE) and a DL classifier. First, the HTTP request is checked for forged
cookies. Then, it is forwarded to the DL classifier. The decision of whether the request is
normal or malicious is based on the combined outcome of the CAE and the DL classifier.
Furthermore, if a user is profiled as suspicious or attacker, the subsequent requests will be
blocked without calling neither the CAE nor the DL classifier. Then, the attacker’s profiling
option aims at reducing the processing time, which makes the proposed system suitable for
real-time environments. A state-of-the art comparison showed that the proposed system
has the best performance results on the private dataset as well as on the CSIC2010 dataset
and in the real-time environment. They also mentioned that most web attacks are injected
in the HTTP payloads rather than in the cookies. They plan to join the proposed system
with a deception mechanism that is intended to analyze the characteristics of the attacks
and the tactics of attackers.

4.9.6. Deep Feed Forward Networks

Ref. [36] worked on a method for the detection of malicious HTML pages using
DFFNs and a custom representation of HTML pages. One limitation of the study is that the
proposed model may not be able to detect malicious web content that experts mislabeled
as normal in the training set.

Ref. [46] compared Machine Learning-based web attacks detection methods.
Ref. [52] detected two types of web attacks (SQL injection and distributed denial of

service) in network packets using statistical methods for labeling web packets and super-
vised Machine Learning algorithms for building predictive models. However, the study
has a few limitations, including variable size network and memory and time constraints,
which constitute an obstacle for real-time web intrusion detection.

Ref. [82] implemented and compared different Machine Learning algorithms (Random
Forest, Decision Tree, AdaBoost, Deep NN, etc.) for the detection of SQL injection attacks.
They used manually extracted features that are relevant to the domain of SQL injection
attacks. They empirically showed that Random Forest outperforms all the other algorithms.

Ref. [35] trained a simple MLP to detect SQLI attacks by converting each URL to a
binary vector whose length is 13, which is the number of the most popular SQLI attack
keywords and patterns, and it can be extended to include other SQLI keywords.

Ref. [55] proposed a Neural Network-based method for the detection of XSS attacks
that can be used on both the client side or server side. They extracted 41 numerical features
including URL, JavaScript, and HTML-based aspects that characterize XSS attacks, and they
fed them to a two-layer neural network. They compared the proposed method with other
Machine Learning algorithms and found that it is more performant with respect to different
aspects of evaluation measurements. They also highlighted that traditional Machine
Learning algorithms have also good classification performance, which they explained
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by the quality and method of collecting the training dataset and the strategy used for
feature extraction.

Ref. [59] proposed a multi-classification model that classifies each URL as benign or
an SQLI attack in which case it specifies its type. First, they extracted 32 keywords that
characterize different types of SQLI attacks. Then, they represented each URL with a binary
vector that indicates the presence (1) or absence (0) of the keyword. Finally, each URL
is assigned a class between eight classes—benign, tautologies, illegal/logically incorrect
queries, piggy-backed query, union queries, stored procedures, inference SQLI attack, and
alternate encoding—by using a trained MLP network.

Ref. [83] developed a three-layer Deep Neural Network model to identify functions
in JavaScript code that are vulnerable to DOM-XSS attack. They used the classification
model as a pre-filter to taint tracking, which is a dynamic analysis method for detecting
DOM-XSS vulnerabilities. They experimentally showed that the combination of these two
approaches improves precision and recall while decreasing time overhead. They identify
two limitations to their study: the dataset used to evaluate the proposed model may not
apply to other browsers and may contain mislabeled instances (i.e., noisy ground truth).

Ref. [86] developed an artificial neural network for identifying web attacks that were
not detected at the stage of signature-based analysis. They defined custom features to
identify user behavior and to decide whether it is normal or not. They plan to extend the
proposed system to take into account every parameter in web pages in order to achieve
more coverage of the user’s behavior.

Ref. [88] proposed a DL approach for detecting XSS attacks in PHP and JavaScript
source code. They used two representation techniques to transform source code files into
numerical vectors: word2vec and code2vec ([96]), which extract features from the source
code Abstract Syntax Tree. They implemented a DFFN with an attention mechanism to
classify the source code as vulnerable or not to XSS attacks. The proposed approach outper-
forms existing static analysis tools in every classification performance metric. However,
it also has different limitations that undermine its applicability to real-world scenarios.
Indeed, the model is evaluated using a synthetic dataset. In addition, the code2vec method
does not scale to large source code files, and both representation techniques do not take
into account invocations between different source code files.

4.9.7. Deep Learning-Based Feature Extraction

Ref. [34] represented a static analysis method for detecting malicious JS code by
using a Stacked Denoising Auto-Encoder for feature extraction and logistic regression for
classification. However, the limitations of the study include the need for minification and
obfuscation of JS code and the long time it takes for training the proposed model.

Ref. [58] used n-gram and Stacked Auto-Encoder for feature construction and ex-
traction, as well as Isolation Forest for classification to build an anomaly web attacks
detection method.

Ref. [80] used word-level embedding to convert URLs to numerical matrices. Then,
a Convolutional-Pooling layer is used to extract features from the embedded matrices.
Afterward, the extracted features are merged with statistical features before they are fed
into an SVM classifier. They built a function that takes as input the output of the max-
pooling layer and outputs the corresponding words in the input URL, which may help
researchers validate the trained model and understand which words contribute to a specific
URL classification. Moreover, they showed the impact of testing a model on a dataset
containing duplicated data: the proposed model accuracy goes from 99.33 to 100% when
tested on the CSIC 2010 dataset—which contains a repetition rate of 81%—without de-
duplication.

Ref. [47] used genetic algorithms to distinguish normal network traffic from abnormal
network traffic. Then, they used a shallow Neural Network to classify attack types: either
web attacks, infiltration attacks, PortScan, BruteForce, DoS, or Botnet attacks. Finally, they
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showed that the proposed model is better than other Machine Learning techniques in terms
of accuracy, detection rate, recall, and precision.

Ref. [49] exploited different Deep Learning models, namely Stacked Auto-Encoder and
Deep Belief Network, for feature extraction and used one-class learning algorithms, namely
Isolation Forest, one-class SVM, and Elliptic Envelop, for web requests classification.

5. Limitations

This study aims at conducting an SLR of DL-based web attacks detection research
works. The lack of comparison between selected studies is the primary limitation of this
study. Although we reported the results of selected studies, we could not compare their
performance because they used different types of datasets and performance measures. In
the searching phase, we collected studies from the most extensively utilized six digital
libraries (Scopus, Web Of Science, ScienceDirect, IEEE, ACM, and Springer). Still, some
resources might be left out. Thus, it is hard to declare that our search strategy covered all
relevant studies. Moreover, our selection was conducted in two phases: firstly, we selected
title and abstract-based studies, and secondly, the selection was based on the full text of
each study. However, there is still a possibility that a suitable study might be excluded
mistakenly. We would also like to mention that we genuinely reported the experiment
results of the reviewed studies, but we did not perform their models and we did not
reproduce their experimentation.

6. Conclusions

Web applications are prone to many security threats. Therefore, many techniques have
been proposed to detect and prevent web attacks. This study represents an SLR of the
existing DL-based web attacks detection research papers. Initially, we searched and selected
journals and conference papers focused on DL-based detection of web vulnerabilities that
have been published from 2010 until September 2021. Afterward, we selected relevant
studies based on the title, abstract, and content. After the selection phase, we obtained
63 Primary Studies (PS), on which we applied a non-eliminatory quality analysis. We
studied the selected PS from different perspectives and synthesized the results of their
studies using different synthesis and visualization techniques.

Based on this analysis, we have learned different lessons from which we have in-
ferred interesting research opportunities for future work in the DL-based web attacks
detection domain:

• Generate standard public real-world datasets: it is important to generate web attacks
detection datasets to resolve the current datasets issues. Indeed, most researchers used
private datasets. Additionally, public datasets do not reflect the complexity of real-
world web applications and do not include newly discovered web attacks. Moreover,
when the same public dataset is adopted, different portions are used for training and
testing, which complicates the comparison between approaches. Therefore, there is
a need for standard realistic public datasets to allow the research communities to
contribute efficiently in this field, to facilitate comparative analyses between research
works, and to make the proposed models applicable in real-world web applications.

• Consider the standard classification performance metrics: some studies used a single
performance metric (e.g., Accuracy) to evaluate their detection model, which is not
sufficient in the case of imbalanced datasets. Moreover, most reviewed studies do not
consider computational overhead as an evaluation metric, although it is a very critical
issue in real-world web applications. Moreover, few researchers provided a detailed
report of false alarms (FPR), which is an important point because it helps in model
retraining while saving analysts time. In addition, most studies reported their results,
but none of them outlined the threats to the validity of the experiments. Therefore, it is
important to identify standard performance metrics that researchers should consider
in order to ensure that the proposed models are accurate, cost-effective, reliable,
and reproducible.
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• Explore advanced DL models in the field of web attacks detection: the existing DL-
based web attacks detection literature lacked some advanced DL models. In particular,
applying Generative Adversarial Networks (GAN) and Encoders–Decoders to web
attacks detection is interesting because they have been successfully exploited in a
similar domain that is Networks Intrusion Detection (e.g., Refs. [92–95]).

• Bridge the expertise in web application security and expertise in Machine Learning in
order to build theoretical Machine Learning models tailored for web attacks detection:
most existing DL models were designed with other applications in mind. For instance,
Convolutional Neural Networks and Recurrent Neural Networks were originally
developed to answer the specific requirements of image processing and Natural Lan-
guage Processing problems, respectively. Additionally, because each web application
has its own business logic, it is interesting to have a theoretical Deep Learning model
for detecting web attacks without a need to learn each web application separately.

• Support secure learning: Machine Learning models are prone to adversarial attacks. In
such attacks, attackers evade intrusion detection systems by exploiting the underlying
Machine Learning model. For instance, an adversarial attack can disrupt the model
training by contaminating training data with malicious data, thereby tricking the
detection model into misclassifying malicious web requests as benign.

• Support online learning: almost all reviewed studies adopted offline learning in
building their detection models. In offline and online learning, the model is trained
using batch algorithms (i.e., the cost function is computed over a group of instances).
However, while in offline learning, the model is tested and validated using batch
algorithms, in online learning, the model is tested using real-time data; thereby, the
cost function is re-valuated over a single data instance at a time. In industry, models
trained online are preferred over models trained offline because the latter are generally
evaluated against outdated and simplistic datasets. Therefore, it is important that
researchers give more consideration to online learning in order to reduce the gap
between research and industry in the DL-based web attacks detection area.

• Support adaptive incremental learning: according to a recent study conducted in
2020 [97], 42% of attacks are zero-day attacks (i.e., new or unknown attacks), while 58%
are based on known vulnerabilities. As with traditional detection systems, Machine
Learning-based approaches have a difficult time detecting zero-day attacks because
they rely on past and known attacks. Thus, it is fundamental to constantly retrain ML
models to account for these attacks. However, retraining models from scratch is time-
consuming and computationally intensive. Thus, incremental learning is essential, as
it will allow updating trained models as new data is generated.

• Generate a corpus for web attacks detection: although DL-based web attacks detec-
tion problems are similar to Natural Language Processing (NLP) problems, there
exists no corpus yet that can help to develop NLP-like models for web attacks
detection problems.

• Define a standard and transparent research methodology: it is important to define
a transparent research protocol that researchers should follow when proposing a
DL-based method for the detection of web attacks. Such a methodology will improve
the quality of research works and facilitate their comparison.

• Develop a common framework for comparing DL-based web attacks detection models:
there is a large diversity in performance measures, datasets, and platforms used
in reviewed studies, which makes a comparative analysis between research works
difficult if not impossible. Therefore, it is fundamental to provide a standardization
of datasets, performance metrics, environments, as well as a transparent research
methodology that allows comparing the different approaches and evaluating the
models’ suitability for real-world web applications.
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