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Abstract: The Mobile Cognitive Radio Network (MCRN) are an alternative to spectrum scarcity.
However, like any network, it comes with security issues to analyze. One of the attacks to analyze is
the Primary User Emulation (PUE) attack, which leads the system to give the attacker the service
as a legitimate user and use the Primary Users’ (PUs) spectrum resources. This problem has been
addressed from perspectives like arrival time, position detection, cooperative scenarios, and artificial
intelligence techniques (AI). Nevertheless, it has been studied with one PUE attack at once. This
paper implements a countermeasure that can be applied when several attacks simultaneously exist in
a cooperative network. A deep neural network (DNN) is used with other techniques to determine
the PUE’s existence and communicate it with other devices in the cooperative MCRN. An algorithm
to detect and share detection information is applied, and the results show that the system can
detect multiple PUE attacks with coordination between the secondary users (SUs). Scenarios are
implemented on software-defined radio (SDR) with a cognitive protocol to protect the PU. The
probability of detection (PD) is measured for some signal-to-noise ratio (SNR) values in the presence
of one PUE or more in the network, which shows high detection values above 90% for an SNR of
-7dB. A database is also created with the attackers” data and shared with all the SUs.

Keywords: cognitive radio network; spectrum management; primary user attack; network security

1. Introduction

Emerging telecommunication technologies have become a crucial part of our daily
lives, whether for work, study, or entertainment. Nevertheless, there is an increasing need
for more bandwidth, especially in wireless networks. Cognitive radio networks (CRNs)
are an alternative to increase performance and use the frequency spectrum, whereas the
primary user (PU) does not use the spectrum at specific frequencies and times. A secondary
user (SU) uses the resources while there is no PU in the CRN, increasing the spectrum usage
and helping with the spectrum scarcity problem. By enabling dynamic spectrum access,
cognitive radios significantly enhance spectrum utilization and improve the performance
of wireless networks [1].

A CRN operates on the principle of spectrum sensing, where cognitive devices con-
tinuously monitor the spectrum to detect unused frequencies, and there is a vulnerability
that attackers can use because decisions are based on that sensing. The CRN is vulnerable
to some attacks, mainly because there is an SU in the system, and they can be malicious
users. The CRN is also susceptible to traditional attacks. Nevertheless, new attacks can
affect functions like spectrum sensing, mobility, management, or sharing, the main aspects
of the CRN, causing network malfunctions, affecting PU and SUs, and decreasing spectrum
availability. The malicious users obtain access to a frequency and can use it to communicate
or influence the network [2].

One attack affecting the CRN is the Primary User Emulation attack. An adversary
intentionally mimics the signal of a PU, misleading SUs into believing that a licensed user is
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occupying the frequency band. This forces the SU to release the channel, even when it is not
an authorized user. The PUE can lead to inefficient spectrum utilization, as secondary users
are unnecessarily displaced from frequencies that could otherwise be used. The disruption
caused by PUE results in degraded quality of service (QoS) and connectivity issues for
PU [3].

Multiple SUs sense the PU spectrum in a cooperative spectrum-sensing (CSS) network
to counter PUE attacks. This increases the sensing capabilities and coverage and can work
with a centralized or decentralized architecture. In the first one, the local sensing data
or PU presence decisions are sent to a fusion center (FC), which makes a global decision
of PUE presence based on the data. It is more effective for the CSS than a single SU for
sensing, and it has been used against selfish PUE attacks, but the malicious user can attack
with different strategies. The first method used to analyze the users was to measure the
energy. Nevertheless, with time, attackers learn to change power parameters, making it
difficult to recognize an attack with an energy detector [4].

Research into counteracting PUE attacks includes strategies like advanced spectrum-
sensing algorithms in a single or cooperative environment, authentication protocols, and
intrusion detection systems. These countermeasures aim to enhance the reliability of
spectrum sensing, ensure the integrity of primary user identification, and minimize the
impact of malicious interference. Evaluating the effectiveness of these strategies in different
network environments and attack scenarios is a critical aspect of advancing the security
of cognitive radio networks. Various PUEA prevention strategies are suggested for a PU
working as a TV transmitter, mobile FM microphones, and methods like Fenton Approx-
imation, Fingerprint Verification, or applying artificial intelligence (Al) techniques like
ANN [5].

Although some techniques to detect PUE have been implemented, obtaining different
detection performances, the literature does not include papers that work with multiple
PUE attacks in a single environment and which are implemented on radio devices. This
paper proposes an Al technique for detecting multiple PUE attacks in a cooperative CSS
MCRN with SDR devices such as a PU, SU, and MU.

The previous work is shown in Section 2 of this paper; the methodology is explained
in Section 3; the experiments are defined in Section 4; Section 5 analyzes the results; and
Section 6 presents the discussion and conclusions.

2. Previous Work

A CRN represents a transformative advancement in wireless communication tech-
nology; it can work with mobile technology and IoT systems. These networks leverage
cognitive radio technology, allowing the devices to change their operating parameters
based on the surrounding radio environment measures; devices continuously sense the
spectrum frequencies, making them vulnerable to some attacks. Even if there are spectrum
holes or white spaces, the SU needs to check the spectrum to prevent the PU affectation; if
there is a free space, it can use it for its purposes, taking advantage of dynamic spectrum
management. However, intruders can use Denial of Service (DoS) attacks and interfere
with a PU’s communication services differently [6].

The PUE attacks are a type of DoS when an SU mimics the PU signal characteristics
with two main objectives: selfish or malicious. Selfish is when it takes the spectrum for
communications and malicious is when it gains spectrum resources to interrupt other SU
or PU communications, acting like a jammer. The interference is so high that even the
PU cannot use the spectrum even if they are paying for the license. The key to the attack
being effective is to imitate the PU signal; depending on the service, it can be possible to
delay discovering if there is a genuine PU or a PUE attack. The first attacks in the literature
tended to increase the power, but attacks have changed this parameter to confuse the
spectrum-sensing process [7].

Previous research into detecting PUE attacks in CRN has focused on distinguishing
between legitimate PU and malicious users (MUs). The PU can be mobile, sensors, or
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IoT devices depending on the services. The emulators have been designed to capture the
parameters or patterns of the signal and reproduce these later to gain access to the spectrum,
with this being unauthorized access to the resources. In MCRN, network base stations are
distributed and include critical user data of power, distance, or frequency. By capturing
this information, the emulator creates a copy of it. To detect it, a series of techniques have
been designed for the simplest to the most complex systems. Al techniques like K-Nearest
Neighbors (KNN) and Artificial Neural Networks (ANNSs) are used to classify the users
and determine the PUE attack. They depend on a database with user information and try
to classify the attack by comparing the data. The channel is released if a PUE is detected,
and other PUs or SUs can use it [8].

A PUE attack can also be addressed by disconnecting the MU from the base station
with a classification process. The KNN classifier has been employed to identify the MU
using data rate, distance from the base station, power received, and frequency, and the
results are similar to those of an ANN trained with the same data. To increase security,
Elliptic Curve Cryptography (ECC) is proposed for data encryption, showing high accuracy
in detecting the PUE. In MCRN, base stations work with mobile subscribers or a PU to
optimize the use of radio resources and manage frequency bands. PUEA detection and
classification are performed at the base station, which maintains historical data about
connected users. Various classifiers can be combined with a single-user energy detector.
The KNN classifier is then used to analyze the behavior of the parameters, and network
security is enhanced through ECC encryption [8].

For some PUE attackers, countermeasures using deep learning techniques have been
developed, knowing that some information is needed for the training part of the algorithms.
The authors use deep learning with the Extreme Value Theory (EVT) technique, which
increases the detection of PUE attacks without previous information needed in the training
part. This helps to discover the legitimate PU and recognize the MU in the network. It
works in two parts: the first one needs to extract the features of the known PU, and the
other analyzes the unknown user’s features. There is a dependence on EVT and Weibull
distributions to make the decisions, and it needs to know the PU parameters for the
classification process [9].

Another way to address a PUEA is to explore intruder classification and focus on its
impact on the CRN system. It uses a two-level auxiliary database that, as an input, has
the energy consumption and verifies the device’s location. It uses a method to reserve
some channels for handover. Another intrusion detection uses the real PU locations and
the received power. This traditional technique is based on a fixed PU position but does not
work with a mobile user. It analyzes the signal parameters, calculates the energy based
on the power, and locates the user with the help of a sensor network, indicating the need
for some additional nodes to calculate it. Then, it decides whether a PUE is present in the
network. It needs the precise position of the PU to operate adequately, and it does not
work with an MCRN. Based on this, a practical machine-learning-based intrusion detection
approach is used with some additional nodes using a comparison based on accuracy and
precision and showing a high performance compared to previous techniques [10].

Two strategies have been used for spectrum sensing in the presence of PUE attacks:
local sensing and the CSS. Local sensing can use match filter, energy, features, eigenvalue,
or wavelet detection, while the CSS is based on centralized, distributed, or relay-assisted
cooperation. The centralized base station or fusion center is used to communicate with all
the SUs through a common control channel and share global decisions with all the SUs,
decreasing the impact of the hidden node; this solution is used with the MCRN. In the
distributed, it only communicates with another node to help in the decision, and the relay
assistant uses a cognitive user to sense the channel and use an independent channel to
communicate, helping in the decision of the PUE presence [7].

Previous work has highlighted that the requirement for feature extraction in traditional
machine learning techniques can limit the full potential of raw data. Then, a framework
with one-dimensional deep learning is used to identify PUE attacks. It uses a CR envi-
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ronment with a PU node, an SU node, and a PUE attacker. This allows for spectrum
exploitation if there is a frequency space with the PUE. By implementing a one-dimensional
CNN (1D-CNN), there is no need for explicit feature extraction. It enhances detection
performance for PUE and jamming attacks (JAs), eliminating the dependence on feature
extraction for PUE detection. The performance is evaluated by analyzing the ROC curves of
the false alarm probability, and the results are better than those of the feature characteristics
selection technique [6].

Recurrent Neural Networks (RNNs) have been used to detect PUE attacks when signal
activity patterns can be recognized or associated with PU signal behavior, and it depends on
past states. It leverages the temporal dependencies in time series data to increase prediction
accuracy and identify suspicious activities. To address the gradient vanishing problem
associated with RNNs, an advanced RNN variant incorporating Long Short-Term Memory
(LSTM) units was introduced. This improves the analysis and processing of large datasets
and significantly increases the performance of PUE attack detectors [11].

Another approach has focused on improving the security of the cognitive sensing
part process using a hybrid Genetic Artificial Bee Colony (GABC) algorithm. This is
useful for detecting PUE and shows a promising increase in detection performance. It
combines Genetic Algorithm (GA) operators with the Artificial Bee Colony (ABC) algorithm,
refining the detection process and increasing the likelihood of accurate attack identification.
It balances exploration and exploitation, seeking an optimal solution and optimizing
spectrum sensing [12].

In mobile networks, the challenge of managing connections among numerous CR-
enabled 5G massive machine-type communications (mMTC) devices was studied. The PUE
attack was highlighted as a critical threat undermining network performance in extensive
CR-based 5G Internet of Things (5G-IoT) frameworks. This attack results in significant
bandwidth wastage and substantial interference with primary user (PU) transmissions.
A novel detection methodology with two key components was introduced to address
this. First, secondary users (SUs) determine and share the transmitter’s location with
other authorized SUs. This localization is achieved by evaluating received signal strength
(RSS) and integrating the spatial coordinates of neighboring receivers. Second, during the
sensing phase, each SU collects and archives signal energy vectors in a database. When
a new node is detected, its energy vector is matched against the stored vectors to discern
potential malicious entities. Adversarial detection hinges on the degree of similarity
between the newly acquired energy vector and those in the database. This approach
effectively mitigates the missed detection rate of PU, thereby alleviating interference with
PU communications [13].

Finally, with a single PUE attack, an approach includes a countermeasure strategy
that leverages the entropy of signal data, DNN, and CSS to detect the attacks effectively. It
creates a blacklist feature within the FC to save the MU data systematically. The proposed
system is simulated and tested using an SDR testbed, demonstrating an improved method
with the ability to detect PUE attacks. Furthermore, it facilitates the recording of attack-
related data for future analysis and ensures the sharing of these data among all SUs within
the network [14].

Although various techniques exist to detect PUE attacks, even with Al, only a few pa-
pers have implemented algorithms in MCRN devices for a single PUE attack. Nevertheless,
in a natural environment, multiple PUE attacks on the network need to be studied, espe-
cially in a CSS scenario where a common control channel is required to share information
and make a global decision about the presence of PUE.

3. DNN Detection of Multiple PUE Attacks

A PUE attack occurs when an attacker pretends to be a legitimate PU of a spectrum
band in a cognitive radio network. The attack’s goal is to deceive SUs into believing that
a PU is active, which can result in SUs vacating the channel unnecessarily. This manipula-
tion can lead to inefficient spectrum utilization and may enable attackers to monopolize
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the channel for their use. Interfering with all devices and not sending data can be mali-
cious PUE and selfish PUE if the attacker wants the channel for its own communications
purposes [13].

As can be seen in Figure 1, a Primary Base Station (PBS) communicates with the PUs,
and the cognitive base station (CBS) communicates with the SUs when a PU frequency is
not used. If a PU appears, the system must release the channel. The PUE attack mimics the
PU information and behavior, and the CBS and SUs recognize it as an authentic PU and
release the channel.

PBS
USRP N210

@ "
. =~ A ™~ ‘?gp.enBTS

PU

PUE
RTL2832U
Spectrum ((( )))
Analyser é
% USRP
OpenBTS 2922

GNURADIO

NP

usrp
N210
% RTL2832U
OpenBTS ™" Spectrum
GNURADIO Analyser

Figure 1. PUE attack scenario (source: own).

The proposed methodology for detecting multiple PUE attacks uses a DNN to decide
the PUE’s presence in the network based on the communication with the SUs. It starts with
an energy detector, allowing the network to detect a PU/ "PUE and release the channel to
protect users. It automatically starts an authentication process that, in combination with the
energy detector, allows the system to classify if there is a PU or a PUE. This information is
calculated on each SU and shared with the FC that takes the global decision that is shared
along with the PUE data to all the SUs as a blacklist. In the presence of multiple malicious
PUE attacks in the environment, the algorithm continues working on each SU, continuously
transmitting the detection signal and data to the FC.

In the MCRN, each PUE attack can be seen as a base station that can manage malicious
users (MUs). An MU can be identified as a PUE attack using the Downlink (DL) channel
and not the Uplink (UL) channel. This information, combined with the authentication
process information, allows the system to detect and share a single PUE attack. Each MU
continuously senses the spectrum to select the frequency of the attack. In this case, it is
looking for an empty channel, but it can even transmit signals if there is an SU in the
network. In this paper, we analyze a case where each PUE attack is individual, and there
are no shared data between them. This makes it difficult to detect it with simple methods.

In this model, each SU has algorithms to detect the energy and authenticate the PUE
at each frequency on the range. When it sends data to the FC, the process can start again,
looking for a new frequency or detecting probable PUE attacks. Then, the data of each PUE
attack are saved in the blacklist that is shared with all the SUs. Next time, if a PU/PUE
signal is detected, the data are compared with the blacklist, and if it is a known attacker,
the process is fast, and communication can continue forcing the MU to release the channel.
The model can be seen in Figure 2.
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Figure 2. Model for multiple PUE attack detection.

In this solution, each SU must continuously monitor the spectrum to perform energy
detection, which involves analyzing signal power levels and defined thresholds. It also
needs to communicate its findings to the FC, which can add additional communication
overhead. However, in this case, the data transmitted if it is not an attack are just a binary
decision. In contrast, if the attacker is identified, its identification data are transmitted once,
and some bytes of data are sent.

The computational complexity is medium in the learning process, which needs the
DNN to estimate the model parameters, while it is low in the running process because the
algorithms are trained and the calculations are lower.

In the following subsections, the detectors will be explained in detail.

3.1. Cooperative Energy Detection

The Centralized Control of FC simplifies decision-making and coordination. Central-
ized data collection can enhance the accuracy of detection algorithms, such as those using
DNN. Nevertheless, some issues need to be addressed. High traffic to the FC can slow
down response times and add delays, especially under heavy attack scenarios.

In Decentralized Control, each SU operates independently, maintaining network func-
tionality even if some nodes fail, and does not need a central system. However, ensuring
that SUs effectively share detection information can be more complex without a central
authority, and maintaining up-to-date knowledge of PUE attacks across a decentralized
network may require robust protocols. In this case, a centralized control is implemented to
keep a database of the attackers.

The energy detection system aims to identify a threshold that enables an MCRN to
differentiate a PU from a PUE. However, as the users move, the energy detector alone
cannot determine if there is a PU or a PUE.

In this model, the energy detector identifies a possible PU/PUE signal. It releases the
channel and initiates the detection process. If there is a PU, it is permanently released while
it is transmitting, but if the system recognizes a PUE, it can continue using the channel.

The energy detector is shown in Equation (1) [15].

n(t) su
) = {i(t) «s(t) +n(t) PU/PUE M

where 7 is the noise, i represents the impulse, and s is the received signal. Then, a binary
hypothesis is used as described in Equation (2).

F(n) — {S(n“(n) HO @
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where a is the noise channel, n is the sample index, and s is the signal. In the energy
calculation, N is the number of samples of the energy [16].

2(5) = 7 1 IFOn)| @)

Compared to a threshold A, the value of Z decides the PU/PUE signal presence. The
probabilities of false alarm (Pf;) and detection (P;) for a CSS are given by [17]:

Py = P{T(X) > A/H1}
K
Qi=1-TI(1—Py;)

i=1

Py, = P{T(X) > A/HO}
K

Qfa=1—T1 (1= Pps)

i=1

(5)

The energy detected is then sent to the FC, and the frequency is released while the
whole process is carried out.

3.2. Authentication Detection

In this process, any PUE in an MCRN works as a base station, meaning an MU can
authenticate on it, but an SU cannot. A PUE attack occurs when a PUE acts like an actual
primary base station (PBS), copying the data from it. An SU in the MCRN, when a signal
from a PU/PUE is detected, releases the channel and tries to connect to the possible
PU/PUE. As a result, the PUE attack cannot authenticate the user, confirming that there is
a PUE on the network. All SU authentication results and data captured in this process are
transmitted to the FC.

The additional data shared by any PBS or PUE are mobile country code (MCC), mobile
network code (MNC), short name, location area code (LAC), and cell identification (CID).
These data are recorded in the blacklist to quickly identify the attacker the next time it
attempts to gain access to the MCRN frequencies.

Even though there is no direct connection with the operator’s databases, this authen-
tication process detects the data from the PU and PUE attackers and can record these as
a reference.

For example, the short ID is shared with all the users in a mobile network. It can be
seen in Figure 3 on a phone, but it can also be an SU.

<{ NETWORK OPERATORS

Search networks

Select automatically

Claro
Movistar

TIGO 4G

Figure 3. Example of global information shared by a base station.
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3.3. DNN for Detection

DNNs have become a powerful tool for addressing complex pattern recognition tasks
in various domains. In the realm of CRN, DNNSs offer promising solutions for enhancing
spectrum-sensing capabilities, particularly in the detection and classification of PUE. These
consist of neurons connected in several layers; the neuron is connected to another in the
subsequent layer. The core components of a DNN architecture include the following:

Input layer: This layer accepts the input feature vectors derived from spectrum-sensing
data. Features may include signal strength, frequency patterns, and temporal information.
The input layers for the model are energy and the authentication detection results.

Hidden layers: Each layer comprises dense layers, including neurons activated by
functions such as Rectified Linear Units (ReLUs). A ReLU is commonly used to train
models and efficiently decrease the vanishing gradient. Some neurons are deactivated
during the training process to minimize overfitting. It is defined as follows:

ReLU(x) = max(x) (6)

This means that a ReLU allows only positive values to pass through, effectively
“rectifying” the input. Although it looks linear for positive inputs, the function introduces
non-linearity into the model, enabling it to learn complex patterns [18].

Output layer: it uses a softmax activation function for classification, allowing the
system to separate the input data into categories for different purposes, like the user
type [19].

Softmax is a mathematical function commonly used in machine learning, particularly
in classification problems involving multiple classes. It converts a vector of raw scores
(logits) into probabilities that sum to 1, making it suitable for interpreting a model’s output
as probabilities for each class. It is often used in the final layer of a neural network model
for classification tasks. It converts raw output scores into probabilities by taking the
exponential of each output and normalizing these values by dividing by the sum of all the
exponentials. This process ensures the output values are in the range (0, 1) and sum up to
1, making them interpretable as probabilities [18].

The input to the softmax function is a vector of K elements, where z without an arrow
represents an element of the vector:

4)
Z=20,71...,7x )
Formally, the standard (unit) softmax function is as follows:
eti

n
y el

j=1

(8)

softmax(xi) =

where x defines an output.

These elements are shown in Figure 4 [20].

As with other neural networks, two main steps are required: practical training with
extensive and diverse datasets. The data should represent the problem domain and include
various scenarios to ensure robustness; the second step is validating the network by
testing it.

In the first part, data preprocessing involves normalization, augmentation, and split-
ting into training, validation, and test sets. It starts by randomly initializing each neuron’s
weight matrices and bias vectors; it is essential to initialize the parameters to values between
Oand 1.

In forward propagation within a neural network, let denote the label of a particular
layer. The term Z! is the pre-activation vector for layer L and represents the weighted sum
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of the input values X plus the bias terms b associated with each neuron, and w is the weight
matrix that quantifies the influence of each input on this summation [21].

zb =wt x4 bt )

Input Layer

Hidden Layer
Figure 4. Deep artificial neural network [20].

Function a is the activation input to Z to obtain the response X, which is the activation
vector after applying the activation function ¢ to ZF. Common activation functions include
the ReLU and the sigmoid function.

Xt =o(zh) (10)

The error functions show how close the predicted outputs are to the desired outputs
by calculating the cost function. This function can be used for regression problems or
classification [22]. The error is calculated as in Equation (8).

Error = X — X! = C(ab(Z%)) (11)

The error function quantifies how well the model’s predictions match the target values.
The goal during training is to minimize this error, allowing the model to learn and improve
its predictions.

For this model, the cross-entropy loss is used.

K
Loss = — ) yi+log(1;) (12)
i1

Here, y; is the true value, 7; is the predicted value, and K is the number of classes.

Backpropagation enables the network to adjust its parameters to minimize the loss
function. This optimization process involves calculating gradients and updating weights
and biases accordingly. It aims to develop a solution that enhances the network’s gener-
alization ability, thereby improving prediction accuracy on new data. This is reflected in
the error observed in the final layer [23]. Backpropagation computes gradients of the loss
function concerning each weight and bias using the chain rule.

oC oat
L
= ——=— 1
g dal ozL (13)
The backpropagation is implemented in Equation (10).
L-1
sl = Lt 98 (14)

ozL-1
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And the derivatives are shown in Equation (11).

oC

_ sL-1
i1 =90 (15)
ajgl = ot 1l 2 (16)

The weights WL and biases b gradients are computed by backpropagating the errors
from the output layer through the network to the preceding layers. This process involves
calculating the gradients and then updating the weights and biases using optimization
techniques such as gradient descent. These updates are designed to minimize the loss
function iteratively. Following these adjustments, the network’s performance is evaluated
using test data to assess its effectiveness. If the performance does not meet expectations,
hyperparameters are modified, reiterating the process [23].

DNNs provide robust solutions for spectrum sensing in CRNs, with careful attention
to data preprocessing, network training, and iterative optimization required to achieve
optimal performance.

4. Experiments

An MCRN testbed environment is implemented on SDR devices to evaluate the
detection technique for mitigating multiple PUE attacks. The experiment uses the following
hardware and software components:

Hardware:

SDR Platforms: USRP N210, NI USRP 2922, and RTL2832 for signal transmission and
reception of a PU, SU, and PUE attacker.

Computing resources: a Linux-based workstation with an Intel Core i5 multi-core
processor and 16 GB of RAM was used with a Gigabit ethernet connection for signal
processing and analysis.

Software:

GNU Radio 3.10.11.0 (https:/ /www.gnuradio.org/): used for creating the MCRN
environment, the attacks, and the detection system [24].

MATLAB/Simulink 9.14 (https:/ /www.mathworks.com/products/matlab.html): uti-
lized for additional signal analysis and visualization.

Custom scripts: Python and GNU Radio Companion scripts were developed to auto-
mate the testing and data collection processes.

4.1. Experimental Environment

The experiment is carried out in a controlled indoor environment to minimize external
interference. The setup included:

PU: a mobile phone.
SU: Implemented using SDR platforms to receive and analyze signals. Multiple SUs
were used to simulate an MCRN environment.

e PUE attacker: a dedicated SDR platform was configured to perform multiple PUE
attacks by sending false PU signals.

The experiment focused on evaluating the detection technique under various
attack scenarios:

e  Single PUE attack: one attacker simulates a single PU signal.
e  Multiple PUE attacks: multiple attackers (four) simultaneously simulate PU signals at
different frequencies and strengths.

4.2. Detection Technique

Energy Detection
Energy detection is the initial method for detecting PUE attacks and releasing the
channel for the possible PU/PUE. The following steps outline the energy detection process:


https://www.gnuradio.org/
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Signal collection: SDR receivers collect signals over a specified bandwidth.

Energy measurement: the received signal’s energy is measured using the energy
detection algorithm, which involves computing the signal’s power in a given time window.

Threshold comparison: the measured energy is compared against a threshold to
determine if a PU signal is present or an attack is occurring.

A PU is moved in the environment to define the threshold, and the energy data are
saved for the DNN's learning process.

All users are in a grid of 10 x 10 m. The FC is located in the center of the grid, and the
3 SUs are at the corners of the downside and in the center. The PU is randomly distributed
in the environment, as are the PUE attacks.

For the DNN’s learning process, a PU is moved for all the parts of the grid, and the
energy is calculated. These data calculate the threshold to recognize a device transmitting
at some frequency in UL and DL. Figure 5 shows an example of the user’s distribution on
the grid.

O — SU
— FC
== PUE Attack
O - PU
O O

Figure 5. Example of the user’s position in the environment (source: own).

Authentication Detection

In the learning process, for authentication detection, the SU attempts to connect to the
PU’s base stations and obtain accurate data on the stations in the zone. A database with
these data is generated and shared with the FC and all the SUs in the zone.

Then, in the detection, when a possible PU is detected for some of the SUs, the SU
tries to connect with it. If it is a PU, the data are compared with the database, saved, and
shared with the FC. If the SU authentication process is invalid, it is marked as a PUE and
shared with the FC.

After the detections are achieved, the DNN algorithm takes data from all the SUs.
Based on the energy and authentication results, the PUE attack presence in the network
is estimated.

The whole process is achieved when one PUE attack and four PUE attackers are in the
network, and the results are compared.

5. Results

In the learning process, 100 samples are taken at each grid point for the energy results.
A PU device is moved around the grid, and signals are taken in a 10 x 10 grid, obtaining
10,000 samples for the threshold calculation in all the coverage. The parameters of the
experiments are shown in Table 1.
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Table 1. Parameters for energy detection learning.

Parameter Value
Number of Samples 10,000 samples
Averaged Values 100 samples (10 x 10)
Noise Signal AWGN
Service Phone Call-PUEA
Frequency 876.8 MHz
Confidence Level 95%
Margin of Error 5%

Users

3SUs, 1 FC,1/4 PUE

5.1. Energy Results

For example, Figure 6 shows the energy calculation for the DL signal in 876.8 MHz,
one of the frequencies in the selected range (876-880 MHz). The energy values are averaged,
and if they are above the threshold, there is a signal of a PU/PUE, and the data are sent to
the FC.
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Figure 6. Example of energy detection (source: own).

This process is achieved for the DL and UL frequencies, and the results are sent to the
DNN algorithm. In the learning process, the algorithm obtains the threshold. After this, in
the detection process, when the system detects a suspicious signal, energy is measured in
DL and UL and sent to the DNN algorithm.

The SU achieves a site survey for authentication detection, which puts the operators’
information in the coverage zone. THE MCC, MCN, and short name are saved and shared
in the base station database. When the detection system starts, the SU tries to connect to
the suspicious device and compare it with the database. The device is identified as a PU if
the authentication process is successful. Nevertheless, it is a PUE if the information does
not correspond to the database or the authentication process fails. After the authentication
detection, the data are saved on the blacklist and shared with the FC. The parameters for
the authentication process are shown in Table 2.

The detection results are calculated and sent to the DNN system so that the final deci-
sion on each SU can be made. For the learning process, 1000 authentication samples were
made in different grid positions. In the detection process, each SU makes one authentication
process. The detection is valid for 923 samples, obtaining a PD of 92%.
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Table 2. Parameters for authentication.

Parameter Value
Number of Samples 1000
Noise Signal AWGN
Service Phone Call-PUEA
Frequency 876.8 MHz
Confidence Level 95%
Margin of Error 5%
Authentication Time 20s
Users 3SUs,1FC,1/4 PUE

The USRP is connected to a PC with Ubuntu and OpenBTS. The system’s base is
GNURadio, and the algorithms are programmed in Python. The base system can be seen in
Figure 7.

Figure 7. SDR test bed platform.

For moving the SDR, we implement a system that moves just the antenna with the
help of a quadcopter, which does not affect the users’ received signals, as seen in Figure 8.

For moving the SDR, we implement a system that moves only the antenna and not
the SDR with the help of a quadcopter, which does not affect the users’ received signals, as
seen in Figure 8.

Reliance on energy detection and local databases for authenticating SUs can lead
to false positives. Obstacles and fading can affect the detected signal strength of PUs.
In the model, energy detection detects PUs or SUs and releases the channel, protecting
the PUs. In contrast, the detection is complemented by an authentication process to
distinguish legitimate from malicious SUs, obtaining detailed user information. The PU
will always connect to the PBS and will not have connection problems; the SU can be
affected temporarily while the PUE attack is confirmed or denied.

Creating and sharing a database with attacker data can enhance the network’s ability
to recognize patterns associated with PUE attacks. This could be particularly useful in
distinguishing between known threats and legitimate behavior.

Figure 9 shows the receiver operating characteristics (ROC) results for different SNR
values with the parameters of Table 1. These curves serve as a parameter to study the
performance of the sensing scheme.

We measure the power signal in each point of the grid in case of the presence and
absence of the PU or PUE. According to [25], the IEEE 802.22 standard recommends PFA
<0.1 for spectrum sensing. Analyzing the simulation results, we expect an 88% detection for
this PFA. The PU power level was measured to find an optimal threshold for the experiment,



Future Internet 2024, 16, 456

14 of 22

and 10,000 samples were taken in the lowest part of the grid close to MCRN. With these
samples, the confidence level is 95%, and the margin of error is 5%.

Figure 8. Mobile SDR device.
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Figure 9. Probability of detection vs. probability of false alarm results for AWGN channel
(source: own).

This study delineates the hypothesis-testing framework for downlink and uplink
signals. Downlink communication aims to distinguish the desired signal from noise by
applying a defined threshold. Conversely, in uplink scenarios, the absence of a signal indi-
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cates an unauthorized user. In contrast, the presence of a signal is attributed to a legitimate
primary user, contingent upon prior validation of a downlink signal.

Specifically, in the downlink context, a signal may be detected by either a legitimate
primary user or a user attempting to mimic primary user behavior. In uplink communica-
tion, a detected signal unequivocally indicates a primary user, whereas its absence signifies
the presence of an emulating user. Consequently, the overall probability of detecting
a malicious user is determined by the product of the detection probabilities associated with
both downlink and uplink transmissions. The Figure 10 shows the results of Montecarlo
simulations in a CSS scheme for 1, 3, and 10 SUs with an SNR = —12 dB expressed as
ROC curves.
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Figure 10. Probability of detection vs. probability of false alarm for CSS for SNR = —10 dB
(source: own).

As expected from the literature, the CSS has better results than individual detection.
Increasing the number of SUs transmitting the detector results to the FC also increases the
PD for the assigned PFA = 0.01.

The results of the downlink power measurement can be seen in Figure 11, where the
spectrum measurement without power and with power is shown.

2] Top Block -] Top Block

aTs Options oS ptions
Pesk Hold Peak Hold

£.0000020000 Units o 10000000009 Units Averag

PRX PRX

33.29480743¢41 da 19.9185791018 4B

——

FFT Plot EFT Plot

of

-10

Bl

Power (dBm)
| I

a )
= i
Trace s | Store ‘

. \ -#‘M"ﬁ I"W\,‘ ‘il‘ll‘\m‘}p" ‘ Axts Options n A
Y \ﬁ L LI e I B i
Pl MM, |52 | " Wy | =

86 562 me4 mSs ses 8T g7z &4 &S
Frequency (MHz)

Trace A store

Power (dBr

aj: f I’%}“’LB .t‘H o perstence
i} i ’ i ‘\ wﬂw

Uy, |2

A8/Div

g62 864 Bes 568 8T a2 &m4  87Is
Frequency (MHz)

Figure 11. Downlink signal without and with active signal (source: own).
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The results of the uplink power measurement can be seen in Figure 12, where the
spectrum measurement without power and with power in the uplink channel is shown.
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Figure 12. Uplink signal without and with active signal (source: own).

The results show that by selecting a practical threshold for downlink at —50 dBm, the
percentage of malicious PUE detection with fixed location is 92% (9188/10,000) with one
PUE. When there are four PUEs, the detection is (8720/10,000).

5.2. Application Data Results

We identified data from telecommunication operators in Colombia by analyzing site
survey measurements and experimental configuration settings about PUs and PUEs. The
relevant information includes mobile country code (MCC) 732 and mobile network codes
(MNCs): 101 for Claro, 102 for Movistar, 111 for Tigo, 142 for UNE, and 154 for Virgin.

Subsequently, the application transmits key information—such as the network’s short
name, MCC, and MNC—to the central base station (CBS). The CBS then cross-references
these data with verified operator information to determine whether the signal is associated
with a legitimate primary user or an emulator. Additionally, the SUs undergo authentication
within the network. The results are also transmitted to the FC for final decision-making.

In scenarios where the system encounters a short name associated with an alternative
operator, the sensors will attempt to connect and gather information concurrently with
the actions executed by the motion detection algorithm. During the experiments, the
default identifier for the primary user emulator (PUEA) is set to “01-001” or referred to
as the “range network,” depending on the Software Defined Radio (SDR) in use. When
an emulator attempts to mimic a legitimate primary user, it may present itself similarly to
a genuine operator (e.g., Operator_).

The testing process starts with a PUE designed to simulate a PU. However, if the
system detects an invalid short name or authentication fails, the device is subsequently
classified as a PUE, as illustrated in Figure 13.

If the PUE mimics the operator’s real short name, the algorithm detects a duplicate
name and tries to authenticate both to correctly identify the PU and the PUE. The results
are saved as binary (0—authentication OK; 1—no authentication).

Each SU performs one authentication process in the detection process. The detection
is valid for (905/10,000), obtaining a PD of 90% for the authentication process for one PUE.
For four PUEs, there is a PD of (862/1000), 86%.
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Figure 13. Available networks with PUE screen in the mobile phone (source: own).

5.3. DNN Results

The DNN system takes the data from the two detection processes, energy, and authen-
tication; some libraries, such as Sci-kit and Keras, were used. The results are obtained when
a PUE and four simultaneous PUE attacks occur. The SNR is estimated with each measure
as additional data for the results. With this experimental dataset, the DNN is calculated,
and on each SU, it takes the final decision of the PUE attack detection and is sent to the FC
for final decision.

The DNN network architecture has the parameters defined in Table 3.

Table 3. DNN parameters for PUE detection.

Parameter Value
Hidden Layers 2
Neurons 32
Activation Function ReLU and Softmax
Epochs 50
Bath Size 32
Total Parameters 642

SNR levels range from —25 dB to 0 dB. The algorithm achieves a detection probability
and accuracy of 90% at —9 dB SNR. The confusion matrix of the trained algorithm uses
10,000 samples, as seen in Figure 14.

We experiment with some epoch values to obtain precision and optimize the model,
as seen in Figure 15.

According to this experiment, 50 epochs are required to obtain good precision results,
but with more, it shows higher precision results but involves more calculations.

The number of neurons was initially 16, but we increased it to 32, keeping good preci-
sion results and balancing the computational complexity of the model. Using 64 neurons
increases the precision results of the model by 2%.

The prediction probability increases using the DNN; individual energy and authenti-
cation models maintain an 86%, while more than 95% are obtained with the DNN model.
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Figure 14. Confusion matrix -10 dB (source: author).
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Figure 15. DNN results depend on the epoch size (source: own).

The DNN code is implemented with Keras in Python; part of the code can be seen in
Figure 16.

model = Sequential()
model.add(Dense(32, input_dim=1, activation="relu'))
model.add(Dense(2, activation="softmax'))

model.compile(loss="sparse_categorical crossentropy', optimizer='adam', metrics=["'accuracy'])

model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_test, y test))
loss, accuracy = model.evaluate(X_test, y test)
print('Loss: {:.4f}, Accuracy: {:.4f}'.format(loss, accuracy))

Figure 16. DNN code in Keras and Python (source: own).

An OR logic mechanism estimates the PUE attack in the FC; if any SU identifies a PUE,
an alert is broadcast from the FC to alert all SUs within the network.

The probability of detecting a PUE attack is calculated as the number of correct PUE
detections to the total instances in which a PUE is present. Experiments are carried out with
one and four PUE attacks active on an SDR simultaneously at different work frequency
ranges. The samples are taken from each dB in increments of —25 dB to 0 dB, with the
results illustrated in Figure 17. The receiver operation curves (ROC) for the probability of
detection for a CSS energy detector based on [26] are compared with the DNN experimental
results for a single and four PUE attacks.
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Figure 17. Probability of detection of a PUE attack (source: own).

The results show that the SDR experiment achieves a probability of detection above
90% in -9 dB when there is a single PUE attack and —7 dB with multiple PUE attacks. The
PFA for DNN results is 5% for a single PUE attack and 10% for a multiple PUE attack. The
results are compared with those of existing work with techniques like KNN and SVM [27]
for —7 dB of SNR. Table 4 shows the probability of detection for one or multiple PUE
attacks and the measured false alarm rate.

Table 4. DNN PUE detection comparison with other techniques.

Detection Probability =~ Detection Probability

Technique One PUE Four PUEs False Alarm Rate
DNN 95% 90% 10%—Multiple PUEs
SVM 98% 0% 5%—Single PUE
KNN 97% 0% 5%—Single PUE

The SVM and KNN show the highest detection values, but they work only with a
single PUE attack; other detectors for multiple PUEs do not work correctly, but the DNN
works with 90% of detection. The computational complexity is similar in the three cases;
it is medium [28]. In the DNN model, the measured false positive rate is close to 10%
(1042/10,000 samples), while the false negative is close to 5% (514/10,000 samples).

The Table 5 describes the techniques’ results individually and the DNN's.

Table 5. Energy, authentication, and DNN PUE detection comparison.

Detection Probability =~ Detection Probability

Technique One PUE Four PUE False Alarm Rate
(9188/10,000) (8720/10,000) o .
Energy 929% 87% 5%—Single PUE
- (905/1000) (862/1000) o .
Authentication 90% 86% 5%—Single PUE
DNN 95% 90% 10%—Multiple PUEs

The individual energy detection shows a PD of 92% for one PUE and 87% for four PUE
attacks. The authentication process obtains a PD of 90% with one PUE and 86% for multiple
(four) PUE attacks. The DNN model uses the detection results of the two techniques. After
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the learning process, the PD results increased to 95% with one PUE and 90% with the four
PUE attacks, showing an increment of 5% for authentication and 3% for energy with one
PUE attack and 4% in authentication for multiple PUEs.

The false alarm rate is 13% for energy detection and 14% for authentication detection
with multiple PUEs. For DNN, it decreases to 10% with multiple PUE attacks.

The DNN creates a new interaction between the input variables, allowing for higher
detection results with multiple PUE attacks while keeping lower values for false alarm
results. The time for calculation after the learning process is lower than that of the other
techniques, allowing for an average detection time of 5 s, faster than the 20 s that the
authentication process needs in a cooperative environment.

6. Discussion

The CSS single energy detector working with an authenticator detector can detect
a PUE attack with a probability of detection above 90% for an SNR of —10 dB in simulations.
In the SDR experiments with the DNN, this value is achieved in —9 dB, very close to
simulations, and works with a mobile PUEA and PU. In the presence of four PUE attackers
in the environment, the SU starts releasing frequencies and detecting the possible PUE,
obtaining a 90% detection in —7 dB. The effects of multiple PUEs are an increasing value
of SNR, and the time detection increases by 2.36 s, the average time the DNN algorithm
takes to detect the attack. The DNN algorithm works faster with the energy detector to
release the channel and detect the malicious PUE attackers; authentication detection takes
an average time of 20 s, obtains 90% of detection, and is also used to save the data from the
attacker and update the database from PU and PUE attackers. The DNN algorithm detects
multiple PUE attackers even if they are simultaneous in 5 s, but it releases the channel in
200 ms.

The cognitive protocol implemented in this project is a CSS with an FC that keeps all
the network data; it has been probed with users in movement in the MCRN in a controlled
environment. To adapt it to a real-world scenario, continuous monitoring of the spectrum
environment and user mobility is needed to adjust parameters like frequency allocation
and power control dynamically. Given the potential for various interference sources, the
protocol must be designed to maintain robustness. Adaptive modulation, error correc-
tion, and interference mitigation strategies can help sustain communication quality under
diverse conditions.

As part of future work, the protocol should be tested in scenarios that simulate large-
scale deployments with increasing user density. This includes implementing resource
management strategies that can efficiently handle the demands of multiple users while
minimizing conflicts and optimizing spectrum usage. Implementing cooperative strategies
among SUs can enhance detection and response to PUE attacks. A distributed learning
approach, where devices share information about detected attacks, can improve system
awareness and responsiveness.

Integrating deep neural networks (DNNSs) can help detect PUE attacks and predict
network conditions. Establishing feedback loops where SUs can report their experiences
with interference and PUE attacks will create a learning environment that continuously
improves the protocol’s performance. This approach enhances the protocol’s robust-
ness and adaptability and supports the collaborative nature of Mobile Cognitive Radio
Networks (MCRNs).

As the SUs increase, the FC may struggle to process incoming data efficiently. In
future work, a hybrid solution that combines centralized and decentralized elements will
be explored to leverage the strengths of both architectures.

Using the DNN improves the prediction rates, decreases the false alarm rates, and
speeds up the detection process in the presence of multiple or single PUE attacks. It
can process several amounts of data in the learning process and extract the features or
patterns of the inputs, simplifying the modeling process and adapting to one or multiple
PUE attacks.
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7. Conclusions

Using the energy detection and authentication processes provides a framework for
distinguishing between legitimate PUs and malicious PUE attacks. The energy detection
mechanism identifies potential PU/PUE signals by comparing the received signal’s energy
against a predefined threshold. This is followed by an authentication process that helps to
verify whether the detected signal is from a legitimate PU or an impersonating PUE. The
combined use of these methods allows for a high probability of accurate PUE detection, as
demonstrated by experimental results.

The implemented DNN for PUE detection increases the system’s ability to classify
and detect multiple PUE attacks. The DNN was trained with features derived from both
energy detection and authentication results. Experimental results showed that the DNN
achieved a detection accuracy of 90% at an SNR of -9 dB. The DNN's capability to process
and analyze large datasets improves the system’s adaptability to multiple and moving
network users and attackers.

The proposed methodology was tested in a controlled SDR-based environment, vali-
dating its performance in real-world settings. The experiments involved single and multiple
PUE attacks, with the DNN achieving a detection probability of over 90%, even in challeng-
ing conditions. The results demonstrated that the detection system can effectively identify
and manage multiple simultaneous PUE attacks, maintaining high performance across
different SNR conditions.
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