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Abstract: In the last decade, digital twin (DT) technology has received considerable attention across
various domains, such as manufacturing, smart healthcare, and smart cities. The digital twin repre-
sents a digital representation of a physical entity, object, system, or process. Although it is relatively
new in the agricultural domain, it has gained increasing attention recently. Recent reviews of DTs
show that this technology has the potential to revolutionise agriculture management and activities. It
can also provide numerous benefits to all agricultural stakeholders, including farmers, agronomists,
researchers, and others, in terms of making decisions on various agricultural processes. In smart crop
farming, DTs help simulate various farming tasks like irrigation, fertilisation, nutrient management,
and pest control, as well as access real-time data and guide farmers through ‘what-if’ scenarios. By
utilising the latest technologies, such as cloud–fog–edge computing, multi-agent systems, and the
semantic web, farmers can access real-time data and analytics. This enables them to make accurate
decisions about optimising their processes and improving efficiency. This paper presents a proposed
architectural framework for DTs, exploring various potential application scenarios that integrate
this architecture. It also analyses the benefits and challenges of implementing this technology in
agricultural environments. Additionally, we investigate how cloud–fog–edge computing contributes
to developing decentralised, real-time systems essential for effective management and monitoring
in agriculture.

Keywords: digital twin; crop farming; smart agriculture; cloud–fog–edge computing; multi-agent
systems

1. Introduction

Agriculture, the primary source of the majority of the globe’s food, is one of civili-
sation’s most challenging issues. To match the growing population’s demand for food,
advancements in agricultural production need to be sustainable; with increasing envi-
ronmental variability due to climate change and the unsustainable dependency on agro-
chemicals, this is an increasingly difficult task. Technology advancement and increasing
availability of low-cost sensors have led to a rise in the popularity of precision agriculture
and smart farming to address the food production concerns [1]. Precision agriculture and
innovative farming technologies enable farmers to be better informed and more adaptive
in their response to changing weather conditions. Furthermore, the increased data help
farmers to move away from traditional approaches of broadcasting agrochemicals towards
target applications, which has both financial and environmental benefits.

The latest technologies, including sensors, computing edge devices, monitoring de-
vices, smart agricultural equipment, and cloud services, are essential for enabling smart
agriculture [2], precision agriculture, and Agriculture 4.0/5.0 [3,4]. These technologies have
enabled the rapid adoption of advanced techniques in agriculture, such as cloud–fog–edge
computing [2], digital twin [5], the Internet of Things (IoT) [6], big data analytics [7], ma-
chine learning [8], augmented reality [9], and robotics [10]. By utilising these technologies,
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farmers can improve sustainability, enhance productivity, and optimise resource utilisation.
As these technologies continue to develop and become more accessible, we can expect to
see more significant advancements in smart agriculture in the future.

Digital twin is an evolving technology that is gaining more attention in all domains.
DT can be defined as a digital equivalent of a real-life object that mirrors its behaviour
and states over its lifetime in a virtual space [11]. Although there are a number of studies
available in other domains using the concept of a DT, it is still in the early stages in
agriculture [5]. In recent years, agriculture has also received a lot of interest; development
and implementation are still in progress as stakeholders and researchers work to find
sustainable and efficient methods to produce food while also reducing the impact on
the environment.

Farming can be generally categorised into two types: Open Environment Agriculture
(OEA) and Closed Environment Agriculture (CEA). The implementation of DT in CEA
is relatively easier because of the controlled nature of environmental factors. However,
implementing DT in OEA is challenging because it involves unpredictable natural weather
conditions and various other external factors. While a significant amount of research
focuses on CEA, with studies exploring its application in greenhouse [12], aquaponics [13],
vertical farming [14], hydroponics [15], studies on OEA are comparatively fewer. DT in
agriculture is an emerging topic that has the potential to bring about significant change.
Since a few studies are available for OEA, it is clear that there is a need for customised DT
frameworks specifically for OEA. This gap has motivated us to propose architecture and
application scenarios for open-environment crop farming. The detailed related work on DT
for agriculture is discussed in Section 3.

This research introduces a novel architecture for a DT by integrating multi-agent
systems and cloud–fog–edge computing. This is designed to rapidly provide necessary
decision-making information to farmers for “what-ifs” scenarios. It also directs farmers
in critical areas and offers a dynamic list of prioritised actions that adapt to evolving
environmental conditions. Moreover, the proposed architecture has the capability to
automate certain farm tasks based on farmer inputs. Therefore, it enhances overall farm
productivity and effectively manages various tasks. Additionally, the paper explores a
few detailed use cases, demonstrating the practical application of DT technology through
integrated architecture in agricultural environments.

The remainder of this work is structured as follows: In Section 2 we describe smart
crop farming (Section 2.1), digital twin technology (Section 2.2), and cloud–fog–edge
computing (Section 2.3) as the background of this work. Section 3 discusses related works
on Digital Twins in the agricultural domain. A high-level architecture for the proposed
DT agricultural use cases is presented in Section 4. Section 5 explores possible application
scenarios with digital twins, consisting of the overall scenario for agriculture (Section 5.1)
and then describing specific scenarios, such as irrigation systems in Section 5.2 early alerts
on fields in Section 5.3, nutrient management recommendations in Section 5.4, and nutrient
deficiency risk identification in Section 5.5. Finally, Section 6 concludes the discussion and
discusses future work.

2. Background
2.1. Smart Crop Farming

Agriculture plays a crucial role in today’s world, as it is essential for feeding the global
population. With a growing global population and limited resources [16], it is crucial to find
innovative solutions to maximise crop yield and ensure food security. One such solution is
the application of smart agriculture techniques, which utilise advanced technologies such
as satellite imaging and remote sensing, drones and Unmanned Aerial Vehicles (UAVs),
artificial intelligence, the Internet of Things (IoT), and robotics. Smart agriculture, often
referred to as precision farming, digital farming, or agriculture 5.0 [4], aims to optimise
agricultural practices by utilising the power of data and technology. Smart agriculture,
also known as precision farming or digital farming [17] or agriculture 5.0 [4], aims to
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optimise the farming process by increasing accuracy and customisation for specific fields
or crops. Using these technologies, farmers can collect real-time data on soil moisture,
temperature, nutrient levels, and pest infestations. These data can then be analysed and
used to make data-driven decisions about irrigation, fertiliser application, pest control, and
crop management. By integrating smart technologies into agriculture, farmers can not only
increase crop yields but also reduce resource wastage.

Crop farming is generally complex and relies heavily on various factors such as
weather conditions, soil quality, irrigation management, fertiliser and nutrient availability,
and pest control. In the past, farmers had to rely on traditional methods and intuition
to make informed decisions [18]. However, with the introduction of smart agriculture or
smart farming, farmers now have access to real-time data and accurate weather forecasts
compared to the past. This helps them make timely decisions regarding when to plant,
irrigate, or harvest their crops to optimise yield. To address this challenge, farming now
demands a decision support system and monitoring system [19]. This is where the IoT
plays a crucial role. The IoT refers to the connection of physical objects, devices, and
sensors through the internet to gather data for decision-making [20]. By implementing
IoT technology in agriculture, farmers can collect data from various sensors and devices
placed throughout their fields. This data can then be analysed using artificial intelligence
algorithms to provide insights and recommendations for improving crop production. Other
technologies, such as machine learning, blockchain, and robotics, can also be integrated into
smart agriculture systems to automate tasks, reduce labour costs, and improve efficiency.
Digital twin technology in agriculture is another emerging concept that holds great potential
in smart agriculture. Overall, smart crop farming is transforming traditional methods of
farming, bringing about a new era of efficiency and productivity in the agricultural sector.

2.2. Digital Twin

In recent years, the DT concept has garnered global attention. It involves creating a
virtual or digital replica of a physical object, such as machinery, buildings, farms, fields,
plants or even human beings, using real-time data from these physical entities. This
approach allows for comprehensive analysis, simulation, and optimisation. The term
digital twin, introduced by Grieves in a 2003 presentation and later elaborated in a white
paper [21], has provided the foundation for its development across various domains. Digital
models are created by collecting real-time data from IoT solutions, such as sensors and other
sources. DT systems are different from other systems as they not only simulate predicted
futures but also provide real-time insights. Unlike simulations [22], DTs use real-time data
and can provide quick and valuable information by incorporating the latest available data.

Although DT technology originated in manufacturing [23], its application has broad-
ened to sectors such as healthcare [24], energy [25], urban planning [26], and recently in
agriculture [27]. In agriculture, digital twins have revolutionised practices by simulating
farming cycles such as soil conditions, weather patterns, crop growth, and pest infestations
and utilising real-time data for decision-making. This approach allows for customised
recommendations, optimising crop yields, efficient resource use, and minimising environ-
mental impacts.

Digital twins improve precision farming by creating accurate digital replicas of farms,
enabling remote monitoring and management. Farmers can customise irrigation and fertili-
sation plans and accurately predict harvesting times. As advanced predictive tools, these
models help manage risks like crop diseases and pest infestations effectively. Integrating
artificial intelligence and machine learning [28] further provides advanced analytics and
predictive insights essential for sustainable food production and climate change adaptation.

Even though introducing DTs in agriculture offers many benefits, adopting this tech-
nology faces challenges [29], including the need for significant initial investment, a robust
technological infrastructure, and concerns regarding data privacy. Despite these limitations,
the future of DTs in agriculture and beyond looks promising, with potential advancements
such as enhanced integration with advanced technologies.
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2.3. Cloud–Fog–Edge Computing

Cloud–fog–edge computing is a paradigm that combines the power of cloud com-
puting, fog computing, and edge computing to create a distributed and collaborative
computing platform. At its core, cloud–fog–edge aims to optimise the processing and
storage of data by leveraging the strengths of each computing model. Utilising cloud
computing, this architecture can benefit from its vast resources and scalability for handling
large-scale data processing and storage [30]. Fog computing, on the other hand, brings the
computational power closer to the data source, reducing latency and improving real-time
processing capabilities [31]. Edge computing enables processing and storage to be per-
formed at or near the edge devices themselves, reducing the need for data transmission and
thus improving efficiency. This combination of cloud, fog, and edge computing addresses
the limitations and challenges of traditional centralised computing models.

As the agriculture domain evolves with the integration of cloud, fog, and edge com-
puting, a powerful architecture emerges that significantly impacts farming practices. Edge
computing, situated closer to on-field devices, ensures fast data processing and minimal
latency, which is essential for real-time decision-making [32]. However, fog computing
plays a pivotal role in this integration, not only seamlessly connecting with edge devices
but also conducting intelligent analysis [33,34]. The unique capability of fog computing to
extend its reach to both the edge and the cloud makes it an indispensable component of
agricultural systems. The introduction of mobile fog zones, actively gathering data from
the fields, and static fog zones, providing localised storage and computing capabilities
for immediate data analysis, marks a crucial transformation [35]. This cloud–fog–edge
combination architecture not only optimises data processing and decision support at the
field level but also leverages cloud resources for comprehensive analysis. The importance
of fog computing in agriculture is underscored by its role in bridging the gap between
on-field operations and broader cloud-based insights, thereby enhancing the efficiency,
scalability, and adaptability of agricultural practices.

3. Related Work

Recent reviews show that interest in DTs in agriculture has notably increased in the last
few years. For instance, the authors of [27] presented an extensive literature survey on DTs
in agriculture, establishing a foundational understanding of the topic. The authors of [36]
examined the application of the DT paradigm in assessing soil quality, highlighting the
technology’s potential to revolutionise traditional practices. Further, Ref. [13] introduced
a pioneering case study on urban farming technology. This study explored how a cyber-
physical aquaponics system, augmented with a DT and machine learning, could gain
adaptive capabilities, showcasing the practical implementation and benefits of DTs in
enhancing agricultural systems.

Verdouw et al. [11] analysed how DTs could advance smart farming. The authors
defined the concept of a DT, developed a typology of different types of DTs, and proposed
a conceptual framework for their design and implementation. The authors mentioned
that DTs in agriculture include six distinct types: imaginary, monitoring, predictive, au-
tonomous, and recollection DTs, each serving different control purposes. The authors also
proposed a framework and applied and validated it in five smart farming use cases in the
European IoF2020 project, covering arable farming, dairy farming, greenhouse horticulture,
organic vegetable farming, and livestock farming. The case studies have offered valuable
insights into how DTs can improve and optimise smart farming systems.

In 2021, Pylianidis et al. [27] published a literature review on digital twins in agri-
culture from 2017 to 2020. The authors identified 28 use cases and compared them with
other domains’ use cases. The authors compared reported benefits, service categories, and
technology readiness levels to assess the level of digital twin adoption in agriculture. The
authors also proposed a roadmap inspired by other domains of DT applications. This
paper concluded by identifying distinctive characteristics of agricultural DTs. However,
this paper did not provide specific examples of implemented DT applications in agriculture
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or the latest advancements in this field. It also did not cover potential benefits in detail or
the latest advancements in DT applications in agriculture.

Nasirahmadi et al. [5] presented a general framework of DTs in soil irrigation, robotics,
farm machinery, and food post-harvest processing in the agricultural field. The authors
emphasised the need to develop DT systems further in the agricultural context. These
systems should be able to monitor, record, and analyse data to predict and prescribe the
best decision for digital farming management. Also, the authors identified the need for
further research and development in applying DT concepts in agriculture, particularly in
addressing practical challenges, integrating advanced technologies, and developing robust
DT models for different aspects of agricultural operations.

Few other studies are available that apply the concepts of DTs to smart agriculture. For
example, Ref. [37] proposed a DTs-based smart agriculture framework utilising LoRaWAN
for sensor networks in farm fields and the intelligent processing of aerial imagery to detect
plant diseases and nutrient deficiencies. The authors of [13] have proposed a framework
for a decision support system to coordinate decentralised urban agricultural production
units. The authors of [38] discussed the principles of developing a multi-agent DT of plants
using broccoli as an example.

The results of the reviews clearly show that the concept of DTs in agriculture is still in
its early stages and has not been fully explored in research. Although the agricultural sector
presents numerous opportunities for the application of DT technology, its development and
implementation are still in progress. Therefore, this paper proposes a set of DT use cases
designed for the agricultural domain. The aim is to bridge the current research gap and
contribute to sustainable agriculture and enhanced production goals. This paper focuses
on applying the innovative DT concept to real-world scenarios in smart agriculture. Our
goal is to tackle key challenges in this field, with the promise of revolutionising efficiency
and yield through this approach.

4. High Level Architecture for Proposed Digital Twin Use Cases in Agriculture

Figure 1 illustrates the proposed architecture of a DT system for smart agriculture that
integrates cloud, fog, and edge computing layers and multi-agent systems. Farmers or
users can access a DT system through a farm management GUI (Graphical User Interface).
The overall architecture consists of three layers: Cloud, Fog, and Edge.

Figure 1. Proposed Architecture for Digital Twins in Smart Agriculture.
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The Cloud layer plays multiple roles, including accessing external services like growth
stage estimators, weather services, routing services, and disease identification tools. It
also offers data storage and anonymisation services for farm data and supports machine
learning and data analysis. Additionally, data collected from satellites that help with
growth stage estimation, weather prediction, and disease identification are stored in this
layer. This layer is also responsible for handling complex processing tasks that are not
time-sensitive and can utilise the vast resources of cloud computing.

The Fog layer consists of two sub-zones: the Static Fog Zone and the Mobile Fog Zone.
In a smart or precision farming setup, an array of sensors and actuators are employed,
along with machinery like harvesters, tractors, and innovative devices such as drones and
agricultural robots. These devices function as mobile fog nodes, gathering data directly
from the fields. Located at the field level, the Static Fog Zone hosts agents, microservices,
and digital twins, providing localised data storage and computing capabilities for imme-
diate analysis of farm data. The mobile fog nodes serve to extend the reach of the Fog
network, ensuring data collection and processing capabilities in parts of the farm that may
have intermittent or no internet access. Furthermore, the Fog layer incorporates a collection
of microservices, which facilitate access to both internal APIs for farm data retrieval and
third-party APIs (Application Programming Interfaces) for extended functionality. It also
houses various agents, such as the Farm Manager and Field Agents, who are tasked with
resource scheduling, task management, and the execution of field plans. These components
function seamlessly within both the static and mobile zones of the Fog layer.

The Edge layer comprises various devices with embedded sensors and actuators
utilised in agricultural environments. These devices can include soil moisture sensors
located directly in the field or NDVI sensors mounted on farm machinery such as tractors.
These Edge devices connect to the static Fog layer to transmit data when internet connec-
tivity is present. In the absence of connectivity, mobile Fog nodes provide data collection
services, gathering information from the Edge devices either opportunistically or upon
request. This allows for continuous data acquisition and integration into the farm’s DT
system, ensuring that the farm management has access to the most updated information
for decision-making.

Additionally, the overall architecture incorporates MAMS (Multi-agent Micro-services) [39]
as illustrated in Figure 2. In this setup, microservices are tasked with ongoing activities like
weather monitoring and are engaged in the continuous processing of data. The system’s
flexibility allows seamless transitions between different data sources, like switching from
one weather station to another, by simply re-configuring the appropriate microservice. This
adaptability level is a fundamental feature of DT technology and is further enhanced by the
integrated multi-agent system. In this interconnected environment, actions in one field can
influence outcomes in another. The DT plays a crucial role in fine-tuning these decisions,
utilising data-centric simulations. At the core of this architecture is the utilisation of established
agricultural guidelines, such as the RB209 recommendations, providing a solid foundation.
These guidelines are not just followed; they are dynamically adapted to suit the real-time
conditions of the farm, ensuring the advice provided is both reliable and contextually relevant.

On the other hand, agents play a crucial role in the DT framework, particularly in
decision-making, task allocation, and resource management. These intelligent agents utilise
the data gathered by microservices to make not only decisions but also recommendations.
A comprehensive knowledge graph is built by a variety of microservices, such as those
collecting weather data, nutrient recommendations, and decision-making services. This
interconnected data representation enables agents to coordinate system activities effectively.
This ensures the maintenance of the most accurate model of the field’s state. The agents are
focused on developing an efficient plan for the field. Although this plan is not a built-in
feature of the DT, it is significantly influenced by the data collected and analysis from the
DT. This field plan directly impacts nutrient levels, which in turn affects the growth stages
of the crops. Efficient management of the DT, coupled with the use of intelligent agents for
decision support, enables us to recommend strategies that maintain optimal field conditions,
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enhancing both the productivity and efficiency of agricultural practices. The agents can
also analyse patterns, predict outcomes, and allocate tasks efficiently across the farming
operation. Their capabilities include assessing the best planting strategies, optimising
irrigation schedules, and managing resource allocation to maximise yield and efficiency.

Figure 2. Cloud–Fog–Edge and MAMS Overview.

Overall, the proposed architecture depicted in Figure 2 enables farmers to utilise a DT
that integrates cloud computing, fog computing, and edge computing, thereby simplifying
and improving farm management. This approach significantly enhances farm management
and decision-making through a comprehensive, multi-layered computational framework.
The incorporation of agents in this architecture allows for autonomous data collection and
processing, ensuring timely and accurate information. Microservices, meanwhile, offer
modular and scalable solutions, facilitating the flexible integration of various farm data
sources and services. The combined use of cloud, fog, and edge computing layers ensures
efficient data processing: cloud computing handles complex, non-time-sensitive tasks; fog
computing provides localised data analysis; and edge computing enables real-time data
capture directly from farm devices. Collectively, these technologies form a digital replica of
the farm that includes all important factors, thereby streamlining decision-making. In this
way, the proposed architecture offers numerous advantages in overall farming processes
compared to the existing agricultural systems.

5. Possible Application Scenarios with Digital Twin

In the labour-intensive field of agriculture, many interrelated and variable factors play
a role in daily farming decisions. Despite being well-planned with expertise, unforeseen
circumstances often cause plans to be changed or abandoned in cases such as unexpected
rainfalls or the emergence of crop diseases. In these circumstances, an adaptive approach, a
fast decision, and good organisation are essential to maintain efficiency and prevent yield
losses (subsequently financial losses) and environmental damage. This section discusses
example use cases using DTs.

5.1. Overall Scenario of Digital Twin in Agriculture

The proposed DT model of agriculture includes a digital representation of farms, fields
and other related factors. This complex model dynamically integrates various data sources
to replicate the current state of the farm. This model is also continuously updated with
real-time data, allowing it to reflect current conditions and predict future states accurately.
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For instance, if we consider a farm with n fields, the DT model would have the exact
representation with details such as:

• Farm: Farm ID, Farm Name, Number of Fields, Field IDs.
• Field: Field ID, Farm ID, Field Name, Crop Info, Soil Info, Historical Information such

as Last Cropping Date.
• Zone: Zone ID, Zone Name, Field ID, Farm ID, Weather Data.

As illustrated in Figure 3, digital twins assist in decision-making and predictions based
on historical and real-time data analysis and provide recommendations and suggestions to
farmers and other stakeholders.

Digital twins can be applied to various aspects of agriculture in order to help farmers,
including:

• Real-time Monitoring and Prediction [5]: DTs can monitor crop health and growth
in real-time and predict future outcomes based on data such as weather patterns,
soil moisture, and nutrient levels. This information can help farmers make informed
decisions about irrigation, fertilisation, and other factors that impact crop growth.

• Enhanced Productivity and Efficiency: By simulating various scenarios, farmers can
identify the most efficient use of resources, such as water and fertilisers, and optimise
crop yields [5,12]. As new data are collected and analysed continuously, farmers can
continuously refine their practices, adapting to changing conditions and incorporating
the latest insights for ongoing improvements in productivity and efficiency.

• Resource optimisation and management: DTs can optimise farmers’ use of resources
like water, fertilisers, and pesticides by providing real-time data on their application
and effectiveness. It also helps in task scheduling and management of farm equipment,
including tractors, harvesters, and other agricultural machinery. This can help farmers
reduce waste and improve efficiency.

• Quality control: It can monitor crop quality and identify potential issues, such as
pests or diseases, before they become significant problems. This can help farmers take
proactive measures to protect their crops and maintain high-quality yields.

• Collaboration: DTs can facilitate collaboration among farmers, researchers, agronomists,
and other stakeholders, allowing them to share real-time data and insights. This can
accelerate the development of new techniques and technologies in smart crop farming.

• Data-Driven Decision-Making: DTs offer farmers a comprehensive perspective of their
agricultural operations. This enables data-driven decision-making, as farmers can
analyse soil conditions, weather patterns, and crop health data to make informed
choices toward improving yields. Continuous data collection and analysis enable
better management of agricultural processes, leading to more informed decisions [5].

Figure 3. Digital Twin for Agriculture.
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The implementation of a DT in agriculture is a powerful step towards more efficient
and sustainable practices. This approach offers a holistic overview of the farm, enabling
farmers to optimise processes throughout the entire agricultural cycle, from planting to
harvesting. The DT also has features for predicting the future and a comprehensive under-
standing of farm processes. Farmers can more efficiently use resources like water, fertilisers,
and pesticides. As a result, this reduces waste and operational costs and addresses the
specific needs of crops at different growth stage levels at the right time. These all help in
maximise yields.

Integrating data from diverse sources and analysing them are significant features of
DT. This integration includes real-time data from IoT devices distributed across the farm,
which monitor key factors such as soil moisture and nutrient levels. Weather patterns
are important in making decisions about farming activities. The data coming from local
weather stations can offer valuable insights in terms of how the weather patterns could
change. Additionally, the DT utilises high-resolution satellite imagery to monitor larger-
scale changes in crop health and environmental conditions. The DT improves its predictive
accuracy by accessing agricultural databases to collect data on crop varieties, pest/disease
patterns, and historical data. This can result in guiding farmers towards more informed
decision-making in modern agriculture.

The DT not only simulates and predicts the outcomes of different farming strategies
under varying environmental conditions but also continuously updates its model to reflect
real-time changes on the farm. This dynamic model ensures that the virtual farm environ-
ment is always in sync with the actual farm, allowing farmers to visualise the consequences
of their actions before implementing them. By acting as a decision-support tool, the DT
enables farmers to efficiently manage risks, such as pest infestations or disease outbreaks,
and test different scenarios, including best and worst-case situations. Ultimately, this ap-
proach supports sustainable and environmentally friendly farming practices, empowering
farmers with the tools needed for success in the ever-evolving world of agriculture.

In the following section, we will explore a few use cases that demonstrate the potential
of DTs in agriculture: irrigation systems and early disease detection. Specifically, we will
compare the processes for these use cases with and without DT technology. Figures 4 and 5
illustrate these processes and highlight the benefits of using a DT.

It is worth noting that with DTs, it is necessary to consider all related factors before
making a decision instead of only considering a single factor. This feature enables farmers
to make more accurate decisions that consider the potential future effects of the decision
rather than simply deciding whether to irrigate or manually identify diseases. This is one
of the key advantages of DTs compared to other modern digital systems.

Figure 4. Irrigation Systems.
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Figure 5. Early Alters on Fields.

5.2. Scenario 1: Irrigation Systems

Agricultural irrigation systems are frequently closed systems, which require the farmer
to turn the irrigation system on or off. More advanced systems are available on the
market, which utilise either soil moisture sensors [40] or rainfall sensors [41] to automate
irrigation and reduce water usage. The sensors for automated irrigation systems are
typically expensive. As technology advances, progressively more straightforward, low-cost
sensors capable of sensing soil moisture and rainfall are entering the market. Connecting
these simple sensors to nodes would create an affordable irrigation management system.
This would lower the cost barrier and allow greater access to precision technologies,
particularly for smaller farms [40].

A DT for an irrigation system in agriculture is a digital replica of the physical irrigation
system used in the field. It is created by collecting data from sensors and other sources such
as weather forecasts, soil moisture sensors, and crop growth models. Using this data, the
DT replicates the functioning of the irrigation setup and the behaviour of the crops under
irrigation. This enables farmers and other stakeholders to monitor system performance,
optimise irrigation schedules, and make better decisions to maximise crop yield while
minimising water usage. For example, the DT can help farmers decide when and how
much water to apply to their crops based on weather conditions, soil moisture levels, and
other factors (harvest date, fertiliser plans). It can also help farmers identify potential issues
with the irrigation system, such as leaks or malfunctions, and take required action before
they impact crop yield.

Farmers who do not have access to DT technology must rely on traditional methods
such as visual inspection and manual measurement to make irrigation decisions. These
methods are often based on intuition and experience rather than hard data, which could
lead to inefficient and suboptimal irrigation practices. While there are modern irrigation
systems that use technologies such as soil moisture sensors and temperature gauges to
inform decision-making [42], these systems may not take into account other important
factors such as crop growth stage, nutrient levels, and fertiliser use. Digital twin technology,
on the other hand, can integrate and analyse a wide range of data points, making it a more
advanced tool for decision-making in agriculture. A DT for an irrigation system of crop
fields can provide farmers with a valuable tool to improve their irrigation practices and
ultimately achieve more sustainable and efficient crop production.

Additionally, the fog processing feature outlined in this paper’s architecture, as illustrated
in Figure 1, allows for the utilisation of weather forecasts in conjunction with simple sensor
data. This integration helps to reduce water usage further. Reducing water consumption
is crucial for countries experiencing water scarcity. Due to climate change-induced water
shortages, agricultural security concerns are increasing [43]. Therefore, utilising DT in
irrigation systems presents an effective solution for this issue.
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5.3. Scenario 2: Early Alerts on Fields

Vegetation indexes used in earth observations are related to crop stress, such as
drought or disease [44,45]. The field management system in the outlined architecture
would prioritise an inspection made in a specific area in response to earth observations
processed through the cloud. This guidance-based approach would rapidly reduce the time
spent inspecting the field for stress symptoms, increasing efficiency and helping maintain
crop health. This is illustrated in Figure 6, where the traditional approach of crop inspection
requires walking through each field as highlighted on the left image with red lines; the
guidance-based system reduces this need and can direct a farmer straight to the areas of
risk. Whilst in the field, any map-based information could be updated through the static
fog, and the farmer could record a diagnostic for the stress (e.g., the presence of a disease).
In addition, whilst in areas of poor connectivity, sensors would benefit from the presence
of a passing smartphone to create an ad-hoc connection to upload data. At the point of
updating the system to diagnose a crop disease, the architecture will be able to respond to
this new information, check the weather forecast, and, if weather conditions are favourable
could prioritise new actions of fungicide applications (part of the recommendation system
of the architecture).

Additionally, the system could automate the shutoff of irrigation of the field/neighbouring
fields of the same crop. This automation will (1) help reduce the spread of disease from
water droplets and (2) provide the most time for the area to dry, which is necessary for
fungicide applications. The dynamic nature of the architecture will provide the best
outcome for a rapid response. In this scenario, the system minimises the time spent by the
farmer inspecting fields, collecting relevant information (i.e., weather forecast), deciding
on the best course of action and allowing more time for the farmer to respond to the crop
disease threat, preventing potential yield reduction from crop disease spread. Without the
system, most of the day could have been spent inspecting each field for symptoms of stress.

Figure 6. Crop Inspection Traditional Approach (left) vs. Modern Approach (right).

When there is a deviation from the farm management plan, the DT field feature will
be able to simulate the impacts of the change and provide advice on future management
decisions. If an event occurs in a field or management deviates from the management
plan, the digital twin field will be able to simulate the impacts of the changes and advise
alternative management decisions. For example, if the drilling of a field is delayed due to
adverse weather events, the DT will recommend increasing the seed rate, helping to negate
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any reduced tillering. Furthermore, the DT model will be able to apply these variations,
along with growth modelling and external data such as weather forecasting, to adapt the
expected timing of future management actions, e.g., nitrogen applications. The DT will be
able to suggest amendments to agrochemical applications in response to events occurring
in the field/farm while also helping to automate certain processes. In addition to this, if
yield reduction is predicted for a field in the DT, the system may suggest reducing future
nitrogen applications in that field, which will help improve nitrogen use efficiency, reduce
environmental damage, and maximise profits.

5.4. Scenario 3: Nutrient Management Recommendations

Nutrient management is crucial in crop farming for several reasons. It ensures the
optimal growth of crops by providing them with the right balance of nutrients [46]. Effective
nutrient management not only boosts crop yield [47] and quality but also minimises the
environmental impact by reducing fertiliser overuse and runoff, which can lead to soil
degradation and water pollution [46].

Various factors are considered in nutrient management for crops, including soil condi-
tions, crop nutrient requirements, deficiency symptoms, previous crop information, and
environmental conditions [48]. Conventional smart agriculture [49] employs technologies
such as IoT sensors, drones, and satellite imagery to gather data for informed fertiliser
application, improving crop growth, and minimising waste. However, these systems face
challenges in terms of connectivity and internet access in remote agricultural areas, im-
pacting the real-time monitoring capabilities of these technologies. Another problem is
scalability when new services need to be introduced to the systems.

Generally, the conventional smart agriculture method of nutrient application involves
uniform practices across fields. In contrast, the proposed architecture customises nutrient
guidance based on the unique needs of each field or zone level, as identified through
real-time data processing. This is because the DT supports farm level, field level, and zone
level granularity. The adaptability of the DT is evident in its responsiveness to dynamic
environmental factors. In instances of adverse weather conditions or changes in soil
composition, the system can promptly adjust nutrient recommendations to accommodate
the evolving needs of the crops. This agility ensures that nutrient applications are modified
with the current state of the field, maximising the effectiveness of the entire nutrient
management process.

Additionally, the system facilitates seamless communication between various stake-
holders involved in nutrient management. Farmers receive clear and actionable recom-
mendations through user-friendly interfaces, improving their ability to implement precise
nutrient applications. The recommendation system also integrates with other components
of the agricultural architecture, such as weather forecasting, to provide comprehensive
insights for decision-making. Another key feature of the nutrient management recommen-
dation system using DT architecture is its continuous learning capability. Over time, the
system refines its recommendations based on historical data, crop responses, and evolving
soil conditions. This iterative process ensures that nutrient management strategies are con-
tinually optimised, leading to improved crop health and overall agricultural productivity.

Furthermore, integrating cloud, fog, edge computing, agents, and microservices trans-
forms nutrient management to the next level. The fog layer instantly analyses real-time
data collected by edge devices, overcoming connectivity limitations. Microservices provide
flexible and scalable solutions, while the cloud layer enhances computational capabilities
with machine learning. Autonomous agents streamline decision-making, making nutrient
management more efficient and reducing the need for continuous human intervention.
The whole approach of the DT architecture ensures a seamless and optimised nutrient
management process in agriculture.
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5.5. Scenario 4: Nutrient Deficiency Risk Identification

Nutrient deficiency risk identification is a traditionally onerous task in which farmers
may heavily rely on experience and generational knowledge [4]. Identifying a nutrient
deficiency is often done through visual inspection of crops, as nutrient deficiencies result
in symptoms appearing on the plant [4]. If visual symptoms are missed, a farmer may
only realise the potential for nutrient deficiencies when observing a reduced yield and/or
poor plant quality. Problematic crops may prompt a soil test, which serves as the most
accurate representation of soil pH and key nutrient levels. However, when a deficiency has
manifested, it is often too late to treat it effectively. Therefore, due to the variable nutrient
requirements of different crops, farmers often utilise strategies such as crop rotation and
intercropping to maintain a balanced soil nutrient profile.

Conventional smart agriculture techniques have been developed to identify nutrient
deficiencies in soils and crops. This is primarily achieved through satellite imagery [50],
machine learning [51], and IoT sensors [52]. Some techniques relying on imagery may
prove insufficient in some scenarios, as treating nutrient deficiencies can be ineffective by
the time it is visually present. IoT sensor solutions facilitate rapid data collection, thereby
enhancing decision-making efficiency [52]. The adoption of IoT sensors has proven to
improve the quantity and quality of yield [52].

An implemented DT architecture offers a basis to integrate heterogeneous, dynamic,
and disparate data sources into a homogenous system. This uniform system can underpin
mechanisms that proactively monitor for coinciding and compounding risk factors for
key nutrients, such as a field of a particular soil being waterlogged during the winter
months. The result of this could be a notification to a farmer that a field is exposed to a
greater risk of certain nutrient deficiencies. The use of edge services, as in the proposed
DT, ensures the integration of real-time data into risk identification processes. The DT
transforms the approach to nutrient deficiency, as the seamless integration of interoperable
data enables holistic techniques for risk identification in real-time. Furthermore, this
strategy is enhanced by being employed by a multi-agent system. The distributed nature of
agents allows for simultaneous monitoring of multiple fields in parallel. The autonomous
aspect of agents ensures a proactive risk identification process. This transitions a farm’s
nutrient deficiency management strategy from being reactive to preventative, as actions
can be taken to mitigate risk as the dynamic data is updated in the DT.

6. Discussion and Future Work

In conclusion, the DT concept is a powerful innovation with promising applications
in agriculture, particularly when integrated with other cutting-edge technologies such as
multi-agent systems (MAS), cloud–fog–edge computing, and microservices. The rapid
advancement in sensing, communication, and computing technologies has sped up the
development of DT models. These models replicate real-world conditions with real-time
data, improving farm operations and allowing for better planning by offering suggestions
for different ’what-if’ scenarios. This paper introduces a DT architecture and explains
its components. While this architecture holds potential for numerous applications in
agriculture, our current focus is on practical implementations, such as developing irrigation
systems for crops, early disease detection, nutrient management recommendations, and
identifying nutrient deficiency risks. The proposed structure uses agents and microservices
to create and develop a cloud–fog–edge infrastructure, establishing the foundation for
promising research in sustainable smart crop farming.

The possible expected challenge would be accessing all the required data in the field.
This data can be collected from sensors and third-party APIs for weather and other data.
Implementing DT in agriculture demands solid technological infrastructure, including
sensors, IoT devices, and cloud–fog–edge infrastructure. In addition, to apply this in the
real world, the initial cost to install the required devices and technologies must be higher
if it is not a smart farm. However, the proposed architecture is most suitable for smart
agriculture. Thus, most smart farms already use smart agricultural devices such as drones,
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sprayers, sensors, etc. Regarding this architecture, cloud hosting and accessing accurate
data from third-party APIs such as satellite data may also be expensive. Agriculture is
generally a highly complex domain influenced by various unpredictable variables such
as weather conditions and patterns, soil conditions, and other environmental factors.
Although we get these predicted data from sensors and weather stations, it might still be
unreliable. Nowadays, most farms are already using some level of technology and devices.
Therefore, integrating with the existing systems in DT may be challenging. Implementing
DTs involves collecting and analysing vast amounts of data, raising concerns about data
privacy, ownership, and security. In addition to this, well-written documents and manuals
should be prepared for use by agricultural stakeholders.

From our perspective, the proposed architecture can be validated in several ways. For
instance, it can be simulated with historical data, applied to a small-scale farm, and seen
in the field without applying a digital twin. Additionally, it is possible to do qualitative
testing based on farmers’ feedback based on the user experience. Another possible way
would be to check how the DT reacts to the real-time data. However, further research is
needed to analyse the real challenges and benefits of the proposed architecture.

We are in the process of implementing the proposed use cases. For our future work,
we plan to concentrate on several areas, investigating the design constraints involved in
implementing DTs with cloud–fog–edge computing and identifying the challenges and
potential solutions in the domain of agricultural DTs. In addition to this, we are also
planning to propose a framework to implement a DT for agriculture domain. The future
work will be also focusing on how these DT can be evaluated in the real world.
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