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Abstract: As a new distributed machine learning (ML) approach, federated learning (FL) shows
great potential to preserve data privacy by enabling distributed data owners to collaboratively
build a global model without sharing their raw data. However, the heterogeneity in terms of data
distribution and hardware configurations make it hard to select participants from the thousands
of nodes. In this paper, we propose a multi-objective node selection approach to improve time-
to-accuracy performance while resisting malicious nodes. We firstly design a deep reinforcement
learning-assisted FL framework. Then, the problem of multi-objective node selection under this
framework is formulated as a Markov decision process (MDP), which aims to reduce the training time
and improve model accuracy simultaneously. Finally, a Deep Q-Network (DQN)-based algorithm
is proposed to efficiently solve the optimal set of participants for each iteration. Simulation results
show that the proposed method not only significantly improves the accuracy and training speed of
FL, but also has stronger robustness to resist malicious nodes.

Keywords: federated learning; node selection; deep reinforcement learning; multi-objective;
model performance

1. Introduction

In recent years, artificial intelligence (AI) applications such as ChatGPT are experienc-
ing surging development, which not only benefits from the advance of machine learning
and deep learning algorithms but also from the accumulation of enormous data and the
support of computing power. However, the traditional AI paradigm has to gather extensive
data at the powerful central cloud for centralized model training. This paradigm faces the
difficulty of safeguarding data privacy and brings high data transmission costs. To thor-
oughly exploit the data without leaking privacy, federated learning (FL) has emerged [1],
which enables clients to collaboratively learn a global model without sharing their raw
data [2,3]. Specifically, the distributed clients train the local model using their own data,
and then upload the local model to the central parameter server for global model aggres-
sion. Then, the aggregated model is returned to each client for the next-round iteration.
In this way, the global model can be learned iteratively in a distributed and privacy-
preserving manner.

Despite the potential to exploit data in a privacy-preserving way and reduce the
communication cost, federated learning still faces technical challenges for wide application.
Most of all, the large number of distributed clients in FL typically involves heterogeneous
data distribution and hardware conditions. How to select the optimal participant set is a
vital issue that will not only affect the training efficiency and model performance of the
federated learning dramatically [4], but will also be able to enhance the preservation of
privacy [5]. However, node selection is still a challenging problem. Firstly, the heterogeneity
of hardware and data makes node selection a complex task [6,7]. Secondly, the process
of node selection normally involves sensitive personal information [8] which can not be
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obtained easily. Moreover, it is difficult to balance multiple objectives in node selection [9];
it is tough to get a selection outcome that has shorter training time, higher model accuracy,
and stronger trustworthiness. Finally, node selection is mostly an NP difficult problem
but it requires high latency. An excellent algorithm needs to provide the optimal selection
result with the shortest time cost, which seems to be a contradiction.

In this paper, we propose a node selection method for federated learning based on
deep reinforcement learning. It considers training quality and efficiency of heterogeneous
devices, and balances multiple objectives to guarantee higher model accuracy and shorter
training delay of federated learning. By leveraging deep reinforcement learning techniques,
our method intelligently selects the most suitable participants based on their capabilities
and contributions, leading to improved model convergence and overall performance in
federated learning scenarios. Simulation results demonstrate that the proposed method
enhances the accuracy and training speed of federated learning while facing different
datasets and malicious nodes. The contributions of this paper are as follows:

• We develop a multi-objective node selection optimization model that takes into ac-
count accuracy, robustness, and latency simultaneously.

• We formulate the multi-objective node selection as a Markov decision process (MDP),
defining the state space, action space, and reward function.

• Based on the multi-objective and deep reinforcement learning, we design a DQN-
based algorithm to solve the node selection problem.

In Section 2, we provide a comprehensive discussion on the related work in the field,
highlighting the existing approaches and their limitations. We then present our proposed
system model in Section 3 and our selection method in Section 4. Finally, in Section 5, we
present the experimental results and analysis, followed by the conclusion and future work
in Section 6.

2. Related Work

The last few years have witnessed rapid developments in distributed machine learning,
especially in the area of federated learning. Federated learning has been widely applied
in various fields such as Internet of Vehicles [10,11] and healthcare [12,13]. Despite its
numerous advantages and successful applications, federated learning still faces several
challenges and limitations, such as insufficient training accuracy and lengthy training
time, as well as security and privacy concerns. These issues severely hinder the further
development of federated learning.

To address these issues, numerous approaches have been proposed, as shown in
Table 1. In [14], the authors proposed a novel Federated Learning by Aerial-Assisted
Protocol (FLAP) that enables higher accuracy for an image classification model. In [15],
the authors design a federated learning model to coordinate x-applications to improve
learning efficiency. In [16], the authors present a federated learning security and privacy
model enabled by blockchain technology to ensure that it can be used normally for the
protection of user data. Among these approaches, optimizing node selection is the most
intuitive solution. A well-designed node selection strategy has the potential to improve
accuracy, accelerate training speed, and enhance privacy protection, thereby mitigating
the limitations of federated learning. Some node selection methods aim to optimize for
accuracy. S. Xin et al. [17] propose a node selection algorithm based on reputation (NSRA)
to improve accuracy. Li et al. [18] propose a federated learning client selection algorithm
based on cluster label information (FedCLS) which realizes efficient federated learning
by optimizing the selection of clients in each round of training. Shen et al. [19] propose a
simple and effective approach named FedShift which adds the shift on the classifier output
during the local training phase to alleviate the negative impact of class imbalance. Their
experiments indicate that FedShift significantly outperforms other approaches regarding
accuracy. Meanwhile, others prioritize fairness; for instance, Travadi et al. [20] propose a
novel incentive mechanism that includes a client selection process to guarantee a fair distri-
bution of rewards. Carey et al. [21] propose Fair Hypernetworks (FHN), a personalized
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federated learning architecture based on hypernetworks that gives clients the freedom to
personalize the fairness metric enforced during local training. Huang et al. [22] propose
E3CS, a stochastic client selection scheme, as a solution that balances the joint consideration
of effective participation and fairness. In addition, there are also some node selection
methods that aim to optimize for training time. Ami et al. [23] present a novel approach for
client selection based on the multi-armed bandit (MAB) algorithm, which minimizes train-
ing latency without compromising the model’s ability to generalize and provide reliable
predictions for new observations. Abyan et al. [24] introduce the first availability-aware
selection strategy called MDA, which aims to improve training time by taking into account
the resources and speed of individual clients. Yin et al. [25] propose a decentralized FL
framework by grouping clients with similar computing and communication performance,
named federated averaging-inspired group-based federated learning (FGFL).The simula-
tion results verify the effectiveness of FGFL for accelerating the convergence of FL with
heterogeneous clients.

Table 1. Comparison of different IoV intrusion detection methods.

Targets Research Work Contribution Limitation

Xin et al. [17] Using NSRA to select nodes with high
reputation prediction value.

Selecting nodes just by the
historical reputation.

Signature-based Li et al. [18] Optimizing the selection of clients through
label information of each cluster.

Obtaining such cluster labels may not
always be feasible or may introduce
additional computational overhead.

Shen et al. [19]
Applying FedShift to alleviate the negative
impact of class imbalance and improve the

accuracy of the model.

The approach’s applicability to other
forms of non-IID data needs to be further

explored.

Travadi et al. [20]
Designing an incentive mechanism to

remove low-quality clients and ensure a
fair reward distribution.

In practice, the cost may not be easily
accessible and the utility can be
determined by multiple factors.

Fairness Carey et al. [21]
Utilizing FHN to make clients to

personalize the fairness metric enforced
during local training freely.

Not all fairness metrics can be formalized.

Huang et al. [22]
Employing E3CS as selection decision
under joint consideration of effective

participation and fairness.

Real-time contributions of individual
clients are not taken into account in the

design of fairness factors.

Ami et al. [23]
Minimize the training latency without

harming the ability of the model to
generalize through MAB-based approach.

Lack of consideration for
client heterogeneity.

Training time Abyan et al. [24] Propose MDA to speed up the
learning process.

The generalization capability of the
strategy across different FL scenarios

should be assessed.

Yin et al. [25] Accelerating the convergence of the FL
model using FGFL.

When the data size is large, the scalability
is not good.

Chen et al. [26]
Applying GAN to address the conflicting

objectives of training time and
energy consumption.

Approach has limited generalization to
diverse scenarios.

Multi-Objective
Tu et al. [27]

Minimize the AMSE of the aggregation
and maximize the long-term energy

efficiency of the system via
DRL-based framework.

Lack of comprehensive
performance evaluation.

Banerjee et al. [28]
Maximize the processing power, memory,

and bandwidth capacity of devices by
Fed-MOODS.

Lack of simulations with a large number
of devices.

Hu et al. [29]
FedMGDA+ is proposed to guarantee
fairness among users and robustness

against malicious attackers.

Absence of privacy guarantees to ensure
the privacy of user data.
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While the previous studies focus on single-objective node selection, recent research
has shifted towards addressing multi-objective node selection. In [26], the authors optimize
a multi-objective problem that contains bandwidth and computing resource allocation to
obtain a trade-off between the training time and energy consumption. In [27], the authors
propose a deep reinforcement learning-based framework to minimize the AMSE of the
over-the-air aggregation for different communication rounds and maximize the long-term
energy efficiency of the system. In [28], the authors propose Fed-MOODS, a Multi-Objective
Optimization-based Device Selection approach that significantly improves the model’s
convergence and performance. In [29], motivated by ensuring fairness and robustness, the
authors formulate federated learning as multi-objective optimization and propose a new
algorithm, FedMGDA+.

Nonetheless, the implementation of these algorithms in the absence of complete
information presents significant challenges, and their efficacy may not always align with
the stringent performance requirements of practical applications.

3. System Model

To improve the model training rate of IoT devices and reduce the communication
cost of model aggregation in federated learning (FL), a deep reinforcement learning (DRL)-
assisted FL framework is proposed, which leverages existing artificial intelligence (AI)
techniques. The DRL algorithm is well-suited for solving high-dimensional decision prob-
lems, which makes it ideal for selecting high-quality local IoT device models for aggregation
based on their decision-making capabilities [30]. In [31], the authors leverage the Deep
Deterministic Policy Gradient (DDPG) to find the optimal solution for node selection in
the asynchronous federated learning. In [32,33], the authors propose a node selection algo-
rithm based on Distributed Proximal Policy Optimization (DPPO) to solve the optimization
problem. These methods have limitations in exploring non-deterministic policies and
ensuring stability in discrete action spaces. In this paper, we propose a DRL-assisted FL
algorithm for federated learning devices that balances data privacy and efficiency. We use
MNIST and CIFAR-10 datasets to represent the data generated by industrial IoT, leveraging
the data features of federated learning devices. Unlike traditional FL distributed training
architectures, we improve the model aggregation module by incorporating DRL-based
node selection, which enables us to select devices with strong computational power and
high training quality for model aggregation before weight aggregation, thereby improving
the FL performance. The system architecture we propose is depicted in Figure 1.

Figure 1. DRL-based FL architecture.
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3.1. Network Model

The network consists of end devices and servers. The servers have powerful comput-
ing and communication resources and are used for federated learning by connecting to
several end devices. The set of terminals is denoted by N, and Hd = {xd, yd} represents the
dataset of terminals d participating in federated learning. For learning tasks i ∈ I such as
path selection and image recognition, the goal is to learn a model M related to the task from
the dataset Hd = {xd, yd} of terminals. In this paper, the attribute set of FL task i is defined
as Zi =

{
Ni, Ci, M0

i
}

, where Ni represents the set of terminals related to task i, Ci denotes
the number of CPU cycles required to compute the data for FL task i, and M0

i denotes the
initial model for FL task i.

The specific system parameters are established and presented in Table 2.

Table 2. System parameters.

Parameters Meaning

Hd The dataset of terminal d participating in federal learning
Ri Total dataset related to FL task i
|Hd| The size of the dataset for terminal d participating in FL tasks
|Ri| The size of the total dataset for this federal learning task
Zi Collection of attributes for FL task i
Ci The number of CPU cycles required for calculating a set of data in dataset
M0

i Initial model of FL task i
li
d Loss function of device d when performing local training of FL task i

ωn
d The model parameters of device d at the nth training session

η Learning rate d of device when performing local training of FL task i
Ai Sum of loss functions for the FL task i test dataset
Tlocal

d The local computation time of FL task i
Ttrans

d The transmission time of FL task i
fd The CPU cycle frequency of device d in executing FL task i
rd The transfer rate of task i in FL between the device and the server
G The number of CPU cycles required per data for device in the FL task i
st

i The environmental state at time t
Ht−1

i The dataset of terminal at the previous time step
at

i The action space at time t
βi,d Whether device d is selected to participate in FL task i
Ti The max delay of clients participating in this iteration
π A policy is a mapping from a state space to an action space
αt Discount factor

3.2. Workflow for Federated Learning Training

The core objective of FL is to enable efficient model training among multiple terminals,
while ensuring the security and privacy of data communication. After training the model
using the local data, the terminals need to upload the local model to the central server for
aggregation aggregating the global model. The steps are as follows:

(1) Participants are selected for this training round. For a federated learning task i ∈ I,
the dataset collection within that task is denoted by ∑

d∈N
Hd.

(2) The selected end devices are trained using local data in a local training process,
and the locally trained model is obtained by minimizing the loss function of the local
training. The loss function li

d(xd, yd; ωd) of end device d during the local training process
for federated learning task i is defined as the distinction between its predicted and actual
values on sample dataset Hd. Therefore, the loss function of federated learning task i on all
datasets can be defined as Li(ω) = 1

|Ri | ∑
d∈N

li
d(xd, yd; ωd), where ω denotes the weight of
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the current model to be trained and |Hi| denotes the size of the total dataset for the task,
also |Ri| = ∑

d∈N
|Hd|.

(3) The devices involved in the training process upload their locally generated models
to the server, which aggregates them to produce a global model.

(4) After aggregating the local models, the central server redistributes the resulting
global model to the end devices, which then update their own model parameters and
initiate the subsequent round of local training. The objective of federated learning (FL) is
to optimize the global model parameters, denoted as ω = arg min Li(ω), by minimizing
the loss function Li(ω) associated with the task. In this paper, we adopt the stochastic
gradient descent (SGD) method for updating the parameters of the FL model, where one
randomly selected data point {xd, yd} from the dataset is used for each update. This
approach significantly reduces the computational effort required for training, but due to
the stochastic nature of the method, the local models need to be trained with a sufficient
volume of data to ensure model quality. The update of the model parameters is denoted by
ωn

d = ωn−1
d − η∇l

(
ωn−1

d

)
, with η representing the learning rate and n ∈ Z representing

the number of training iterations conducted during the parameter update process.
(5) Repeat the steps described in Steps 2 and 3. Upon completion of sufficient lo-

cal training by the end devices, the central server aggregates the locally trained mod-
els to obtain the global model. This specific weight aggregation process is denoted by

ω′g = ωg + ∑
d∈N

|Hd |(ω′d−ωd)
|Ri |

, where |Hd| illustrates the size of the dataset of the terminal d

participating in the FL task, |Hi| represents the total size of the dataset used in this federated
learning task, and the set of end devices is denoted by N.

3.3. Problem Formulation for Node Selection

The selection of nodes is influenced by multiple factors. Firstly, the differential com-
puting and communication capabilities of end devices have a direct impact on local training
and data transmission latency. Secondly, the datasets carried on the end devices vary in size,
and the data may not satisfy the independent homogeneous distribution property, which
can cause variations in the training quality of local models. The purpose of incorporating
DRL into FL is to intelligently leverage the collaboration between end devices and servers
to exchange learning parameters, thereby improving the training of local models.

Therefore, in this paper, we propose a model that achieves optimal accuracy through
node selection.

Accuracy: For an FL task i ∈ I, the training quality is determined by the test accuracy
of the aggregated global model on the test dataset. In this paper, the test accuracy is
represented by the sum of the loss functions computed on the test dataset.

Ai = Li(xtest, ytest; ωg
)

(1)

Time delay: Let there be n clients, and after node selection, we obtain client N′ = {1, 2, . . . , d}
corresponding to FL task i ∈ I. We assume that the time required to broadcast the global
model, update the local model, and upload the local model is Ti, denoted by

Ti ≥ max
{

Tlocal
d + Ttrans

d

}
, where i ∈ I, d ∈ N′ (2)

We assume that each client has an independent CPU cycle frequency denoted by fd
and a wireless bandwidth denoted by rd. The selected client and the corresponding training
data require the local model to be updated in parallel, and each iteration requires |Hd|G
CPU cycles, where G is the number of CPU cycles required per data. Therefore, the required
local computation time is denoted by:

Tlocal
d =

|Hd|G
fd

, where d ∈ N′ (3)
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The additional time required for the global model update (also known as transmission
time) can be denoted as:

Ttrans
d =

D
rd

, where d ∈ N′ (4)

where D represents the size of the global model.
We assume that the time required for global model transfer and local model training

depends on the local model training latency and the local model upload latency, denoted as:

Ti ≥ max
{
|Hd|G

fd
+

D
rd

}
, where i ∈ I, d ∈ N′ (5)

For an FL task i ∈ I, the node selection problem aims to choose a set of nodes Zi ∈ Z
at each iteration to optimize the training accuracy, i.e., the total loss function is minimized,
while ensuring that the training and transmission latency remain within a certain range.

4. FL Node Selection Algorithm Based on DQN

In complex and variable edge networks, node selection policies need to adapt to
changes in environmental state information. The DRL-based node selection framework
introduced in this paper consists of three components: the environment, the agent, and the
reward. It enables the agent to interact with the environment to learn an effective node
selection policy that maximizes the reward. Figure 2 illustrates the architecture of our
proposed DRL-based node selection framework.

Figure 2. DRL-based node selection framework.

The environment comprises network states, devices, and target model information.
The agent interacts with the environment, selects actions based on its policy distribution
from a given state, and receives rewards [34,35]. The actions, rewards, and environment
states obtained by the agent are used to update the Q-network and the Target Q-network.

We propose a DQN-based approach for client selection in FL. Initially, clients send infor-
mation about their resources to the server. The server then selects a specific N

′
= {1, 2, · · · d}

to estimate the transmission delay in the next global model training process. The FL client
selection problem based on DRL can be formulated as an MDP model [36]. Subsequently, a
DQN-based node selection algorithm is designed to solve this problem as follows.
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4.1. MDP Model
4.1.1. State Space

The state space will be denoted by a federated learning resource information, de-
fined as:

S =
I

∏
i=1

st
i (6)

where Π represents the Cartesian product, and st
i represents the environmental state at

time t.
st

i can be represented by a quadruple st
i =

{
f t
i , rt

i , Ht−1
i , at−1

i

}
, where f t

i denotes

the independent CPU cycle frequency of each client, rt
i denotes the wireless bandwidth

available to the terminal for the federated learning task i at time t, Ht−1
i denotes the dataset

of the terminal at the previous time step, and at−1
i denotes the node selection scheme used

in the previous moment.

4.1.2. Action Space

The action space is composed of a set of selection strategies for federated learning
tasks i, and it can be denoted by:

A =
I

∏
i=1

at
i (7)

At each action selection step, the agent is allowed to employ only one node selection scheme.
If the value is equal to 1, it indicates that the device with the corresponding ID is selected
in this node selection. Conversely, if the value is equal to 0, then the device is not selected.
The action space can be represented as follows:

at
i =

{
βi,1, βi,2, βi,3, ..., βi,d

}
, βi,d ∈ {0, 1} (8)

4.1.3. Reward Function

The server selects end devices with sufficient resources, such as CPU cycle frequency,
to participate in the model update until the desired accuracy is achieved. The server selects
the optimal end devices via the reward function to make the best decision.

When an agent takes a one-step action based on a node selection policy, the environ-
mental information changes and a reward value is obtained to evaluate the action. In this
paper, we propose a reward function based on federated learning’s test accuracy, while
considering a maximum time delay constraint during action selection.

R(s, a) = −αl
Ti

Tmax
i
− 1

∑
d∈N′

βi,d
Li
(

xtest, ytest ; ωi
g

)
(9)

The maximum latency Ti of the clients participating in the iteration (2).
The execution action source described above is a policy π, which is a mapping from

the state space to the action space, resulting in the selection of appropriate actions for
different states, i.e.,

at
i = π

(
st

i
)

(10)

The goal of the MDP model is to obtain an optimal policy that maximizes the expected
cumulative reward of reinforcement learning when taking appropriate actions based on
the corresponding states, i.e.,

π∗ = arg max E

[
∞

∑
t=0

αtrt
i

]
(11)

where αt is the discount factor, whose value decreases with time.
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The discount factor plays a crucial role in deep reinforcement learning by weighting
the importance of future rewards. It determines to what extent the agent discounts future
rewards when making a decision. The value of the discount factor typically decreases over
time, since future rewards are uncertain and risky, and the agent’s prediction of future
rewards becomes increasingly unreliable over time. Furthermore, more distant future
rewards generally have higher uncertainty than more immediate rewards, since they are
influenced by more factors. Therefore, decreasing the value of the discount factor can
help reduce the effect of distant rewards and focus more on current rewards, making deep
reinforcement learning more robust and reliable.

4.2. DQN-Based Algorithm for FL Node Selection

To identify the best course of action, standard Q-Learning is commonly used.
Q-Learning constructs a constantly updated Q-value table with action states, and

then looks up the Q-value table to get the best decision for Q(st
i , αt

i) [37]. The edge server
updates the Q-values based on the empirical replay as follows:

Q′
(

st+1
i , at+1

i

)
= (1− η)Q

(
st

i , at
i
)
+ η

[
R
(
st

i , at
i
)
+ αt max

d′i∈A
Q
(
st

i , at
i
)]

(12)

where η denotes the learning rate and αt denotes the discount rate.
Following an update to the Q(st

i , αt
i), the server can utilize it to carry out its operations.

Using any given state st
i , the serve can select the optimal decision π∗ by choosing the action

with the highest cumulative reward αt
i [38]. However, the Q-table can be resource-intensive,

and the search time for the optimal policy within the table can be prolonged. To address
this, we propose the use of the DQN which employs a single neural network (NN) for
optimal decision-making, thereby reducing the storage requirements for the Q-value table
and accelerating the search process.

Convolutional neural networks (CNNs) serve as a function approximation for Q-Tables
in high-dimensional and continuous state. However, in function optimization problems, the
conventional approach of supervised learning involves first determining the loss function,
followed by finding the gradient and updating the parameters using techniques such as
stochastic gradient descent. In contrast, the DQN algorithm is built on Q-Learning to
determine the loss function. Here, we define the loss function as follows:

L(θ) = E
[(

Target Q−Q
(
st

i , at
i ; θ
))2
]

(13)

where θ is the network parameter. The definition of Target Q is :

Target Q = R
(
st

i , at
i
)
+ αt max

d′i
Q
(

st′
i , at′

i ; θ
)

(14)

The DQN algorithm utilizes the Experience Replay mechanism to store learned data
in a cache pool, which is then randomly sampled for subsequent training.

When new nodes join the federated learning, we add a new list to store the new nodes.
Each training session preferentially selects a node from this list, and deletes the new node
from the new list after its selection. When a new node is added, the new node executes
a startup script to add itself to the new list. Node failure in this experiment is defined as
failure to return training results after training. After each training session, faulty nodes are
judged and processed offline, that is, the nodes are removed from the Q-Table.

Upon conducting an in-depth analysis of the DQN, we present a DQN-inspired
federated learning (FL) node selection algorithm. This approach consists of two main
phases: multi-threaded interactions and global network updates.

(1) Multi-threaded interactions

Step 1 Each worker thread is assigned a replica of the environment and a local copy
of the DQN network. In the context of FL tasks, the environment emulates
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the behavior and performance of client devices, while the network serves to
implement policies within the local environment.

Step 2 Each worker thread independently interacts with a replica of its environment
to gather empirical data including states, actions, rewards, and new states.
This information is used to train the DQN network. Threads can interact
concurrently with their assigned environments, thereby speeding up the
data collection process.

Step 3 The experience data collected by individual threads is stored in a shared
experience replay buffer. This buffer can be used to randomly sample
batch data.

(2) Global Network Updates

Step 1 Upon completing a predetermined number of iterations, the parameters of
the global DQN network are synchronized with the local network of each
thread, ensuring consistency and updated information across all instances.

Step 2 The global DQN network is trained by sampling a random batch of data
from the shared experience replay buffer. The training process is executed
concurrently, distributing the computational load across multiple threads
for increased efficiency.

Step 3 Every specified number of steps (circle), update the target network with the
parameters of the global DQN network to ensure consistency and continued
learning progress.

Step 4 Iterate through steps 1 to 3 until the model converges.

After the global network model converges, the agent utilizes the trained model to
determine suitable actions according to different environmental states. It then selects
an optimal set of nodes to participate in the aggregation process of federated learning.
Algorithm 1 provides a detailed outline of this procedure.

The computational complexity of the DQN-based node selection algorithm is primarily
determined by the size of the DQN network, the number of episodes and sub-episodes,
and the complexity of the reward calculation and Q-value calculation steps.

Algorithm 1: DQN-based node selection algorithm
Input: FL Task Information Q network initial state
Output: Node selection scheme
Initialize network, edge device and task information, along with system state and
experience replay buffers.

for episode ∈ {1, · · · , EP} do
for sub_episode ∈ {1, · · · EPs} do

Each agent executes node selection action αi,t according to global DQN
policy αi,t = π(st)

Each agent calculates the reward ri and the next state St+1 according to
expression (8) and stores the result as a new tuple

Update current network and device status information
end
Each agent uploads the collected data to the global network service in
synchronization

Calculate the Q-estimate of the current state and the maximum Q-estimate of
the next state

Calculate the target Q value according to expression (14)
Update network parameters using mean square error (MSE) loss function

end
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5. Simulation Analysis
5.1. Experimental Settings

In this study, we simulate and validate the algorithm using Python 3.7 and TensorFlow
2.2.0 environments. Our experiments emulate a distributed FL training scenario with
various categories of devices. The setup consists of an aggregation server and 10–80 devices.

To demonstrate the robustness of the proposed approach, malicious nodes are intro-
duced in the experiments to simulate devices with subpar training quality. During server
aggregation, the parameters of a node can be modified to random values, simulating the
presence of a malicious node in local training [39]. We initially select the MNIST dataset
for training. The dataset is uniformly partitioned and allocated to the nodes as the local
dataset. In addition, the CIFAR dataset and the Fashion Mnist are used in this study to
validate the efficacy of the proposed algorithm.

In our simulation, the client device’s CPU cycle frequency fd adheres to a uniform
distribution U[0, 1] while the wireless bandwidth r follows a uniform distribution U[0, 2],
αi = 2 [40] This setup allows for a diverse range of computational and communication
capabilities among the devices.

A convolutional neural network (CNN) serves as the FL training model, featuring
a structure that consists of six convolutional layers, three pooling layers, and one fully
connected layer. The DQN algorithm uses four threads to interact with the environment
and collect empirical data. The reward discount factor is set to 0.9, and the learning rate
of the Q network (value network) is configured at 0.0001. The target network is updated
with the parameters of the Q network after every 100 rounds of agent training. In addition,
the buffer size for experience replay is set to 10,000. The settings of specific experimental
parameters are shown in Table 3.

Table 3. Simulation parameter setting.

Parameter Type Parameter Parameter Description Parameter Value

Equipment and model parameters

E Number of terminals 100
fd CPU cycle frequency [0, 1]
rd Wireless Bandwidth [0, 2]
Hd Local datasets 600
ζ Local Iteration 2
N Minimum sample size 10
α Learning Rate 0.01
Node Number of nodes involved [10, 80]
fbt Number of CPU cycles required for 7000

training per data bit
|Ri| Global Model Size 20 Mbit

DQN parament

A Agents 4
s Training steps 1000
Target Q Q Network 0.0001
αt Bonus Discount Factor 0.9
circle Strategy Update Steps 100
Er Experience replay buffer 10,000
B Batch-size 64

In this study, we compare the proposed algorithm (FL-DQN) with three alternative
approaches:

(1) FL-Random: This algorithm does not utilize deep reinforcement learning for node
selection during each iteration of FL training. Instead, it selects nodes at random.

(2) FL-Greedy: The algorithm selects all participating nodes for model aggregation in
each iteration of the FL training.
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(3) Local Training: This approach does not incorporate any FL mechanism, and the model
is solely trained on individual local devices [36].

These comparisons help to assess the relative effectiveness and efficiency of the FL-
DQN algorithm.

5.2. Analysis of Results

The experiments evaluate four algorithms, including accuracy, loss function, and time
delay. In the experiment, the accuracy of the MNIST dataset is calculated as the ratio of
correctly classified samples to the total number of samples, considering it is a classification
problem. This metric allows for a comprehensive comparison of the performance of
the algorithms.

We divide the experiment into three groups to present the comparison of accuracy,
loss function, and delay under different conditions.

Figure 3 presents the accuracy of four algorithms under different conditions of chang-
ing the number of iterations, the number of nodes, and the proportion of malicious nodes.
Figure 3a illustrates the accuracy variation of the four algorithms when 20% of the nodes
are malicious. From Figure 3a, it is evident that the accuracy of the models obtained
through the four mechanisms is low during the early stages of training, suggesting that
sufficient training iterations are necessary to ensure model accuracy. Upon reaching eight
iterations, the accuracy of the models trained by FL-DQN, FL-Random, and FL-Greedy
mechanisms tends to stabilize. When the number of iterations reaches 25, the accuracies of
FL-DQN, FL-Random, FL-Greedy, and Local Training stabilize around 0.98, 0.96, 0.96, and
0.95, respectively. The FL-DQN algorithm maintains strong training performance when
faced with a limited number of malicious nodes and varying data quality.
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Figure 3. Accuracy experimental group.

Figure 3b displays the accuracy variation of the four algorithms when 40% of the device
nodes are malicious. As observed in Figure 3b, FL-DQN rapidly converges to the highest
accuracy (0.98) when confronted with a large number of malicious nodes. In contrast,
the model quality obtained by FL-Random decreases due to the influence of malicious
nodes and stabilizes around 0.95, which is comparable to the training performance of Local
Training. For the FL-Greedy algorithm, the accuracy decreases to 0.93. The FL mechanism
proposed in this study successfully balances data quality and device training, effectively
ensuring optimal model quality.
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Figure 3c presents the model accuracy achieved by the four algorithms for different
numbers of nodes. The FL-DQN algorithm achieves the highest accuracy when dealing
with various node quantities. For example, when 40 nodes are considered, the accuracy of
the four algorithms is 0.967, 0.938, 0.932, and 0.754, respectively. The accuracy of FL-DQN
algorithm improves by 3.0% and 22.0% compared to FL-DQN and Local Training, respec-
tively. The results also demonstrate that the proposed method exhibits strong scalability in
terms of node size, maintaining peak performance as the number of nodes increases.

Figure 3d presents the accuracy of the models obtained by the four algorithms for a
fixed number of training rounds (30 rounds) and different percentages of malicious nodes
(ranging from 10% to 80%). We observe that FL-DQN can efficiently filter out high-quality
nodes for model aggregation when dealing with different proportions of malicious nodes,
in contrast to FL-Random, FL-Greedy and Local Training. This filtering process ensures
the quality of the overall model, leading to the highest accuracy and smallest loss function
values in FL-DQN. As a result, it can be concluded that the proposed method exhibits
excellent robustness.

Figure 4 presents the loss functions of four algorithms under different conditions of
changing the number of iterations, the number of nodes, and the proportion of malicious
nodes. Figure 4a presents the variation of the loss functions for the four algorithms when
20% of the nodes are malicious. The FL-DQN algorithm converges faster than the remaining
four algorithms and exhibits the lowest value for the loss function. This also highlights the
advantages of the FL-DQN approach in terms of convergence and loss reduction.
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Figure 4. Loss function experimental group.

Figure 4b shows the variation of the loss functions of the four algorithms when 40%
of the malicious nodes are present. Similar to the convergence in accuracy, the FL-DQN
algorithm converges faster and has the smallest loss function value than the remaining
three algorithms, while FL-Random, FL-Greedy, and Local Training always have higher
loss function values due to the presence of malicious nodes. Comparing the above four
sets of simulation results, it can be seen that FL-DQN always converges quickly to the
highest accuracy with different numbers of malicious nodes and has the lowest loss function
compared to FL-Random, FL-Greedy and Local Training. At the same time, for FL-DQN
algorithm, the accuracy rate of 0.98 is maintained for both 20% and 40% of malicious nodes.
Therefore, it can be concluded that the proposed method in this paper is remarkably robust.

Figure 4c presents the loss function achieved by the four algorithms for different
numbers of nodes. The FL-DQN algorithm achieves the highest accuracy when dealing
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with multiple numbers of nodes. The difference between FL-Random and FL-Greedy loss
functions is not significant. Figure 4d shows the loss function values of the four algorithms
obtained at the end of training under the same conditions. Compared to FL-Random,
FL-Greedy, and Local Training, FL-DQN can handle different proportions of malicious
nodes to guarantee the quality of the whole model and thus obtain the minimum of the
loss function.

Figure 5 presents the latency of four algorithms under different conditions of changing
the number of iterations, the number of nodes, and the proportion of malicious nodes.
Figure 5a shows the changes in latency of four algorithms with 20% malicious nodes.
Figure 5b shows the changes in latency of four algorithms with 40%malicious nodes.
Compared to the remaining three algorithms, the FL-DQN algorithm is able to complete
the training task faster and has the smallest variation in the time used per round.

As shown in Figure 5c, the FL-DQN algorithm can guarantee low latency in dealing
with various numbers of nodes, as it can effectively select high-quality training devices
for model aggregation. Taking the number of nodes as 40, the latency values for the four
algorithms are 11.3 s, 13.8 s, 17.4 s, and 16.4 s, respectively. The FL-DQN algorithm reduces
the latency by 18%, 35%, and 31% compared to FL-Random, FL-Greedy, and Local Training,
respectively. These results indicate that the proposed algorithm can efficiently complete
FL training.

Figure 5d presents the latency changes of four algorithms with fixed training rounds
(30 rounds) and different percentages of malicious nodes (from 10% to 80%). From Figure 5d,
it can be observed that even when facing a large number of malicious nodes, the FL-DQN
algorithm can still complete the training task relatively quickly.
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Figure 5. Latency experimental group.

The following section compares and validates four algorithms using the CIFAR dataset.
Figure 6 illustrates the accuracy variations of the four algorithms with 20% malicious device
nodes. (CIFAR) The CIFAR dataset requires significantly more training iterations than the
MNIST dataset. When the number of iterations reaches 60, the accuracy of the models
trained by the four algorithms stabilizes. The accuracies of FL-DQN, FL-Random, FL-
Greedy, and Local Training stabilize at 0.80, 0.71, 0.68, and 0.58, respectively. The FL-DQN
algorithm demonstrated good training performance in handling malicious nodes and
differential data quality.
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Figure 6. Accuracy comparison of CIFAR dataset.

Figure 7 illustrates the accuracy variations of the four algorithms with 20% malicious
device nodes. (Fashion MNIST) The FL-DQN algorithm continued to demonstrate excellent
training performance with higher accuracy compared to other algorithms.
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Figure 7. Accuracy comparison of Fashion MNIST dataset.

Figure 8 displays the loss function variations of the four algorithms with 20% mali-
cious device nodes. (CIFAR) Figure 9 presents the loss functions of four algorithms with
20% malicious device nodes. (Fashion MNIST) The FL-DQN algorithm achieves faster
convergence and has the smallest loss function value. These results demonstrate that the
FL-DQN algorithm outperforms the FL-DQN and Local Training algorithms in terms of
loss function convergence.
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Figure 8. Comparison of loss functions for CIFAR dataset.
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Figure 9. Comparison of loss functions for Fashion MNIST dataset.

6. Conclusions

In this paper, we propose a novel multi-objective node selection approach that lever-
ages deep reinforcement learning. Our proposed approach can efficiently solve MOP and
provides an efficient solution for FL node selection. First, we construct a model that fully
takes into account device training delay, model transmission delay, and accuracy rate to
optimize node selection. Then, we formulate the problem as an MDP model and design a
node selection algorithm based on the DQN algorithm to select a reasonable set of devices
for model aggregation before each training iteration. Finally, the simulation results demon-
strate that the proposed approach significantly improves the accuracy and training speed
of federated learning while maintaining good resistance to malicious nodes. However, it
is important to note that further research is needed to address the limitations related to
optimizing the aggregation process while considering communication overhead. In future
work, we plan to explore the application of our algorithm in real-world scenarios, where
factors such as network conditions, device heterogeneity, and varying data distributions
may pose additional challenges. In addition, we aim to enhance our node selection strategy
by considering factors such as node reputation and reliability. By incorporating these
additional factors, we can further optimize the node selection process and improve the
overall performance of federated learning.
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