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Abstract: Complex systems are often designed in a decentralized and open way so that they can
operate on heterogeneous entities that communicate with each other. Numerous studies consider the
process of components simulation in a complex system as a proven approach to realistically predict
the behavior of a complex system or to effectively manage its complexity. The simulation of different
complex system components can be coupled via co-simulation to reproduce the behavior emerging
from their interaction. On the other hand, multi-agent simulations have been largely implemented
in complex system modeling and simulation. Each multi-agent simulator’s role is to solve one of
the VRP objectives. These simulators interact within a co-simulation platform called MECSYCO,
to ensure the integration of the various proposed VRP models. This paper presents the Vehicle
Routing Problem (VRP) simulation results in several aspects, where the main goal is to satisfy several
client demands. The experiments show the performance of the proposed VRP multi-model and carry
out its improvement in terms of computational complexity.

Keywords: complex system; multi-simulation; vehicle routing problem

1. Introduction

Complex systems is a multidisciplinary field and is the subject of active research
in several domains such as physics, biology, social sciences and cognitive sciences. The
authors of [1–3] define a complex system as a set of heterogeneous entities that interact
between them, where each entity is characterized by its cooperative, adaptive and open
nature. Simulation is one of the critical tools frequently used to study complex systems [4].
Simulation may reduce experimentation costs by allowing researchers to test various
alternatives and scenarios of complex systems [5].

The Vehicle Routing Problem (VRP) presents a complex system [6,7] such that the
VRP is considered as a group of dispersed clients that are served by a fleet of vehicles
that start and end at one depot [8]. Recently, VRP and its various models attracted the
interest of intelligent transport researchers due to the complementary limitations of real-
world problems, the potential cost savings and the possibility of service improvement in
distributed systems. Due to the intrinsic complexity of determining rigorous models and
optimal solutions to a large-scale instance of VRP, the process that involves exact solvers
is limited, difficult and time-consuming [9]. Therefore researchers and transportation
companies are interested in meta-heuristics such as Ant Colony Optimization (ACO),
Genetic Algorithm (GA) and Parctical Swarm Optimization (PSO) to solve real world VRP
by producing close to optimal solution. An efficient simulation may offer an opportunity
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to improve the performance of VRP by modeling different methods for solving various
VRP objectives.

Co-simulation is applied in many different multidomain systems [10]. It is proposed
to address the issues and challenges of complex systems [11]. In this context, decomposed
components of a complex system are modeled by different sub-models, then simulated
using a simulator for each sub-model. Co-simulation enables exchanging coupling con-
nections to achieve the behavior of the whole complex system as shown in Figure 1.
The co-simulation middleware named Multi-agent Environment for Complex SYstem CO-
simulation (MECSYCO) allows the integration of several modeling and simulation software
to co-simulate the dynamic behavior of a complex system. MECSYCO makes the possibility
to compare simulation results, swap, add, or remove models.

This paper aims to address the challenge of showing the impact of simulating a VRP
multi-model as several interacting simulators by reducing the traveled distance and the
obtained time during vehicles routing with the aim to satisfy clients demands. In this
context, we will design and implement multiple VRP models as complex systems with
several perspectives of multi agent simulators. Each simulator in the proposed solution
solves different objectives of the VRP and then makes them interact into the co-simulation
platform. Multi agent simulators that represent the VRP models are developed using
Netlogo and the whole system is reproduced based on the MECSYCO co-simulator. We
observed that the interacting VRP models provide high quality solutions by minimizing
significantly the cost of services offered to the clients, in terms of computational time and
travel distance.
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Figure 1. Co-simulation of coupled system.

The rest of this work is organized as follows: In Section 2, we present the summary of
the related multi-simulation of complex system research and introduce an overview of the
used platform in the co-simulation and we describe the problem formulation of the VRP.
The proposed solution is presented in Section 3. Section 4 provides the implementation
details and the experiments results. Section 5 concludes the work and give some future
work avenues.

2. Related Work

To better simulate the behavior of the whole complex and dynamic system, multi-
modeling and co-simulation are used to provide a strategy that collects a set of models
from different discipline [12]. The modular architecture in the multi-agent environment
of complex system co-simulation middleware offers the integration of heterogeneous
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simulators and models. In the literature, several works such as [5,13], have been proposed
for the simulation of the complex system as interacting models for reproducing the behavior
of the entire system. The work of [14] captures the improvement of decomposing and
integrating continuous systems using MECSYCO as discrete environment. In [15], the
authors designed the co-simulation of complex system with integral multi-agent simulators,
while MECSYCO was used in [16] to integrate the modeling and the simulation tools to
co-simulate the complete cyber-physical system.

The hybridization of meta-heuristics in the multi-agent system is used to facilitate the
development of meta-heuristic frameworks’ optimization. In addition, the development
of hybrid meta-heuristics is flexible in multi-agent systems and it offers simultaneous
exploration of various areas of the research space [17].

Several studies have been performed to solve different variations of VRP by using
multi-agent systems [18]. The work of [19] uses the reinforcement learning and pattern
matching to provide a multi-agent distributed framework where each agent adapts itself.
In [20], the authors solve the VRP with Time Windows (VRPTW) by exploiting the principle
of reinforcement learning to improve the agent actions based on the solutions generated by
other agents and the environment interactions.

To improve the result of VRP, this paper aims to create an interacting VRP model by
combining the multi-agent simulators to reproduce the entire VRP multi-model. From
the literature, we observe that there is no proposal in multi agent systems that integrates
simulators into a co-simulation platform to reproduce the entire VRP multi-model.

2.1. Co-Simulation of a Complex System

MECSYCO has been used as a middle-ware to simulate and model complex systems
which allows the utilization of existing simulators for the implementation of heterogeneous
and numerical simulations. MECSYCO focuses on both, the DEVS common formalism
proposed by [21] that uses a discrete-event abstraction for the design of dynamic system [22],
and on the Agent and artifact architecture using a multi-agent concepts [13] to perform the
heterogeneous co-simulation of complex system. In this case, each model or simulator has
been considered as an agent and the interaction between simulators corresponds to the
indirect cooperation between agents using the defined concept of artifact in [23]. Coupling
artifact aims to determine the input output connections between two models and to create
the model agent (m-agent) which uses the artifact for leading their model and interchanging
input/output data. MECSYCO manipulates a model as various composed models in
interactions without a global coordinator using a simulator for each model [24]. This step
occupies the management of decentralized multi model simulation in order to integrate
several aspects of the same system into a coherent one and to deal with the main challenges
of modeling and simulation of a complex system. On the other hand, MECSYCO already
includes integrated simulators such as multi agent platform Netlogo, which is frequently
used for simulating complex systems and modeling natural and social phenomena.

2.2. Mathematical Formulation of the Problem

This section deals with the mathematical formulation of the problem. In the combinato-
rial optimization field, VRP is one of the most challenging research problems. The issue was
studied more than 40 years ago. It involves defining the best sequence of routes for a fleet
of vehicles to provide the service to a specific set of clients. The fleet of vehicles is situated
at a central depot, every vehicle has certain capacity and each client has a given demand.
The aim is to optimize the total traveled distance to serve a geographically dispersed group
of clients [25]. First, we have the following data:

1. One depot;
2. A set of commands;
3. A fleet of vehicles.

The objective is to reduce the total traveled distance from a depot to serve clients, using
a similar fleet of vehicles. The issue of solving the VRP faces several design challenges and
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focuses on the assignment of clients to the routes. This process involves the determination
of several routes for each depot by (1) assigning each client to a unique route without
exceeding the capacity of the vehicle, and (2) determining a series of clients on every
vehicle route. Hence, the mathematical formulation of the vehicle routing problem can be
described as follows:

• R denotes the set of nodes, R = {r0, r1, r2, . . . , rn}, with r0 is the depot and ri, i 6= 0 is
the client;

• V denotes the sets of vehicles;
• N is the number of all clients;
• M is the number of vehicles;
• Q(k) is the capacity of vehicle k;
• E is the edge set between nodes defined as: E = {(ri, rj)|i 6= j ∧ ri, rj ∈ R};
• bi is the demand of client i;
• cij is the cost of transporting one unit from node i to node j;
• xk

ij is 1, if vehicle k travels from node i to node j; 0, otherwise,

• yik is 1, if vehicle k offers service for client i; 0, otherwise.

From these definitions the objective function problem can be formulated as follows:

min ∑
i∈R

∑
j∈R

cij ∑
k∈V

xk
ij (1)

where Equation (1) represents the objective function that aims to reduce the total travel cost
and the constraints formulations are:

∑
j∈R

xk
0j = 1, ∀k ∈ V (2)

∑
j∈Rj 6=i

∑
k∈V

xk
ij = 1, ∀i ∈ R (3)

∑
i∈R

biyik ≤ Q(k), ∀k ∈ V (4)

∑
i∈R

xk
il = ∑

j∈R
xk

lj, ∀l ∈ R, ∀k ∈ V (5)

where Equation (2) aims to ensure that every client is allocated in the single route and
Equation (3) is the capacity constraint set for vehicles. Whereas Equation (4) is defined to
assure that each client can be served only once and Equation (5) ensures that all delivery
vehicles must return to the original depot after finishing their task.

3. The Designed Model

The goal of this paper is to solve the VRP by building a complex simulation using a
society of interacting co-evolving VRP models. The proposed approach provides a solution
based on the agent and artifact concept [23,26,27]. The simulation is performed by m-agents
that manage their model and data exchange using artifacts.

The first task to do is to define a solution for solving each VRP model using an atomic
VRP simulator. Then, the second task is to determine the input output connections between
these simulators. The final task is to construct coupled interacting co-evolving VRP models.

3.1. Description of Atomic VRP Models

The routing and scheduling of a service correspond to the creation of vehicle routes
for the depot. By assigning each client to a unique route and respecting the capacity of the
vehicle the order of the clients on every vehicle route will be determined. To this end, we
develop two models to solve VRP such that each model is to satisfy a different objective.
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The first is to try to minimize the total traveling distance and the second is to minimize the
number of vehicles.

3.1.1. First VRP Model

We use ant colony optimization for the VRP, where the colony of ants is created from
the depot. Each Ant constructs a route for vehicles that will serve the clients starting
from the depot and returning to the same depot. The principle of the routing algorithm is
described below, see Algorithm 1.

Algorithm 1 Routing and sequencing of the first model

Require: R, ant_colony, Q(k);
Ensure: route_map;

1: for (a ∈ ant_colony) do
2: route_map← r0;
3: R← R− r0;
4: k← 0;
5: Q(k)← 0;
6: i← r0;
7: while R 6= ∅ do
8: for (rj ∈ R) do
9: pij ← probability_o f _pointi_to_choose_pointj;

10: end for
11: rs ← rj_with_highest_pij;
12: Q(k)← Q(k) + demand(rs);
13: if Q(k) > capacity_o f _vehicle then
14: k← k + 1;
15: Q(k)← 0;
16: route_map← route_map + r0;
17: i← r0;
18: else
19: route_map← route_map + rs
20: i← rs
21: R← R− rs;
22: end if
23: end while
24: end for
25: return route_map_o f _the_best_ant_solution;

The improvements of the solution shown in Algorithm 1 reached in successive itera-
tions. In each iteration all ants in the colony travel between a pair of clients. The probability
of an ant to visit an unvisited client is calculated based on the pheromone and the distance
and a client will be chosen according to this probability. Then the ant checks if it can visit
the given client, i.e., if its current load allows it to add the demand of the client and verify
the vehicle’s capacity violation. If yes, the ant visits the specified client (adding client’s
demand and indicating it as selected). Otherwise, the ant ends the current trip with empty
load (returning to its colony) and the algorithm restarts a new trip. We apply the following
equations for a client i to choose the next client j

pij =
(τij)

α × (ηij)
β

∑l∈R(τil)α × (ηil)
β

(6)

ηij =
1

costij
(7)

where pij is the probability of the point i to choose point j, τij is the strength of pheromone
trail between point i and j, α is the coefficient that controls the influence of the pheromone
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trail τij, β is the coefficient that controls the influence of the visibility ηij, and R is a set
of clients.

At the end of each iteration, the pheromone trail evaporates according to the follow-
ing equation:

τij = (1− ρ)× τij (8)

where ρ is the coefficient of the pheromone evaporation and the update state is calculated
by applying the next equation:

τij = τij + ∆τij (9)

where
∆τij =

best_known_solution
best_global_cost

(10)

3.1.2. Second VRP Model

VRP of the second model uses a similar algorithm routing and sequencing of the first
model. The difference is that each ant in this model tries to reduce the number of vehicles
to visit all clients and to add all possible ones whose demand does not exceed the capacity
of the current vehicle. The algorithm of the second model is formulated as follows, see
Algorithm 2.

Algorithm 2 Routing and sequencing of the second model

Require: R, ant_colony, Q(k);
Ensure: route_map;

1: for (a ∈ ant_colony) do
2: route_map← r0;
3: R← R− r0;
4: C ← R− r0;
5: k← 0;
6: Q(k)← 0;
7: i← r0;
8: while R 6= ∅ do
9: while C 6= ∅ do

10: for (rj ∈ C) do
11: pij ← probability_o f _pointi_to_choose_pointj;
12: end for
13: rs ← rj_with_highest_pij;
14: C ← C− rs;
15: Q(k)← Q(k) + demand(rs);
16: if Q(k) < capacity_o f _vehicle then
17: route_map← route_map + rs
18: i← rs
19: R← R− rs;
20: end if
21: end while
22: k← k + 1;
23: Q(k)← 0;
24: route_map← route_map + r0;
25: i← r0;
26: end while
27: end for
28: return route_map_o f _the_best_ant_solution;

In Algorithm 2, the ant checks if its current load allows it to add the demand of the
chosen client and verifies the vehicle’s capacity violation. If yes, the ant visits the specified
client (adding client’s demand and indicating it as selected). Otherwise, the ant selects
another unvisited node according to the calculated probability. When all clients have been
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visited, the ant ends the current trip with empty load (returning to its colony) and the
algorithm begins a new trip. We improve the solution by local search and we use a two-opt
local search algorithm in the end of both Algorithms 1 and 2.

3.2. Structuring VRP Multi-Model

In order to co-simulate the multi-model of VRP, we use MECSYCO, which allows
to lunch of several VRP models. In this approach, we focus on the reuse of atomic VRP
models defined in Section 3.1 and making them interact. Figure 2 shows an overview on
the model coupling of M1 and M2.

Ant 1 

Minimize total travelling 

distance 

Ant colony  for First VRP Model 

Problem 

description 

Ant n 

Send best solution so far 

Ant 1 Ant n 

Ant colony  for Second VRP Model 

Minimize the number of 

vehicle 

Problem 

description 

Figure 2. Model dependency overview.

As VRP models are created separately, each model has its own description and pro-
ceeds its own execution. It should couple these VRP models to reconstruct the entire
multi-model using the co-simulation of MECSYCO. To this end, we define the connections
between both models by specifying the input and output ports.

3.2.1. Exchanging Data between Simulators: Input and Output Connections

To predict the impact of co-simulation of VRP multi-model, we show the first model
M1 which represents the solution of VRP using Algorithm 1, where the objective is to
minimize the total traveled distance. The second model M2 implements Algorithm 2 that
tries to minimize the total number of vehicles used to solve the same VRP. The aim in
this case is to reproduce the VRP multi-model as a society of interacting and co-evolving
models. We have to couple the two aforesaid models M1 and M2 using the concepts of
Agent and Artifacts that are presented in Section 1. To couple M1 and M2 we need to define
the input and output ports of each model and the connections between them.

The solution is improved by successive iterations where every model, i.e., M1 or M2,
shares the improved solution with the other. M1 and M2 read the input and try to improve
their solution as illustrated in Figure 3.
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Figure 3. Coupling VRP models.

Specifically, when the model M1 finds new best solution in a given iteration, it sends
the following inputs to the model M2

1. Ed: Set of edges belonging to the best solution (for each one of these edges the model
M1 sends a pair of nodes delimiting this edge).

2. P: Set of pheromones trail of each edge belonging to the best solution and the model
M2 retrieves these values of pheromone and modify its own values to have the new
ones sent by M1.

These sent pheromones trail to the model M2 will modify the pheromone trail of the
same edges in M2 for improving the best solution finding. According to the ant colony
system, in Algorithms 1 and 2 the ant chooses the next node to be added to the solution
according to

• The cost of the best solution represented by the total traveled distance;
• The edge with minimum distance to be traveled;
• The edge with high value of pheromone trail.
The edge with high value of pheromone trail have a high probability to be added to

the solution. Here, the model M2 have edges with elevated values of pheromone trail from:
• Those of its own best solution;
• Those of M1’s best solution.
In the same way, when model M2 finds a new best solution, it sends its best solution

to model M1 and replaces the current value of pheromone trail in this model by those of
the new best solution in model M2. Figure 4 show more details on the behavior of models
in interaction.

3.2.2. Interchanging Models

When executing two similar models of VRP, they give two different solutions in each
iteration. Instead of coupling two different VRP models, we can simply integrate two
similar models M1 or two similar models M2. Here, we keep the same input and output
connections as defined in the previous section. So, if one model has a good solution, it sends
it to the second model and reciprocally. Specifically, when we couple two same models M1,
they will have different solutions in each iteration, and the first one have better solution,
send the following inputs to the second model M1:

1. Ed: Set of edges belonging to the best solution.
2. P: Set of pheromones trail of each edge belonging to the best solution and the second

model M1 retrieves these values of pheromone and modify its own values to have the
new ones sent by the first model M1.

This may impact on the solution of each model and redirect it to the best solution by
reinforcing the pheromone of edges that have a good solution in each model. Moreover, we
can study the evolution of the computational time when proceeding the co-simulation of
VRP models, thereby the co-simulation of VRP models for finding a good solution.



Future Internet 2022, 14, 137 9 of 16

Input parameter (depot, 

clients, demand, vehicles, 

distance) 

Routing phase 

Update 

pheromone trail 

Return the best 

solution found 

Generate random 

solution  

Input parameter (depot, 

clients, demand, vehicles, 

distance) 

Routing phase 

Update 

pheromone trail 

Return the best 

solution found 

Generate random 

solution  

If number of 

iterations reahed 

Coupling 

Artifact  

1 

Coupling 

Artifact  

2 

Post pheromon of 

edges belonging to 

the best solution  

Post pheromon of 

edges belonging to 

the best solution  

Read pheromon of 

edges belonging to 

the best solution  

Read pheromon of 

edges belonging to 

the best solution  

If number of 

iterations reahed 

Figure 4. Behavior of two models in interaction.

Thus, we interchange models to compare different executions and study the accuracy
of the best multi model. Figure 5 shows the VRP models’ interaction graph.
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Ant n 
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Figure 5. Graph of VRP interaction models.

By using MECSYCO we may launch more than one model of VRP at the same time
following the routing algorithm defined in Section 2. The execution gives two different
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solutions that are improved in each iteration. The whole architecture of the multi-model is
modular, transparent and parallel so the simulation can be viewed as a set of distributed
and reusable components such that:

• The modeling is performed by model artifact.
• Conducting the models is accomplished by the model-agents.
• The coordination process is carried out by the coupling-artifacts.
As a result, we easily can add, remove or interchange models without being interested

with coupling and coordination issues.

4. Implementation and Results

The VRP models are implemented using Netlogo [28] which is an environment de-
signed for modeling and simulating the natural and social experiences. We use MECSYCO
to perform the co-simulation of the VRP models based on the following parameters of
hardware:

• Memory: 7.7 GB;
• CPU: Intel® Core™ i5-8250U CPU @ 1.60GHz × 8;
• Graphic Card: Intel® UHD Graphics 620 (Kabylake GT2);
• Operating System: ubunto 16.04 LTS 64 bits;
• Disk: 964 GB.
In the analysis, we study the behavior and the experiment results of VRP models

on several VRP instances from [29] and then we evaluate the improvement carried out
by the co-simulation of the VRP multi-model in term of quality of obtained results and
computational time.

4.1. Implementing VRP Models

In the definition and implementation of the VRP graphs using Netlogo, we use the
turtles agent to represent nodes with their turtle variables. The coordinate of each client and
the links agent are used to define the edge between two nodes. We use the link variables for
determining for each edge the link cost of these two nodes and the value of pheromone trail.

Table 1 represents the result obtained by executing single model VRP: model M1 with
BKS is the best-known solutions which were given by [29], Perc-Dev is the percentage
deviation of the result reached by the model M1 and Processing time (s) is the processing
time for the execution of the model M1.

Table 1. VRP results of M1.

Inst. BKS Model 1 Per-Dev % Processing Time (s)

A-n32-k5 784 794 1.25 16.261
A-n33-k5 661 661 0 26.46
A-n33-k6 742 759 2.23 11.98
A-n60-k9 1408 1442 2.35 91.18
B-n78-k10 1266 1332 4.95 112.18

Table 2 represents the result obtained by executing single model VRP, i.e., model M2.
Both models M1 and M2 are based on an ant colony system in their implementation, and
they can interchange the following data: the cost of solution is calculated by the total
traveled distance, edges belonging in the best solution found and the values of pheromone
trail of these edges.

Other data can be exchanged between these models such as the route of the best
solution or the route of each vehicle, etc. However, we skip these exchanged data to avoid
more machine resources occupation because we must reserve more memory space to store
the solution (routes) which takes a considerable time during the exchange.
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Table 2. VRP result of M2.

Inst. BKS Model 2 Per-Dev % Processing Time (s)

A-n32-k5 784 807 2.85 19.241
A-n33-k5 661 661 0 38.84
A-n33-k6 742 757 1.98 16.82
A-n60-k9 1408 1491 5.56 90.83
B-n78-k10 1266 1318 3.94 1043.46

4.2. Co-Simulation of VRP Multi-Model

In this section, we run different forms of combined models and perceive the improve-
ment provided by their co-simulation. In order to develop interactive VRP multi-models,
we use MECSYCO which offers multiple integrating VRP models by defining the input
and output port of coupling artefact. VRP instances [29] are a set of 100 instances created to
offer a more universal and stable experimental setting.

Experiments were carried out in order to analyze the performance of the proposed VRP
multi-model. The main objective is to assess whether the co-simulation has a direct impact
on the qualitative performance of the obtained results. In this context, three composition
are proposed for the interaction between the VRP multi-model used in the experiments:

• Coupling two different VRP models: M1 with M2.
• Coupling two same VRP models: M1 with M1.
• Coupling two same VRP models: M2 with M2.

Tables 3–5 show the result of VRP co-simulation where:

• Symbol A means: after co-simulation;
• Symbol B means: before co-simulation;
• Perc-Dev B is the percentage deviation of single model before co-simulation;
• Perc-Dev A is the percentage deviation after co-simulation for two models in interaction;
• Processing time B (s) is the processing time in second for just one model before

co-simulation;
• Processing time A (ms) is the processing time in milliseconds after co-simulation for

two models in interaction.

Table 3 presents the co-simulation results of model M1 with M1 which demonstrate en-
hanced performance of the found solution in terms of percentage deviation and processing
time compared with the execution of single model M1.

Table 3. The obtained co-simulation result of models M1 with M1.

Inst. Per-Dev B % Per-Dev A % Processing Time B (s) Processing Time A (ms)

A-n32-k5 1.25 0.63 16.26 381
A-n33-k5 0 0 26.46 377
A-n33-k6 2.23 1.32 11.98 160
A-n60-k9 2.35 1.53 91.18 162
B-n78-k10 4.95 2.98 112.18 739

Table 4 shows the result of the combination of the two same models M2 with M2. We
perceive that there is an improvement in the found solution compared with one model M2
in both the solution cost and the time of processing.



Future Internet 2022, 14, 137 12 of 16

Table 4. The obtained co-simulation result of models M2 with M2.

Inst. Per-Dev B % Per-Dev A % Processing Time B (s) Processing Time A (ms)

A-n32-k5 2.85 0.63 19.24 959
A-n33-k5 0 0 38.84 774
A-n33-k6 1.98 2.11 16.82 310
A-n60-k9 5.56 2.89 90.83 2242
B-n78-k10 3.94 0.62 1043.46 2633

Table 5 shows the obtained results of integrating two different models M1 with M2.
We observe that there is an improvement in the found solution compared with the result of
a single model M1 or M2 in terms of solution and time of processing.

Table 5. The obtained co-simulation result of models M1 with M2.

Inst. Per-Dev B % Per-Dev A % Processing Time B (s) Processing Time A (ms)

A-n32-k5 2.85 1.63 16.26 152
A-n33-k5 0 0 26.46 525
A-n33-k6 2.23 1.46 11.98 413
A-n60-k9 2.35 1.88 91.18 2877
B-n78-k10 4.95 3.28 112.18 12,022

Figures 6 and 7 show the co-simulation processing time when coupling the same or
different models. We conclude that the co-simulation of models is faster than the unique
model M1 or M2. On the other hand, during data exchange between models we proceed to
post and read best solutions for each interacting model. Instead of sending the best solution
as a sequence of routes, we choose to send it as separate edges with their pheromone trail.
After the execution, we observe that this action has a significant impact on the behavior
of the model in constructing its solution and the model builds better solutions quickly.
In addition, it does not spend a lot of time interchanging data and occupies a reasonable
memory size to store the best solution.

Figure 6. Cont.
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Figure 6. The execution time of co-simulation models compared with single model M1 or M2.

Figure 7. The execution time of co-simulation models M1 with M2.

4.3. Discussion

We conducted several experiments in a single VRP model and multiple VRP models in
interaction, Single VRP models implementing different algorithms of ACO metaheuristics
gave close to optimal solutions; the VRP multi-model improved these results compared
with single ones. We coupled

• Two different models M1 and M2;
• Two same models M1 with M1;
• Two same M2 with M2.

Always the result of coupled models was the best according to single model M1 or
single model M2. It was especially time consuming.
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Figure 8 displays the co-simulation processing time of the three coupled systems and
shows that the coupled system using two same models M1 has the best result.

Co-simulation enables the integration of heterogeneous models/simulators homo-
geneously, in the future we can implement other types of metaheuristic and define the
appropriate interchanging data between them, in order to study the amelioration of results
in each different case.

Figure 8. The execution time of co-simulation models .

5. Conclusions

This paper discusses the integration of VRP simulators created in Netlogo platform
into MECSYCO co-simulation middleware. The proposed VRP multi-models in interaction
implement ant colony meta-heuristic for solving two different objectives. The obtained
results show the efficiency of better solution finding of VRP multi-models compared with
single VRP models in terms of processing time and travel distance. We conclude that the
type of data exchanged between models gives more qualitative performance to the solution
short execution time to solve the problem.

In the future, we will evaluate the proposed approach by introducing other variants of
VRP such as the Multi Depot Vehicle Routing Problem (MDVRP) and the Vehicle Routing
Problem with Time Window (VRPTW). Moreover, the atomic VRP models can be imple-
mented using other types of meta-heuristics and the combination of these models can be
performed by defining other input and output connections.
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