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Abstract: Feature selection can efficiently improve classification accuracy and reduce the dimension
of datasets. However, feature selection is a challenging and complex task that requires a high-
performance optimization algorithm. In this paper, we propose an enhanced binary bat algorithm
(EBBA) which is originated from the conventional binary bat algorithm (BBA) as the learning algo-
rithm in a wrapper-based feature selection model. First, we model the feature selection problem and
then transfer it as a fitness function. Then, we propose an EBBA for solving the feature selection
problem. In EBBA, we introduce the Lévy flight-based global search method, population diversity
boosting method and chaos-based loudness method to improve the BA and make it more applica-
ble to feature selection problems. Finally, the simulations are conducted to evaluate the proposed
EBBA and the simulation results demonstrate that the proposed EBBA outmatches other comparison
benchmarks. Moreover, we also illustrate the effectiveness of the proposed improved factors by tests.

Keywords: feature selection; bat algorithm; optimization; chaos theory; Lévy flight

1. Introduction

Communication networks, computers, and artificial intelligence technologies provide
a vast array of tools and techniques to improve efficiency. With the development of
these technologies and tools, huge amounts of data are generated, stored, and utilized [1].
For example, a large number of IoT devices monitor, sense, and generate continuous
data from the edge [2]. In addition, operators retain large amounts of historical user
data in various transaction and computing platforms. Then again, the generation of rich
media data such as short videos and motion pictures also makes the amount of data
in the network grow exponentially [3]. Machine learning can effectively use these data
and learn rules and patterns from them to help people make predictions and decisions.
Machine learning algorithms have been successfully applied to various fields of life, such
as medicine, materials science, and physics. Specifically, machine learning algorithms
can extract features from various types of data and use the features to train models for
classification, regression, and clustering operations [4].

Despite the advantages of the mentioned machine learning algorithms in terms of
effectiveness, wide application, and malleability, there are still some challenges and urgent
issues that machine learning algorithms need to address. First, the training of machine
learning algorithms is a time-consuming, computationally intensive, and energy-intensive
process, which can lead to limited applications of machine learning algorithms [5]. Second,
the training datasets of machine learning algorithms are derived from the features they
extract, which are mostly extracted using automated tools and human experience, and
have many repetitive, meaningless, or even misleading features [6]. These features can
slow down the training process of machine learning algorithms even more and reduce the
effectiveness of classification, clustering, and regression of machine learning algorithms.
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Therefore, the elimination of these useless and redundant features is important to improve
the performance of machine learning algorithms and reduce their training consumption.

Feature selection is an effective means to solve the above problem. Feature selection
can eliminate useless and redundant features in the dataset, thus reducing the number of
features and improving the classification accuracy of machine learning algorithms. For
a dataset with N features, there are 2N feature selection schemes available, producing a
combinatorial explosion. Therefore, selecting a subset of features with high classification
accuracy and a low number of features can be regarded as an optimization problem. On
the other hand, the feature selection problem is also proved to be an NP-hard problem. It is
important to select and propose a suitable algorithm to solve the feature selection problem.

In general, feature selection methods can be classified into three categories, namely
filter-based methods, wrapper-based methods, and embedded methods. Specifically, filter-
based methods use a statistical measure that gives a score to the relevance of each feature
in the dataset, by which the importance of the feature can be quantified. Subsequently, the
decision-maker can set a threshold to remove features with scores below the threshold,
thus achieving a reduction in the number of features. However, such methods do not
consider the complementarity and mutual exclusivity among features, and therefore the
classification accuracy obtained by the subset of features selected by such methods is
low [7]. Embedded-based methods are a special kind of wrapper-based method, so they are
not discussed in this paper. The wrapper-based methods introduce classifiers and learning
algorithms. The learning algorithm continuously generates new feature subsets, while the
classifier evaluates the generated feature subsets and selects the optimal one in continuous
iterations [8]. In this type of method, the classification accuracy of feature selection is high
but consumes more time due to the introduction of classifiers. On the other hand, this type
of method has a great relationship with the performance of the learning algorithm.

Akin to some previous works [7–9], we aim to adopt the swarm intelligence algorithm
as the learning algorithm in the wrapper-based feature selection method. Specifically, a
swarm intelligence algorithm studies the complex behaviors of a swarm consisting of sev-
eral simple agents. By iteratively updating the swarm, the agents will have a more powerful
performance than before, so that the algorithm can provide a sub-optimal solution. Swarm
intelligence has the benefits of high convergence and powerful solving ability. Moreover,
swarm intelligence can also handle NP-hard problems such as feature selection. Thus, it can
be seen as an effective method to overcome the challenges of feature selection. For instance,
some well-known swarm intelligence, i.e., genetic algorithm (GA) [10], particle swarm
optimization (PSO) [11], dragonfly algorithm (DA) [12], ant-lion optimizer (ALO) [13], and
grey wolf optimizer (GWO) [14] has been applied in feature selection.

Bat algorithm (BA) and binary BA (BBA) are promising forms of swarm intelligence
and have been demonstrated to be better than other algorithms in some applications due
to their effectiveness and high performance. However, as suggested in no-free lunch
(NFL) theory, there are no algorithms that can suitably solve all optimization problems. In
addition, BA also has some shortcomings in solving feature selection problems. Thus, we
aim to enhance the performance of BA for solving feature selection. The contributions of
this work are summarized as follows:

• We show that the feature selection is a multi-objective optimization problem, and we
present the decision variables and the optimization goals of the feature selection problem.

• We propose an enhanced binary BA (EBBA) for solving the feature selection problem.
In EBBA, we propose Lévy flight-based global search method, which enables the
algorithm to jump out of the local optimum. Moreover, we propose a population
diversity boosting method so that the exploration capability of the algorithm can
be further enhanced. In addition, we use a recently proposed chaotic mapping to
assign values to the key parameter of the algorithm, thus enhancing the exploitation
capability of the algorithm.

• Simulations are conducted based on open datasets of UC Irvine machine learning
repository to verify the solving ability of the proposed EBBA. First, we introduce
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some benchmark algorithms for comparisons. Then, we show the effectiveness of the
proposed improved factors.

The rest of this work is arranged as follows. Section 2 reviews some key related works
about swarm intelligence algorithms and feature selection. Section 3 gives the model of
feature selection. Section 4 proposes the EBBA and details the improved factors. Section 5
provides simulation results and Section 6 concludes this work.

2. Related Works

In this work, we aim to use one of the swarm intelligence algorithms, i.e., BA, to solve
the feature selection problem, and thus some key related works are briefly introduced in
this section.

2.1. Swarm Intelligence Algorithms

Swarm intelligence algorithms refer to evolutionary theory and swarm behavior. In
the past few years, a large number of researchers have proposed various types of swarm
intelligence algorithms to solve optimization problems in different domains.

First, some representative classical swarm intelligence algorithms are presented as
follows. PSO is another representative swarm intelligence algorithm, which is inspired
by the behavior of bird/fish populations. Moreover, artificial bee colony (ABC) [15], ant
colony optimization (ACO) [16], etc., are also well-known swarm intelligence algorithms.
Second, swarm intelligence algorithms also contain various types of bio-inspired algorithms.
For example, Meng et al. [17] proposed a chicken swarm optimization (CSO) to solve
optimization problems by simulating the rank order and the behavior of chickens (including
roosters, hens, and chicks) in a flock. Yang et al. [18] proposed a BA and validated the
performance of BA using eight nonlinear engineering optimization problems. Third, certain
swarm intelligence algorithms were proposed inspired by various natural phenomena of
the universe. Jiang et al. [19] proposed a new metaheuristic method, artificial raindrop
algorithm (ARA), from natural rainfall phenomena and used it for the identification of
unknown parameters of chaotic systems. Kaveh et al. [20] proposed a ray optimization
(RO) based on Snell’s law of light refraction and the phenomenon of light refraction.

In summary, researchers have proposed a large number of effective swarm intelligence
algorithms and applied them to various optimization problems. However, these algorithms
are not necessarily applicable to all engineering fields. Accordingly, proposing an enhanced
swarm intelligence algorithm version according to the characteristics of an optimization
problem is a major challenge.

2.2. Ways of Feature Selection

There are several existing methods and ways have been proposed for the purpose of
feature selection. First, some filter methods are widely used due to their simplicity and
relatively high performance. For instance, some methods based on correlation criteria and
mutual information are detailed in reference [21]. In this case, several effective filter-based
algorithms including correlation-based feature selection (CFS) [22], fast correlation-based
filter (FCBF) [23], wavelet power spectrum (Spectrum) [24], Information Gain (IG) [25],
ReliefF [26], etc. Second, wrapper-based approaches are key methods in feature selection.
This type of method can be categorized by the type of learning algorithms. For instance,
exhaustive, random search and metaheuristic search methods. Due to their effectiveness,
the metaheuristic search methods including swarm intelligence algorithms can be seen as
the most popular methods [27]. Finally, there are several embedded methods. The main
approach is to incorporate feature selection as part of the training process, e.g., [21,28].

2.3. Swarm Intelligence-Based Feature Selection

There are many swarm intelligence algorithms have been adopted or proposed as the
learning algorithm in wrapper-based feature selection methods, and we review some key
algorithms as follows.
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Li et al. [29] proposed an improved binary GWO (IBGWO) algorithm for solving
feature selection problems, in which an enhanced opposition-based learning (E-OBL) ini-
tialization and a local search strategy were proposed for improving the performance of
the algorithm. Kale et al. [30] presented four different improved versions of the sine
cosine algorithm (SCA), where the updating mechanism of SCA is the improvements
and innovations. Ouadfel et al. [31] proposed a hybrid feature selection approach based
on the ReliefF filter method and equilibrium optimizer (EO), which is composed of two
phases and tested in some open datasets. Abdel-Basset et al. [14] proposed three vari-
ants of BGWO in addition to the standard variant, applying different transfer functions
to tackle the feature selection problem. In [32], two different wrapper feature selection
approaches were proposed based on farmland fertility algorithm (FFA), which denoted
as BFFAS and BFFAG, and these methods are effective in solving feature selection prob-
lems. On the other hand, BA and some variants have been adopted for solving feature
selection problems. Varma et al. [33] proposed a bat optimization algorithm for wrapper-
based feature selection and conducted simulations based on the CICInvesAndMal2019
benchmark dataset. Naik et al. [34] proposed a feature selection method to identify the
relevant subset of features for the machine-learning task using the wrapper approach via
BA. Rodrigues et al. [35] presented a wrapper feature selection approach based on bat
algorithm (BA) and optimum-path forest (OPF). In [36], the authors proposed an improved
BPSO algorithm as an essential tool of pre-processing for solving classification problem,
in which a new updating mechanism for calculating Pbest and Gbest were proposed.
Moreover, the authors in [37] proposed a binary DA (BDA) and use it to solve the feature
selection problems. Likewise, Nakamura et al. [38] proposed a binary version of the bat
algorithm, i.e., BBA, and evaluate its performance in solving the feature selection problems.
In addition, in [39], a new hybrid feature selection method was proposed by using the sine
cosine algorithm (SCA) and genetic algorithm (GA), and the algorithm is used for solving
feature selection problems. Furthermore, Nagpal et al. [40] proposed a feature selection
method via binary gravitational search algorithms (BGSA) in medical datasets, in which
they can reduce the number of features by an average of 66% and enhance the accuracy of
prediction.

The aforementioned methods can solve feature selection problems in various appli-
cations. However, according to NFL theory, different swarm intelligence algorithms may
have different performances in various applications. Therefore, the existing methods are
insufficient to solve all feature selection problems, which motivates us to propose an EBBA
to handle more feature selection problems in this work.

3. Feature Selection Model

As shown in [8,29,33], the feature selection problem can be seen as a binary optimiza-
tion model, and in this section, we introduce it in details. Specifically, the main purpose of
feature selection is to reduce the data dimension by retaining the most valuable features
through feature selection methods. Thus, there are two possibilities for each feature, i.e., to
be selected and to be discarded. Therefore, the feature selection problem can be regarded
as an optimization problem with a binary solution space.

It is can be seen from Figure 1, the solution space of the considered feature selection
problem is a binary. Each feature is represented by a binary number, and if that binary
number is 1, it means that the feature is selected, and conversely, if that binary number
is 0, it means that the feature is discarded. Thus, the feature selection of a dataset can be
represented by a binary array as follow:

(Decision variables) X = [x1, x2, x3, . . ., xNdim ], (1)

where Ndim is the number of features, in other words, the dimension number of the dataset.
Under this model, there are two main objectives of the feature selection, i.e., to reduce the
classification error rate of the obtained feature subsets, and to reduce the feature number of
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feature subsets. Thus, the feature selection problem is a multi-objective problem in which
the first objective can be expressed as follows:

(Objective 1) f1 = 1− facc, (2)

where facc is the classification accuracy of the obtained feature subsets. Note that we
introduce the KNN as a classifier to evaluate the feature subsets and the reasons are
analyzed in following section. Moreover, the second objective of this work is to reduce the
feature number of feature subsets, which can be expressed as follows:

(Objective 2) f2 =
N′dim
Ndim

, (3)

where N′dim is the feature number of the selected feature subsets. To simultaneously the
aforementioned objectives, we introduce the fitness function as follows:

(Fitness function) f f it = a× f1 + b× f2, (4)

where a ∈ [0, 1] and b = 1− a are constants that denote the weights of the two objectives f1
and f2, respectively. Specifically, we can increase a to obtain a higher classification accuracy
or increase b to obtain a smaller dimensional feature subset.

Figure 1. Feature selection model with binary solution space.

4. Proposed Algorithm

Based on the aforementioned feature selection model, we can optimize the decision
variables shown in Equation (1) to obtain a better fitness function shown in Equation (4).
Accordingly, we propose an EBBA in this section for solving the feature selection problem.

4.1. Conventional BA

BA is a swarm intelligence algorithm for global optimization, which is inspired by
the echolocation behavior of bats. Specifically, bats look for prey by flying at a random
velocity Vi at a random point Xi with a fixed frequency fmin, changing wavelength l, and
loudness A0. Depending on the proximity of their target, these bats can autonomously
modify the wavelength (in other words, frequency) of their generated pulses as well as
the rate of pulse emission r in the range of [0, 1]. The corresponding mathematical model
of BA can be detailed as follows. In the tth iteration, the frequency fi of the the ith bat is
expressed as follows.

fi = fmin + ( fmax − fmin)× β, (5)

where fmax and fmin are upper and lower bounds on the frequencies of all bats, respectively,
and β is a random number between [0, 1].

Moreover, the velocity of the ith bat vi can be modeled as follows:

Vt
i = Vt−1

i + (Xt−1
i − X∗) fi, (6)

where X∗ is the bat with the highest fitness function value of the swarm.
In addition, the update method of the ith bat is shown as follows:

Xt
i = Xt−1

i + Vt
i , (7)
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where Xt
i is the position of the ith bat in the tth iteration.

Furthermore, BA also enhances search ability through local random walks. Specifically,
BA asks the best bat in the swarm to conduct a local search with a certain probability, which
can be expressed as follows:

XN = X∗ + ε× At, (8)

where XN is the newly generated bat after the random walk, At is the loudness of all bats
in the t iteration, and ε is a random variable that ranges [−1, 1].

Additionally, the loudness Ai and the rate ri of pulse emission are also updated as the
iterations proceed, which is shown as follows:

At+1
i = αAt

i , rt+1
i = r0

i [1− exp(−γt)], (9)

where α is a parameter that ranges from 0 to 1, and γ > 0 is a parameter.
By using these mathematical models, the main steps of BA can be summarized

as follows.
Step 1: Randomly generate population (bat swarm) P = [X1, X2, . . ., XNpop ], where

Npop is the population size. Moreover, the velocity, pulse emissivity, and loudness of the
bats are randomly generated. Then, the fitness values of all bats are calculated.

Step 2: Update the positions and velocities of bats by using Equations (5)–(9).
Step 3: A random number Nrand between 0 and 1 is firstly generated, and then if

Nrand > ri, a random walk will be performed by using Equation (8) to generate a new
individual XN around the current best individual X∗.

Step 4: Generate a random number Nrand of [0, 1] again. If Nrand < Ai and f f it(XN) <

f f it(Xi), replace Xi with XN and then update the loudness and pulse firing rate. If
f f it(XN) < f f it(X∗), XN is used to replace X∗.

Step 5: Repeat steps 2–4 until the terminal condition is reached.
Step 6: Return X∗ as the final solution to the problem.

4.2. BBA

To make the BA can handle the binary solution space of the feature selection, Mirjalili
et al. [41] introduce a binary operator. Specifically, the authors introduced a v-shape
transfer function to map the continuous parameters into binary solution space, which can
be expressed as follows:

V
(

vt
i,j

)
=

∣∣∣∣ 2
π

arctan
(π

2
vt

i,j

)∣∣∣∣, (10)

xt+1
i,j =


(

xt
i,j

)−1
if rand < V

(
vt+1

i,j

)
xt

i,j if rand ≥ V
(

vt+1
i,j

)′ (11)

where xt
i,j and vt

i,j indicate the position and velocity of ith individual at tth iteration in jth
dimension, and (xt

i,j)
−1 is the complement of xt

i,j. As such, the BBA can handle and update
the binary decision variable reasonably.

4.3. EBBA

Conventional BA may confront some key challenges in solving the feature selection
problems. First, when dealing with the big solution space of feature selection problem, BA
may lack exploration ability, which may make the algorithm fall in local optima. Second,
the bats of the BA are guided by the best bat of the swarm, i.e., X∗, which means that the
population diversity is lower for the large scale datasets. Third, the exploration and explo-
ration abilities of BA should be further balanced. Finally, BA is proposed for continuous
problems whereas the feature selection problems are with a binary solution space. Thus,
these reasons motivate us to enhance BA for better feature selection performance. The
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main steps of the proposed EBBA are detailed in Algorithm 1, and the correspondingly
improved factors are as follows:

Algorithm 1 EBBA

1 Define the related parameters: population size Npop, bat dimension Ndim,
maximum iteration tmax, and fitness function, etc.;

2 Initialize the bat population, pulse frequency, pulse rates and loudness;
3 for t = 1 to tmax do
4 Generate new bats by adjusting frequency, and updating velocities and

locations by using Equations (5), (6) and (11);
5 if Nrand< ri then
6 if Nrand< ri’ then
7 Select the second best bat;
8 end
9 else

10 Select the best bat;
11 end
12 Generate a new bat around the selected bat by using Equation (8) or (12);
13 end
14 if Nrand< Ai and f f it(Xi) < f f it(X∗orX∗∗) then
15 Accept the new bats and update ri and Ai by using Equations (9) and (15);
16 end
17 Rank the bats and find the current best X∗;
18 Generate Xnew’ by using Equation (12);
19 if f f it(X∗) > f f it(Xnew) then
20 X∗ = Xnew;
21 end
22 end
23 Return X∗; //X∗ is the final feature selection result of the EBBA

4.3.1. Lévy Flight-Based Global Search Method

Feature selection problems also are large-scale optimization problems since the di-
mension of some datasets is relatively large. In this case, the exploration ability of the
optimization algorithm should be sufficient. However, the update of other bats in the
swarm are determined by the best bat, and this mechanism will undoubtedly decrease the
exploration ability of the algorithm. Thus, we introduce the Lévy flight to propose a global
search method to improve the exploration ability of the algorithm. Specifically, a Lévy
flight is a random walk in which the step-lengths have a Lévy distribution, a probability
distribution that is heavy-tailed. By using the short-distance or long-distance searching
alternately, the search scope can be extended.

First, mathematically, in each iteration, we generate a new bat according to the best
bat X∗ and Lévy flight, which can be expressed as follows:

Xnew = X∗ + α⊕ Lévy (λ), (12)

where α is a parameter and its value is often assigned according to applications. Moreover,
Lévy flight is taken from the Lévy distribution, which can be expressed as follows:

Lévy(λ) ∼ u = t−λ(1 < λ < 3), (13)

Second, the newly generated bat Xnew is evaluated to obtain its fitness value, and then
we compare the Xnew with the best bat X∗ based on their fitness function values. If the
Xnew outmatches X∗, then X∗ = Xnew. By using this method, the best bat of the swarm is
easy to jump out of local optima, thereby enhancing the exploration ability of EBBA.
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4.3.2. Population Diversity Boosting Method

In BA, all the bats are guided by the best bat of the swarm, which may decrease the
population diversity of the algorithm, thereby affecting the solving performance. In this
case, we aim to propose a method for boosting population diversity. In bat swarm, the
second best bat also is meaningful and with a strong value for guiding other bats. Thus, we
use the second best bat X∗∗ to generate a part of new bats as follows:

XN2 = X∗∗ + ε× At, (14)

where XN2 is the newly generated bat and whether the method used is determined by a
parameter r′ which can be expressed as follows:

rt
i ’ =

rt
i

2
, (15)

By using this method, the bat swarm is simultaneously guided by the best bat and the
second-best bat, so that enhancing the population diversity of the algorithm.

4.3.3. Chaos-Based Loudness Method

The loudness in BA can determine the weights of exploitation and exploration abilities
of the BA. However, the loudness update method of conventional BA is linear, which
may be unsuitable for the feature selection. Thus, we introduce a novel fractional one
dimensional chaotic map to update loudness [42], which can be expressed as follows:

At
i = Ct, (16)

where Ct is the tth dimension of the fractional one dimensional chaotic map, which can be
expressed as follows:

Ct+1 = f (Ct) =


1

C2
t +α
− βCt if Ct ∈

[
0, 1

α

]
−1

C2
t +α
− βCt if Ct ∈

[
−1
α , 0

) , (17)

where α and β are two real parameters, and they are assigned as 0.001 and 0.9 in this
work, respectively. By using the high chaotic behavior of the method, the exploitation and
exploration abilities of EBBA can be balanced.

4.3.4. Complexity Analysis of EBBA

The complexity of EBBA is analyzed in this part. In the proposed feature selection
model, the most time-consuming step is the calculation of fitness function value since we
introduce classifier, which is several orders of magnitude complex than other steps. In this
case, other steps can be omitted. Accordingly, the complexity of EBBA is O(tmax · Npop)
when the maximum number of iteration and population size are denoted as tmax and Npop,
respectively.

5. Simulations

In this section, we conduct the simulations to evaluate the proposed EBBA. First, the
datasets and setups are presented. Second, we compare the EBBA with some benchmark
algorithms. Third, we illustrate the effectiveness of the improved factors.

5.1. Datasets and Setups

In this work, we introduce 10 typical UC Irvine Machine Learning Repository datasets.
The main information of these datasets are shown in Table 1.
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Table 1. Datasets.

Dataset Number of Features Number of Instance

1 Breastcancer 10 699
2 BreastEW 30 569
3 Congress 16 435
4 Exactly 13 1000
5 Exactly2 13 1000
6 HeartEW 13 270
7 SonarEW 60 208
8 SpectEW 22 267
9 tic-tac-toe 9 958
10 Vote 16 300

Moreover, the used CPU is 11th Gen Intel(R) Core(TM) i7-11700 @ 2.50 GHz and
the RAM is 16 GB. We use python to implement the simulation codes and adopt KNN
(k = 5). Note that we use KNN classifier since it is simple, easy and highly accurate, it
is also insensitive to outliers and no data entry settings. Moreover, using a simple and
relatively cheap classification algorithm in a wrapper approach can obtain a good feature
subset that is also suitable for complex classification algorithms. In contrast, if an advanced
classification algorithm is used for wrapper-based feature selection, the obtained feature
subset will be failed for simple classification algorithms. The reason is that when using
advanced classification algorithms, the learning algorithm of the wrapper approach (e.g.,
the proposed EBBA) will capture the characteristics of the classification algorithm instead
of the relationship of different features. In addition, a and b in the fitness function are set to
0.99 and 0.01, respectively. Furthermore, In this paper, binary PSO (BPSO) [36], BGWO [43],
BDA [37], and BBA [41] are introduced as the benchmarks, and the key parameters of these
algorithms are shown in Table 2. Note that the population size and iteration number of
EBBA and other benchmarks are set as 24 and 100, respectively. Additionally, to avoid
the experiment’s random bias, each algorithm is performed 30 times independently in
these selected datasets, as specified by the central limit theorem. What’s more, 80% of the
instances are utilized for training, while the remaining 20% are used for testing [7,44,45].
Note that the classifier only provides feedback to the EBBA, which means that the overfitting
affected by the division of the dataset will not have too much impact on the feature selection
method based on the wrapper and swarm intelligence.

Table 2. Key parameters of benchmark algorithms.

Algorithm Key Parameters

1 BPSO c1 = 2, c2 = 2
2 BGWO α = [2, 0]
3 BDA w = [0.9, 0.4], s = [0.2, 0], a = [0.2, 0], c = [0.2, 0], f = [0.2, 0], e = [0, 0.1]
4 BBA A = 0.25, Qmax = 2, Qmin = 0
5 EBBA Qmax = 2, Qmin = 0

5.2. Simulation Results

Table 3 shows the optimization results of the accuracy rate, number of selected features,
fitness function values, and CPU times achieved by various algorithms. Note that the best
values among all comparison algorithms are highlighted in bold font. As can be seen,
the proposed EBBA achieves the best accuracy rate on 7 datasets and achieves the best of
selected feature number on 2 datasets. More intuitively, the proposed EBBA achieves the
best fitness function values on 9 datasets, which means that the proposed EBBA is with the
best performance among all benchmark algorithms. The reason may be that we enhance the
EBBA by improving its exploration ability and balancing its exploration and exploitation
abilities, which make the EBBA more suitable for solving feature selection problems.
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Table 3. Optimization results achieved by various algorithms. (The best values are highlighted
in bold).

Accuracy Feature # Fitness Value CPU Time

Breastcancer

BBA 0.9786 6.0000 0.0272 69.5141
BDA 0.9767 5.8000 0.0289 68.7234

BGWO 0.9767 6.5000 0.0296 75.3848
BPSO 0.9786 6.0000 0.0272 69.2956
EBBA 0.9786 6.0000 0.0272 60.9926

BreastEW

BBA 0.9613 6.6000 0.0405 73.3552
BDA 0.9589 5.1667 0.0424 67.3963

BGWO 0.9532 14.6667 0.0512 79.7631
BPSO 0.9612 8.5000 0.0413 75.4869
EBBA 0.9614 5.4333 0.0400 63.4576

Congress

BBA 0.9793 6.9000 0.0248 58.3419
BDA 0.9743 5.1667 0.0287 55.9260

BGWO 0.9750 8.8000 0.0303 61.5544
BPSO 0.9785 6.7333 0.0255 59.3514
EBBA 0.9793 6.4000 0.0245 49.2745

Exactly

BBA 1.0000 6.0000 0.0046 91.2861
BDA 0.9197 6.6667 0.0846 100.3068

BGWO 0.9040 8.0333 0.1012 116.4705
BPSO 0.9999 6.0333 0.0048 103.6469
EBBA 1.0000 6.0000 0.0046 88.3184

Exactly2

BBA 0.7854 2.2667 0.2142 86.8956
BDA 0.7847 1.7667 0.2145 90.0558

BGWO 0.7693 7.5333 0.2342 117.3080
BPSO 0.7890 1.0667 0.2097 101.6048
EBBA 0.7868 1.9667 0.2126 81.4770

HeartEW

BBA 0.8511 5.0333 0.1513 45.4301
BDA 0.8391 4.9333 0.1631 44.0686

BGWO 0.8357 6.6667 0.1678 45.2137
BPSO 0.8527 5.0000 0.1497 44.8358
EBBA 0.8520 5.0667 0.1504 39.0150

SonarEW

BBA 0.9100 27.3000 0.0937 49.9454
BDA 0.9010 20.5000 0.1015 48.1458

BGWO 0.8989 40.6667 0.1069 55.5145
BPSO 0.9046 27.7333 0.0991 51.0521
EBBA 0.9117 27.0667 0.0919 42.8189

SpectEW

BBA 0.7379 10.5000 0.2643 46.5456
BDA 0.7185 8.9667 0.2827 44.8928

BGWO 0.7219 14.3667 0.2819 47.5410
BPSO 0.7335 10.5000 0.2687 46.3761
EBBA 0.7407 10.7000 0.2615 38.4262

tic-tac-toe

BBA 0.8493 8.8667 0.1590 97.9119
BDA 0.8099 7.1667 0.1962 97.8065

BGWO 0.8465 8.8000 0.1618 91.4816
BPSO 0.8521 9.0000 0.1564 88.2232
EBBA 0.8521 9.0000 0.1564 84.4753

Vote

BBA 0.9519 5.2000 0.0509 46.4947
BDA 0.9457 5.7667 0.0574 45.8363

BGWO 0.9440 8.5333 0.0608 47.9505
BPSO 0.9493 4.9000 0.0532 46.5221
EBBA 0.9513 5.4000 0.0516 38.9119

In addition, Figure 2 shows the convergence rates obtained by different benchmark
algorithms during the solving processes. As can be seen, the proposed EBBA achieves the
best curves on most datasets, which performs the best convergence ability among all the
comparison algorithms.

On the other hand, we also evaluate the effectiveness of the proposed improved factors.
Specifically, we combine the proposed Lévy flight-based global search method, population
diversity boosting method, and chaos-based loudness method with conventional BBA,
namely, EBBA-IF1, EBBA-IF2, and EBBA-IF3, respectively. Table 4 shows the optimization
results of the accuracy rate, number of selected features, fitness function values, and CPU
times achieved by various algorithms. Moreover, Figure 3 shows the convergence rates
obtained by different EBBA versions during the solving processes. As can be seen, the
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EBBA, EBBA-IF1, EBBA-IF2, and EBBA-IF3 outperform conventional BBA, which means
that the proposed improved factors are non-trivial and effective.

Table 4. Optimization results achieved by various EBBA versions. (The best values are highlighted
in bold).

Accuracy Feature # Fitness Value CPU Time

Breastcancer

BBA 0.9786 6.0000 0.0272 69.5141
BBA-IF1 0.9786 6.0000 0.0272 64.4441
BBA-IF2 0.9786 6.0000 0.0272 67.0577
BBA-IF3 0.9786 6.0000 0.0272 60.1375

EBBA 0.9786 6.0000 0.0272 60.9926

BreastEW

BBA 0.9613 6.6000 0.0405 73.3552
BBA-IF1 0.9613 5.2333 0.0400 65.2602
BBA-IF2 0.9614 5.9000 0.0402 68.0782
BBA-IF3 0.9611 5.4000 0.0403 63.0563

EBBA 0.9614 5.4333 0.0400 63.4576

Congress

BBA 0.9793 6.9000 0.0248 58.3419
BBA-IF1 0.9790 6.6667 0.0249 51.4119
BBA-IF2 0.9783 6.2333 0.0253 54.6810
BBA-IF3 0.9791 6.6667 0.0249 50.4441

EBBA 0.9793 6.4000 0.0245 49.2745

Exactly

BBA 1.0000 6.0000 0.0046 91.2861
BBA-IF1 1.0000 6.0000 0.0046 88.5090
BBA-IF2 1.0000 6.0000 0.0046 92.2044
BBA-IF3 1.0000 6.0000 0.0046 88.9417

EBBA 1.0000 6.0000 0.0046 88.3184

Exactly2

BBA 0.7854 2.2667 0.2142 86.8956
BBA-IF1 0.7859 2.0333 0.2136 81.4199
BBA-IF2 0.7848 2.5333 0.2150 87.3399
BBA-IF3 0.7848 2.4333 0.2149 84.0370

EBBA 0.7868 1.9667 0.2126 81.4770

HeartEW

BBA 0.8511 5.0333 0.1513 45.4301
BBA-IF1 0.8516 4.9000 0.1507 39.6087
BBA-IF2 0.8521 5.1000 0.1503 40.7423
BBA-IF3 0.8511 4.8333 0.1511 38.9901

EBBA 0.8520 5.0667 0.1504 39.0150

SonarEW

BBA 0.9100 27.3000 0.0937 49.9454
BBA-IF1 0.9097 27.0333 0.0939 42.1371
BBA-IF2 0.9100 27.3000 0.0937 44.0751
BBA-IF3 0.9105 26.7000 0.0931 41.8531

EBBA 0.9117 27.0667 0.0919 42.8189

SpectEW

BBA 0.7379 10.5000 0.2643 46.5456
BBA-IF1 0.7393 10.2333 0.2628 38.7934
BBA-IF2 0.7393 10.2000 0.2628 40.4760
BBA-IF3 0.7386 10.7000 0.2636 39.2009

EBBA 0.7407 10.7000 0.2615 38.4262

tic-tac-toe

BBA 0.8493 8.8667 0.1590 97.9119
BBA-IF1 0.8493 8.8667 0.1590 86.5623
BBA-IF2 0.8521 9.0000 0.1564 89.9898
BBA-IF3 0.8521 9.0000 0.1564 86.5650

EBBA 0.8521 9.0000 0.1564 84.4753

Vote

BBA 0.9519 5.2000 0.0509 46.4947
BBA-IF1 0.9518 5.3667 0.0511 39.7080
BBA-IF2 0.9516 5.1000 0.0511 41.6823
BBA-IF3 0.9513 5.4333 0.0516 40.1654

EBBA 0.9513 5.4000 0.0516 38.9119
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Figure 2. Convergence rates achieved by various algorithms.
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Figure 3. Convergence rates obtained by different EBBA versions.
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5.3. Performance Evaluation under Different Classifiers

In this section, we consider two other classification algorithms which are decision tree
and random forest. Specifically, the decision tree is easy to understand and visualized,
requires only little data preparation, whereas it may be easy to be overfitting. Likewise,
random forest is also extremely accurate and not prone to overfitting, and can run effectively
on large datasets with good noise immunity. Moreover, due to the complexity of the
classification algorithms, validating the newly introduced two classifiers using all datasets
is a huge and time-consuming task. Thus, we only consider using the dataset SpectEW as
the experimental dataset since it has the middle dimension number of all datasets, which is
representative. In addition, other settings are similar to that of the KNN-based method.

In this case, Tables 5 and 6 provide the simulation results obtained by different al-
gorithms in terms of accuracy, the number of features and fitness function value under
decision tree and random forest, respectively. As can be seen, the proposed EBBA also out-
performs other comparison algorithms under other classification algorithms, which shows
that the improved factors are effective even if the classification algorithm is changed. Thus,
the proposed method has good performance in both maybe overfitting and non-overfitting
cases.

Table 5. Optimization results obtained by different algorithms under decision tree. (The best values
are highlighted in bold).

Algorithms Accuracy The Number of Features Fitness Value

BBA 0.7312 7.9333 0.2683
BDA 0.7211 7.7333 0.2783

BGWO 0.7115 12.4000 0.2886
BPSO 0.7281 9.1667 0.2726
EBBA 0.7325 8.5333 0.2682

Table 6. Optimization results obtained by different algorithms under random forest. (The best values
are highlighted in bold).

Algorithms Accuracy The Number of Features Fitness Value

BBA 0.7247 8.9333 0.2766
BDA 0.7058 5.9333 0.2940

BGWO 0.7035 12.4333 0.2992
BPSO 0.7235 9.0667 0.2779
EBBA 0.7252 9.0667 0.2762

6. Conclusions

In this paper, the feature selection problems which can enhance the classification and
reduce data dimension are studied. First, we model the feature selection problem and then
transfer it as a fitness function. Then, we propose an EBBA for solving the feature selection
problem. In EBBA, we introduce Lévy flight-based global search method, population
diversity boosting method and chaos-based loudness method to improve the BA and make
it more applicable to feature selection problems. Finally, the simulations are conducted
to evaluate the proposed EBBA and the simulation results demonstrate that the proposed
EBBA outmatches other comparison benchmarks. Moreover, the non-trivial of the proposed
improved factors is illustrated. In the future, we intend to use more realistic datasets to
evaluate the proposed EBBA.
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