
Citation: Li, Y.; Fujita, S. A Synergistic

Elixir-EDA-MQTT Framework for

Advanced Smart Transportation

Systems. Future Internet 2024, 16, 81.

https://doi.org/10.3390/fi16030081

Academic Editors: Yuezhi Zhou and

Xu Chen

Received: 20 January 2024

Revised: 22 February 2024

Accepted: 25 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Synergistic Elixir-EDA-MQTT Framework for Advanced Smart
Transportation Systems
Yushan Li 1,2 and Satoshi Fujita 1,2,*

1 Graduate School of Advanced Science and Engineering, Hiroshima University,
Higashi-Hiroshima 739-0046, Japan; yushanli433@gmail.com

2 Department of Information Engineering, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
* Correspondence: satoshi.fujita.g@gmail.com

Abstract: This paper proposes a novel event-driven architecture for enhancing edge-based vehicular
systems within smart transportation. Leveraging the inherent real-time, scalable, and fault-tolerant
nature of the Elixir language, we present an innovative architecture tailored for edge computing. This
architecture employs MQTT for efficient event transport and utilizes Elixir’s lightweight concurrency
model for distributed processing. Robustness and scalability are further ensured through the EMQX
broker. We demonstrate the effectiveness of our approach through two smart transportation case
studies: a traffic light system for dynamically adjusting signal timing, and a cab dispatch prototype
designed for high concurrency and real-time data processing. Evaluations on an Apple M1 chip
reveal consistently low latency responses below 5 ms and efficient multicore utilization under load.
These findings showcase the system’s robust throughput and multicore programming capabilities,
confirming its suitability for real-time, distributed edge computing applications in smart transporta-
tion. Therefore, our work suggests that integrating Elixir with an event-driven model represents
a promising approach for developing scalable, responsive applications in edge computing. This
opens avenues for further exploration and adoption of Elixir in addressing the evolving demands of
edge-based smart transportation systems.

Keywords: Elixir; edge computing; event-driven architecture; concurrency; smart transportation

1. Introduction
1.1. Background

With the rapid development of Internet of Things (IoT), an exponentially increasing
number of smart devices are being connected, generating massive amounts of real-time
data that need to be processed instantly. Traditional cloud computing architectures, relying
on centralized data centers, are insufficient to meet the low-latency and location awareness
requirements of many emerging IoT applications [1]. This has led to growing interest in
edge computing, which pushes computation and data storage closer to the location where
the data are generated. By processing data at the edge, latency can be reduced significantly
while also decreasing bandwidth usage [2].

The global market for the Internet of Things was estimated to be worth around USD
182 billion in 2020 [3], and it is anticipated to triple in size by 2030, reaching over USD
621 billion. At the same time, according to a report by Grand View Research, the global
edge computing market size is expected to reach USD 43.4 billion by 2027 [4], driven by the
increasing adoption of IoT devices and the need for real-time data analysis and processing
at the network edge.

However, existing edge computing solutions predominantly employ imperative pro-
gramming languages like C/C++, Java, and Python, which incur complexity in developing
and maintaining large applications. The tight coupling between components, lack of fault-
tolerance mechanisms, and single-threaded execution models in these languages make

Future Internet 2024, 16, 81. https://doi.org/10.3390/fi16030081 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16030081
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-0007-5729
https://orcid.org/0000-0001-9412-7309
https://doi.org/10.3390/fi16030081
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16030081?type=check_update&version=2


Future Internet 2024, 16, 81 2 of 23

them ill suited for the dynamic and distributed nature of edge computing systems. To
overcome these limitations, we propose the use of Elixir, a modern functional programming
language built on the robust Erlang Virtual Machine, for building highly available and
fault-tolerant applications for edge computing.

In our previous work [5], we conducted experiments comparing an Elixir-based mes-
sage broker with an equivalent Rust implementation under different network conditions.
The results validated Elixir’s resilience and low latency, confirming its potential for edge
computing deployments. Building on these findings, in this paper, we propose a novel
programming framework in the edge computing paradigm. The framework combines the
benefits of Elixir language, and event-driven architecture, with MQTT protocol. We demon-
strate two use cases in the field of smart transportation applications: a traffic light system
that optimizes traffic flow in the intersection, and a cab dispatch system that coordinates
taxis and passengers based on real-time location data. The evaluation of the cab dispatch
system shows the low latency and good performance of the system.

In this paper, we will start our exploration with the introduction. Subsequently, we
will provide the essential properties of the language we use in Section 2. In Section 3, we
will introduce our architecture design in detail. Two specific case studies are demonstrated
in the next section. We next discuss the details of the prototype system in Section 5. Then,
Section 6 is provided as the evaluation part. To conclude, we synthesize the key findings
and implications of our research in the last section.

This paper is an extended version of a paper [5] presented at CANDAR 2023. The
difference to the conference version is summarized as follows: (1) we add recent papers
concerned with smart transportation systems and the application of event-driven architec-
ture in smart cities as related work; (2) we add event-driven architecture as an important
component in our proposed framework, and utilize it in a smart transportation application;
(3) in the evaluation, we add various kinds of experiments to demonstrate the overall
performance of our system in smart transportation scenarios; and (4) add a traffic light
system for supplement the explanation for our proposed framework.

1.2. Related Research

This subsection overviews related research on this study, focusing on three research areas:
event-driven architecture (EDA), smart transportation, and Elixir/Erlang-based systems.

1.2.1. Related Work Concerned with EDA

The adoption of event-driven architecture (EDA) in the development of smart cities
has become a widely applied concept in recent research. This trend highlights the versatile
application of EDA across various fields, demonstrating its potential to address a broad
spectrum of challenges within the smart city paradigm. The diversity observed in these
studies reflects EDA’s flexibility and its capability to enhance systems in multiple domains,
from healthcare, which directly impacts human health and safety, to urban traffic manage-
ment, aiming at optimizing flow and increasing transportation efficiency. Although these
approaches differ in their technical implementations, they share a core objective: leveraging
advanced technology to improve human life, whether through safeguarding human health
or promoting environmental sustainability.

This work by Amir Rahmani, Babaei, and Souri [6] introduced an event-driven IoT
architecture for data analysis of reliable healthcare applications, including context, event,
and service layers. Furthermore, the study presents complex event processing (CEP) as an
innovative solution, integrating automated intelligence within the event layer to enhance
the system’s responsiveness and decision-making capabilities. This contrasts with our
approach, which integrates Elixir and MQTT for an edge-based programming framework.
While CEP offers advanced data processing capabilities ideal for healthcare applications,
our methodology leverages Elixir’s robust concurrency and MQTT’s efficient message
handling, tailored to the dynamic nature of smart transportation systems. This divergence
highlights the adaptability of event-driven architectures across varying domains. The next



Future Internet 2024, 16, 81 3 of 23

work by Behnam Khazael et al. [7] also utilized complex event processing (CEP) systems.
Differently, it introduced Geo-TESLA, an advanced complex event processing language
tailored for smart city applications, enhancing the detection and reporting of complex
events within urban settings by leveraging spatial data types and operations.

Another work that combines event-driven architecture and smart city is the work
by Garcia Alvarez, Manuel, Javier Morales, and Menno-Jan Kraak [8]. They offered an
approach for spatiotemporal capabilities in information services for smart cities and de-
veloped a reference architecture of event-driven applications. This work demonstrates the
feasibility, performance, and scalability of event-driven applications in real-time processing
and detecting geographic events, leveraging IoT technologies. Xiao Changjiang [9] offered
an event-driven focusing service (EDFS) method that uses cyberphysical infrastructures for
emergency response in smart cities.

1.2.2. Related Work Concerned with Smart Transportation

With the development of smart cities, the integration of edge computing technologies
plays an important role in transforming urban infrastructure. The adoption of edge com-
puting not only facilitates real-time data processing at the network’s edge, enhancing the
efficiency and responsiveness of smart transportation applications, but also opens up new
avenues for addressing complex challenges inherent in urban environments. This complex-
ity is underscored by both the comprehensive survey by Saeik, Firdose et al. [10] on task
offloading in edge and cloud computing and the detailed examination of resource schedul-
ing strategies in edge computing by Luo et al. [11]. These works illustrate the diverse
approaches and theoretical foundations developed to optimize task offloading processes
and resource scheduling across different edge computing scenarios. The approach also
aligns with the broader objectives of improving traffic flow, enhancing vehicular communi-
cation, and ensuring safety, thus contributing to the overall efficiency and sustainability of
urban living.

The next part is within the smart transportation of edge computing realm. The first
related work discussed a decision support method of event-driven architecture for a traffic
management system [12]. This paper illustrates how event-driven architecture (EDA) and
complex event processing are used for real-time processing and analysis of extensive data
streams generated by sensors and vehicles. The core objective is real-time monitoring
and control of traffic flow, exemplified in a smart traffic management system prototype in
Bilbao, Spain. While the paper effectively demonstrates the use of event-driven architecture
for traffic management, our research focuses on leveraging edge computing technologies.
This approach significantly reduces communication latency and real-time responses, which
is a crucial aspect in smart transportation systems. Wei-Hsun Lee et al. proposed a novel
design and implementation of a smart traffic signal control (STSC) system that enhances
vehicular communication and traffic management [13]. We were inspired by the design of
the smart traffic signal control system; however, we used a different solution that combines
Elixir and event-driven architecture to handle the vehicular communication in real time.
The work by Ke Ruimin [14] focused on edge computing for real-time near-crash detection
in smart transportation. It used IoT devices like Nvidia Jetson TX2 for processing video
streams to identify near-crash events.

The research highlighted above offers diverse solutions and implementations for
smart transportation systems. Differently, our study introduces a more novel approach by
leveraging an edge-based framework using Elixir, combined with event-driven architecture
and MQTT, to efficiently handle the real-time processing of huge volumes of data in
intelligent transportation systems.

1.2.3. Related Work Concerned with Elixir/Erlang-Based Systems

In addition to research on event-driven architecture and smart transportation, there
is also compelling evidence regarding the study of Erlang language compatibility and
hardware adaptability in IoT systems. GRiSP is a hardware platform and a bare-metal



Future Internet 2024, 16, 81 4 of 23

Erlang virtual machine designed for real-time embedded systems. Several research studies
have attempted to build IoT systems using GRiSP. The papers [15,16] proposed a framework
called Achlys, to realize general-purpose edge computing using only nodes on a sensor
network without relying on gateways or connections to cloud servers. It offers great
suitability for distributed applications in IoT edge networks Hera [17] is a Kalman-filter-
based sensor fusion framework whose application programs are written in Erlang running
on GRiSP. With this framework, high-level processing for asynchronous and fault-tolerant
sensor fusion can be realized directly at the edge of the IoT network. Since GRiSP is bare
metal Erlang, it has full compatibility with Elixir which runs on BEAM. We contemplate
deploying GRiSP in actual environments in the subsequent phase of our research.

2. Elixir Programming Language

This section identifies three critical properties for implementing robust edge comput-
ing frameworks: fault tolerance, real-time processing, and support for nondisruptive operation.
Fault tolerance ensures continuous operation despite individual component failures. Real-
time processing guarantees timely data processing within specified latency constraints. The
nondisruptive operation allows updates and maintenance without service interruptions.
This section analyzes how Elixir, leveraging its foundation in Erlang, successfully embodies
these crucial properties.

2.1. Erlang: A Foundation for Resilience

Erlang, introduced in 1986 by Ericsson, is a functional programming language de-
signed for concurrent systems with the “run forever” philosophy [18]. This focus on robust,
nonstop systems makes Erlang a natural choice for edge computing.

Several key features contribute to Erlang’s suitability:

• Concurrent processes: Erlang runs multiple lightweight processes on the Erlang
Virtual Machine (BEAM). Individual process failures are handled by automatic termi-
nation and restart, ensuring system resilience.

• Efficient resource allocation: Erlang’s process scheduling ensures timely responsive-
ness for real-time tasks. Processes can migrate between execution queues, minimizing
wait times and optimizing message exchange.

• Hot code loading: Updates can be applied without service interruptions via hot code
loading, enabling nondisruptive operation and continuous maintenance.

These features demonstrate Erlang’s strength in building reliable and responsive
systems, making it a valuable foundation for edge computing frameworks.

2.2. Elixir: Building on Erlang’s Legacy

Elixir, built on top of the BEAM virtual machine, inherits Erlang’s core strengths.
BEAM compiles Elixir code to bytecode for efficient execution. Lightweight processes
and message-passing communication foster concurrency and fault tolerance, as failures
in one process do not affect others. This inherent resilience is crucial for edge environ-
ments where reliability is paramount. Unlike imperative languages, like Java and C++,
that rely on shared memory and heavyweight threads, Elixir’s message-passing model
avoids complex synchronization issues and performance bottlenecks associated with shared
resource contention.

Beyond inheriting Erlang’s strengths, Elixir offers additional advantages for building
scalable and maintainable edge applications:

• Functional programming paradigm: Elixir encourages a side-effect-free programming
style, where functions produce outputs solely based on their inputs, simplifying code
comprehension and testing.

• Powerful tools and libraries: Elixir provides a rich ecosystem of libraries and tools
designed for building robust and maintainable applications.



Future Internet 2024, 16, 81 5 of 23

These combined benefits make Elixir a compelling choice for developing reliable and
performant edge computing frameworks. The next subsection delves deeper into Elixir’s
programming model and its specific advantages for edge development.

2.3. Elixir’s Programming Model

This subsection examines key aspects of Elixir’s programming model that contribute to its
suitability for developing edge computing frameworks: polymorphism, meta-programming,
and code conciseness.

2.3.1. Polymorphism via Protocols

Both Elixir and Erlang achieve polymorphism through pattern matching and function
dispatch. However, Elixir introduces the powerful concept of protocols, enhancing flexibility
and intuitiveness. Protocols define a set of functions that any data type can implement,
enabling generic operations for different types and implementations. Elixir dynamically
recognizes and calls the corresponding specific implementation, demonstrating inherent
polymorphism. Additionally, protocols can have “fallback to Any” mechanisms, providing
default implementations for unknown types. This promotes code reusability and simplifies
handling heterogeneous data structures.

2.3.2. Powerful Meta-Programming Capabilities

Meta-programming, the ability to manipulate and generate code at runtime [19], em-
powers Elixir development. Compared to Erlang, Elixir offers a more comprehensive and
user-friendly meta-programming toolkit through its macro system. This system provides
higher-level abstractions and richer functionalities, including module metadata, annota-
tions, reflection, and code evaluation. Accessing the abstract syntax tree (AST) through
macros facilitates powerful code transformations and generation, leading to increased
development efficiency and improved code quality.

2.3.3. Concise and Expressive Functional Code

Elixir’s functional features contribute significantly to code conciseness. Functional
constructs like immutability and explicit function definitions enhance program clarity and
control flow visualization. This is particularly beneficial for edge computing applications,
where compact and understandable code is crucial for efficient execution and debugging.
Furthermore, conciseness reduces development time and complexity, making Elixir a
compelling choice for rapid development cycles.

2.4. Summary: Why Elixir for Edge Computing?

This section has identified three key features of Elixir’s programming model that
make it ideally suited for edge computing applications: robust polymorphism and protocol
mechanisms, powerful meta-programming capabilities, and inherent code conciseness
through functional idioms. These features, coupled with Elixir’s rapidly growing library
ecosystem, solidify its position as a top choice for building reliable and efficient edge
computing frameworks.

3. Architecture Design

This section outlines the key principles and components of the proposed architecture
for smart transportation edge computing. Details of the prototype implementation based
on this architecture are presented in the succeeding sections. Our envisioned system
continuously collects and stores sensor data from urban areas for efficient processing
and response to user requests. It demands scalability, real-time functionality, and fault
tolerance, aligning perfectly with the capabilities of the Elixir language, as discussed in the
previous section.

The proposed architecture comprises multiple interacting components, designed for
specific functionalities. Asynchronous message passing with MQTT for event transport and



Future Internet 2024, 16, 81 6 of 23

Elixir for event processing facilitates concurrent execution and fault isolation. Specifically,
Elixir’s lightweight concurrency and distributed processing handle asynchronous events in
a scalable manner (Section 3.2), while MQTT’s publish–subscribe messaging distributes
events across service components (Section 3.3).

3.1. Event-Driven Architecture for Edge Computing

Event-driven architecture (EDA) [20] centers around event production, detection,
consumption, and reaction, where “event” signifies a significant state change. EDA ex-
cels in systems requiring real-time operations, asynchronous communication, and high
scalability [20,21]. While traditional EDA often centralizes event handling [22,23], EDA
for edge computing, like smart transportation, requires optimization for low-latency and
local data processing to minimize network overhead and response time. In other words,
edge computing tailors EDA to address its inherent challenges: real-time data processing,
resource-constrained environments, and distributed computational nodes.

Prominent EDA systems include Kafka Streams [24], Azure Event Grid [25], and
RabbitMQ [26]. Kafka Streams excels in scalability and fault tolerance but might not fit
resource-constrained environments due to its complex setup. Azure Event Grid shines
within the Azure ecosystem, providing managed autoscaling. RabbitMQ, known for its
adaptability, supports varied protocols but can require nuanced configuration.

3.2. Key Components in the Proposed EDA-MQTT Framework

The proposed framework using EDA and MQTT broker for smart transportation
comprises five key components, as shown in Figure 1.

Events
processed

 in Edge devices

Events
processed
 in Cloud

User
Interface

Client

Vehicle
Client

Location and
Infrastructure
Monitoring

Service

Traffic
Management

Service

EMQX
Broker

subsribe

subsribe

subsribe

publish events

publish events

publish events

Figure 1. The components in the proposed framework.

• EMQX Broker: The core messaging hub facilitating event-driven communication.
It receives events from various clients (user interface client, vehicle client, traffic
management service, location and infrastructure monitoring service) and is responsible
for accurately forwarding these messages to other clients that have subscribed to them.

• User Interface Client (edge computing component): Serves as the event producer
and event consumer. It represents the interface for all end-users, from pedestrians
to vehicle operators. It publishes events like traffic congestion reports and listens to
updates like route optimizations or transportation schedules.



Future Internet 2024, 16, 81 7 of 23

• Vehicle Client (edge computing component): Mainly serves as the event producer.
It caters to all transportation modes, from cars to buses in the edge. This compo-
nent handles transport-specific events like maintenance alerts, vehicle statuses, and
location data.

• Traffic Management Service (hybrid cloud and edge computing component): This
service functions as a critical decision-making engine within our framework, operating
both at the edge and in the cloud to leverage the strengths of each environment.

– Edge Deployment: At the edge, the Traffic Management Service focuses on real-
time data processing and swift decision making. This proximity to the data
sources allows for immediate responses to dynamic traffic conditions, such as
adjusting traffic signals to alleviate congestion or responding to unexpected
incidents like accidents or road closures. The edge-based component ensures
minimal latency and maximizes the responsiveness of the traffic system.

– Cloud Deployment: In the cloud, the Traffic Management Service undertakes a
more comprehensive role. Utilizing the cloud’s extensive computational power
and vast data storage capabilities, it conducts complex analyses of traffic patterns,
predictions of future trends, and development of long-term traffic strategies. The
cloud-based service also performs validation and verification of the decisions
made at the edge, ensuring overall system accuracy and reliability.

• Location and Infrastructure Monitoring Service (cloud computing component): This
service continuously monitors events published by edge servers, facilitating a global
analysis of the accumulated data. It rapidly responds to and computes related services,
integrating insights from across the network. Additionally, this service is responsible
for storing data, ensuring that valuable information is retained for long-term analysis
and strategic planning.

Compared to other architectural paradigms, our EDA stands out for its event-focused
and asynchronous nature. It contrasts with synchronous patterns like model-view-controller
(MVC) and modularity-emphasizing microservices, which can sometimes involve syn-
chronous calls. Our architecture also shares parallels with the event sourcing pattern but
emphasizes reactive event handling rather than mere event logging.

Capitalizing on EDA’s inherent strengths and MQTT protocol, our architecture strives
for scalability, instantaneous responsiveness, and fault resilience, making it suitable for the
ever-evolving needs of smart transportation systems.

3.3. MQTT for Event Transport in Edge Computing

Edge computing necessitates efficient communication protocols for real-time data
processing, resource-constrained environments, and seamless device/sensor interactions.
Choosing the right protocol significantly impacts component interaction, latency, band-
width utilization, scalability, and security—all crucial factors in edge computing.

Given these demands, MQTT (Message Queuing Telemetry Transport) [27] emerges
as a prime candidate. Its lightweight footprint aligns well with the resource limitations
of edge devices. Built on a publish–subscribe model, MQTT inherently facilitates event-
driven communication, where events are transported through clients subscribing and
publishing messages to the broker. Moreover, MQTT offers various quality of service (QoS)
levels, ensuring reliable message delivery. This combination of features makes MQTT a
well-balanced choice for edge computing requirements.

The following discussion details the rationale behind selecting MQTT for our pro-
posed architecture.

3.3.1. Protocol Comparison for Edge Computing

CoAP (Constrained Application Protocol), AMQP (Advanced Message Queuing Proto-
col), MQTT, and HTTP (HyperText Transfer Protocol) are popular messaging protocols for
IoT and edge computing [28]. While HTTP boasts widespread support and robustness, its
resource demands outweigh its benefits in resource-constrained edge environments. Both



Future Internet 2024, 16, 81 8 of 23

CoAP and MQTT excel in low-bandwidth and resource-constrained settings, even run-
ning on 8-bit microcontrollers with minimal memory. However, MQTT provides superior
throughput and more reliable data delivery options through its QoS levels across low- and
high-traffic scenarios. In contrast, AMQP, although adept at complex messaging patterns,
falls short in edge computing due to its larger header size and increased complexity [29].

3.3.2. Leveraging MQTT 5.0 for Scalability and Feature Enhancement

The introduction of MQTT 5.0 significantly strengthens its scalability and caters to
both large-scale systems and small clients. Features like shared subscriptions and message
expiry enhance message management and distribution in large deployments [27]. Session
and message expiry intervals offer greater control over session states and message lifetimes,
optimizing resource usage, especially in resource-constrained environments. Additionally,
MQTT 5.0 introduces new message properties like content type, correlation data, and user
properties, enriching the contextual information available for complex data processing and
real-time decision making in edge computing systems.

3.3.3. Elixir and MQTT: A Symbiotic Synergy for Edge Computing

Compared to other languages, Elixir’s tight integration with MQTT offers robust
concurrency processing capabilities. Elixir’s lightweight process model and extensive
use of asynchronous messaging enable efficient multicore resource utilization, leveraging
parallel computing power. Each MQTT connection and session can map to an individual
Elixir process, transparently allocated across CPU cores by the scheduler. This one-to-one
mapping allows Elixir to handle massive concurrent MQTT connections with superior
performance, showcasing its parallel processing capabilities. Studies have demonstrated
that Elixir MQTT brokers can support millions of connections with significantly lower
latency than other languages.

Furthermore, Elixir’s distributed capabilities align seamlessly with MQTT clustering.
Through named process registration, Elixir nodes can easily collaborate to construct a
geographically distributed, logically unified large-scale MQTT cluster. This cluster auto-
matically load-balances and provides redundancy for fault tolerance, effortlessly managing
vast numbers of users and messages.

Finally, Elixir’s functional characteristics offer succinct pattern matching capabilities
for handling MQTT events, reducing code complexity. Mature MQTT client/server libraries
in the Elixir ecosystem expedite development.

In conclusion, Elixir’s tight integration with MQTT establishes a powerful program-
ming framework, synergistically combining their strengths to achieve optimal performance
and functionality in edge computing applications.

4. Two Case Studies of the Proposed Framework

This section presents two case studies demonstrating the efficacy and versatility of the
proposed framework within the domain of smart transportation.

4.1. Traffic Light System for Smart Transportation
4.1.1. Motivation and Approach

Traditional schedule-driven traffic light systems often struggle to adapt to dynamic
traffic conditions, leading to unnecessary delays and congestion. To address these limi-
tations, we propose an event-driven architecture (EDA) for adaptive traffic light control
within the context of smart transportation. This innovative approach leverages real-time
data from diverse sources to dynamically adjust signal timings, potentially minimizing
delays and promoting smoother traffic flow compared to fixed-schedule systems [30].

Our proposed system builds upon existing advanced traffic control systems (ATCSs)
by incorporating an event-driven paradigm. This enables seamless communication and
response between various system components acting as both event producers and con-
sumers. Real-time events such as pedestrian crossings, accidents, and congestion can be



Future Internet 2024, 16, 81 9 of 23

efficiently communicated and acted upon, empowering the system with rapid adaptability
to changing traffic conditions. Elixir’s inherent scalability and concurrency, as discussed in
previous sections, further contribute to the system’s responsiveness and effectiveness in
handling dynamic traffic patterns.

In addressing the specific scheduling challenges of traffic light signals, our approach
incorporates the Oldest Arrival First (OAF) algorithm [31]. The OAF algorithm, known
for its efficiency in vehicular traffic scheduling, utilizes real-time position and speed data
of individual vehicles. By focusing on isolated traffic intersections, the OAF algorithm
aims to minimize delays, enhancing the overall fluidity of traffic movement. By integrating
real-time data received from sensors into this algorithm, we can dynamically adjust the
scheduling of traffic lights based on real-time analysis. The output of the OAF algorithm,
combined with our EDA’s responsive policies, allows us to effectively address constantly
changing traffic events.

The OAF algorithm’s unique capability to process per-vehicle data enables us to
dynamically adjust traffic signals in response to immediate traffic conditions. The synergy
between the OAF algorithm and our EDA forms the foundation of our proposed smart
transportation system.

4.1.2. System Architecture and Implementation

We demonstrate the effectiveness of our approach using a busy crossroads as a testbed,
as shown in Figure 2. Sensors strategically placed at the intersection act as event producers,
continuously capturing data on vehicle presence, speed, and pedestrian movements. These
data points are then transmitted as event messages to roadside units (RSUs) acting as event
consumers. The RSUs handle real-time decision making and adjustments based on the
received information.

Roadside Unit Roadside UnitTraffic Light

Vehicle 1

Centralized cloud
systemsVehicle 2

"Accident"

Accident detected

Publish message

Upload to the cloud

Publish message

Figure 2. Typical use case of a traffic light system.

The core functionality revolves around event propagation and response:

• When congestion or an accident is detected, the closest RSU publishes a unique event
message to the MQTT broker.

• This triggers downstream RSUs on the same street to receive the message and dynam-
ically calculate new route plans for affected vehicles, potentially miles away from the
initial event.

• The edge server, running on Elixir, executes immediate control actions based on the
updated route plans.

• Centralized cloud systems oversee the broader traffic network and initiate larger
adjustments when necessary.

Elixir plays a crucial role in ensuring data integrity and consistency throughout this
process. Its functional programming paradigm, featuring immutable data structures,



Future Internet 2024, 16, 81 10 of 23

safeguards data from inadvertent modifications. For instance, an intersection sensor’s
real-time vehicle density data are represented as an immutable structure shared with
two processes: one analyzing city-wide traffic flow and another managing the specific
intersection. If the centralized analysis process predicts modifications elsewhere based on
this shared data, it does not alter the original structure. This ensures that the intersection
control process operates with unaltered data, maintaining consistent and accurate signal
timing adjustments based on real-time conditions.

4.1.3. Beyond Traffic Flow Optimization

The benefits of this system extend beyond optimized traffic flow and reduced de-
lays. By minimizing stop-and-go driving, a major contributor to urban vehicle emissions,
the system indirectly contributes to a lower carbon footprint for smart transportation
systems [32]. This aligns with sustainability goals and leads to improved air quality for
urban residents.

4.2. Cab Dispatch System

This subsection presents our second case study: an event-driven cab dispatch system
designed for edge computing environments. Such environments demand systems capable
of efficiently handling diverse and bursty data streams, effectively utilizing multicore
architectures, and dynamically adapting to evolving sensor networks. Our prototype
system tackles these challenges and showcases the suitability of Elixir for edge computing
applications through its robust concurrency and real-time data processing capabilities.

Figure 3 provides an overview of the system architecture. The detailed implementation
aspects of this architecture are discussed in the subsequent section. User-facing passenger
and driver applications act as event producers. Passengers initiate ride requests, while
drivers simulate location updates, both publishing lightweight messages to a central MQTT
broker. A dedicated Elixir-based dispatch service acts as an event consumer, subscribing
to these messages and dynamically assigning drivers to passengers based on real-time
location and predefined rules.

Subscribe Publish

SubscribePublish

Driver Application Passenger Application

MQTT Broker

Figure 3. Utilization of the publish/subscribe model in the cab dispatch system.

Elixir’s strengths excel in this context, enabling the system to meet the demands of
edge computing:

• Lightweight process model: Efficiently manages high concurrency arising from nu-
merous passengers and drivers, eliminating performance bottlenecks.

• Asynchronous messaging: Facilitates real-time responses, ensuring a quick and effi-
cient dispatching experience with minimal latency.

By leveraging these key advantages, our prototype demonstrates the effectiveness of
Elixir in latency-sensitive edge computing applications. It paves the way for wider adoption
of Elixir in similar scenarios, particularly those requiring robust real-time processing and
reliable service delivery.



Future Internet 2024, 16, 81 11 of 23

5. Details of Prototype System
5.1. Event-Driven Design and Components

Figure 4 delves deeper into the event-driven design of the cab dispatch system, high-
lighting its core components and interactions. In this prototype system, events, event
producers, and event channels are implemented as follows.

Event ChannelEvent Producer

Producer A MQTT 
Broker

Event loop
 
 Event

Event Consumer

Events Events

SubsribePublish

Producer B

Producer C

Consumer A

Consumer B

Consumer C

Figure 4. Workflow of the event-driven architecture for the smart transportation system.

5.1.1. Events

The system operates on a foundation of defined events, representing significant occur-
rences within the system’s lifecycle. Core event types include the following:

• CabRequested: Initiated by a passenger application, signifying a ride request with
details like passenger ID and destination.

• CabRequestAccepted: Emitted by a driver upon accepting a ride request, confirming
their intent to fulfill the request.

• CabArrived: Indicates the driver’s arrival at the passenger’s pickup location.
• TripStarted: Marks the commencement of the passenger’s journey with the cho-

sen driver.
• TripEnded: Signifies the completion of the trip upon reaching the desired destination.

Additional event types can be readily incorporated to cater to future needs and system
enhancements. These events are structured data payloads published to the MQTT broker,
facilitating efficient and decoupled communication. Upon receiving an event, the dispatch
service transitions the corresponding request through its state machine, moving it from
pending to assigned, and, subsequently, through other relevant states. For instance, a
CabRequest event triggers the transition from pending to assigned, while a TripEnded
event marks the final state. This explicit state management allows for clear observation and
control of the system’s evolution.

5.1.2. Event Producers

Proactive entities within the system act as event producers, encapsulating complex
backend details and emitting only meaningful events. Different entities can assume the role
of producer depending on the context. In our case, the passenger and driver applications
serve as primary producers:

• Passenger application: Publishes CabRequested events upon initiating ride requests.
• Driver application: Publishes CabRequestAccepted events when accepting ride re-

quests and periodically generates LocationUpdate events to broadcast their current lo-
cation.

This producer-driven approach enables consistent event exposure, simplifying the
integration of new data sources and promoting system flexibility.



Future Internet 2024, 16, 81 12 of 23

5.1.3. Event Channels

The MQTT broker serves as the system’s central event channel, providing reliable and
persistent message transmission between producers and consumers. It acts as a message
broker, actively listening for incoming connections, requests, and messages. When a pro-
ducer publishes an event, the broker filters, validates, and queues it for replayable delivery,
ensuring message integrity and resilience. This asynchronous dispatching facilitates decou-
pled services and enhances the overall effectiveness of the event-driven architecture. The
broker’s event loop architecture efficiently distributes millions of events per second across
geographically distributed edge devices, enabling real-time responsiveness and scalability.

5.2. Cab Dispatch Scenario: A Sequence of Events

The cab dispatch scenario unfolds through a series of orchestrated interactions between
key system components: the passenger application, MQTT broker, dispatch service, and
driver application. Figure 5 visualizes these interactions using a UML sequence diagram,
highlighting the chronological flow of events:

Passenger
Application MQTT Broker

1. Publish Request

7. Broadcast Arrival

4. Accept Request

Dispatch Service Driver Application

2. Broadcast Request

3. Assign Driver

5. Notify Acceptance

9. Broadcast Start

11. Broadcast End

Subscribe to Topic 

12. Notify Availability 

Figure 5. The sequence diagram of the cab dispatch system.

1. Cab Requested: Initiated by the passenger application, this event signifies a ride
request and includes details like passenger ID and desired destination. The passenger
application publishes this event to the MQTT broker and subscribes to the topic for
receiving cab acceptance notifications.

2. Cab Request Broadcasted: Upon receiving the CabRequested event, the MQTT broker
acts as a message intermediary, broadcasting it to all subscribed entities, including the
dispatch service and driver applications.

3. Driver Assigned: The dispatch service receives the broadcasted request and, applying
predefined rules like driver proximity and availability, assigns the request to the most
suitable driver.



Future Internet 2024, 16, 81 13 of 23

4. Cab Request Accepted: The assigned driver acknowledges the request by publishing
a CabRequestAccepted event to the MQTT broker.

5. Acceptance Notification Broadcasted: Similar to the request, the broker relays the
acceptance notification to all subscribers, including the passenger application, con-
firming the assigned driver.

6. Cab Arrived: The driver application simulates the driver’s journey to the passenger’s
location and, upon arrival, publishes a CabArrived event to notify the system.

7. Arrival Notification Broadcasted: The broker forwards the arrival notification to
subscribed entities, informing the passenger that the driver has arrived at the pickup
point.

8. Trip Started: Once the passenger boards the cab, the driver application publishes a
TripStarted event to mark the commencement of the trip.

9. Trip Start Notification Broadcasted: The broker disseminates the start notification,
informing all subscribers, including the passenger application, that the trip has begun.

10. Trip Ended: Upon reaching the destination, the driver application publishes a TripEnded
event to signify the completion of the trip.

11. Trip End Notification Broadcasted: The broker broadcasts the final notification to all
subscribers, informing them of the trip’s completion.

12. Cab Availability Notification: The driver application updates its status to available by
notifying the dispatch service, allowing it to assign subsequent ride requests.

This sequential flow exemplifies the event-driven nature of the system, where indi-
vidual events trigger specific actions and state transitions, orchestrating the entire cab
dispatch process.

5.3. Basic Components
5.3.1. Driver Application

The Driver application, designed for edge devices, continuously updates the driver’s
location to simulate real-time movement. In the experimental evaluation described in the
next section, we achieve this by generating random geographical coordinates at regular
intervals. The application comprises two primary modules:

• Location Update Module: Generates random location updates for each driver, mim-
icking continuous position changes through periodic updates. Listing 1 demonstrates
a code snippet showcasing this periodic location update functionality.

• MQTT Publishing Module: Publishes location updates as JSON-encoded messages to
the MQTT broker under the driver’s unique topic. Additionally, it synchronizes all sim-
ulated taxis’ statuses and publishes pickup requests when drivers become available.

Listing 1. Updating the driver’s current location in real time.

1 def update_location(driver_id) do
2 :timer.sleep (1000)
3

4 location = generate_random_location ()
5

6 :ok = publish_location(driver_id , location)
7

8 update_location(driver_id) # Keep the loop going
9 end

10

11 defp generate_random_location () do
12 %{latitude: rand (0..90) , longitude: rand (0..180)}
13 end
14

15 defp publish_location(driver_id , location) do
16 event = %{driver_id: driver_id , location: location , timestamp:

DateTime.utc_now ()}



Future Internet 2024, 16, 81 14 of 23

17

18 event_binary = Jason.encode!(event)
19

20 :ok = :emqtt.publish(conn , "driver /#{driver_id}/location",
event_binary)

21 end

The Elixir application concurrently manages hundreds of taxi objects, including their
real-time location and state changes, replicating an actual taxi dispatch scenario. This
application runs autonomously, simulating multiple drivers updating and publishing their
locations indefinitely, demonstrating Elixir’s robustness and suitability for long-running
edge computing processes.

5.3.2. Passenger Application

Hosted on the AWS cloud, the passenger application allows passengers to initiate
ride requests. It serves as the entry point for submitting requests, specifying details like
passenger ID and destination. After submitting a request, the application establishes an
MQTT broker connection and subscribes to dedicated topics based on the request ID.

Listing 2 illustrates this subscription using the :emqtt.subscribe/2 function, focusing
on topics like events/cab_requested/#passenger_id, Here, #passenger_id is replaced with
the actual ID of the passenger, ensuring that the application only receives updates relevant
to its specific requests. This ensures the application receives only updates relevant to its
specific request. It then enters a listening state, waiting for incoming MQTT messages
that provide real-time ride status updates. These messages are processed to inform the
passenger about their ride’s current status.

Listing 2. Request status monitoring.

1 {:ok , conn} = :emqtt.start_link([clientid: "PassengerApp",
clean_start: false])

2

3 :ok = :emqtt.subscribe(conn ,
"events/cab_requested /#{passenger_id}")

4

5 receive do
6 {:publish , publish} ->
7 IO.inspect(publish)
8 end

5.3.3. Dispatch Service

The dispatch service matches passenger requests available taxis based on proximity.
It subscribes to MQTT messages containing passenger requests and, upon receiving one,
spawns lightweight Elixir processes to concurrently calculate proximity for all idle taxis.
This concurrent approach significantly reduces matching computation time. Additionally,
we plan to implement load-balancing algorithms in the future.

The dispatch module publishes the assignment result via MQTT to the assigned
driver’s topic. If no drivers are available, it sends a notification to the passenger about the
failed assignment. Leveraging Elixir’s efficient concurrency and distributed communication
primitives, this module enables fast and reliable order dispatching.

6. Evaluation

Our evaluation methodology is designed to assess the performance of the cab dis-
patch system within an edge computing paradigm, focusing on several critical metrics:
response time latency, concurrency handling under high load conditions, fault tolerance,
and multicore processing efficiency. Recognizing the complexity and variability of real-
world IoT hardware environments [33], our current testing uses a purely software-based



Future Internet 2024, 16, 81 15 of 23

environment, and future work will include detailed hardware simulations to enhance the
practical applicability and robustness of our findings in diverse IoT contexts. Additionally,
we also conducted experiments under simulated constrained network conditions to mimic
potential real-life challenges. The testbed for our experiments is a MacBook Pro equipped
with an Apple M1 chip, featuring 8 cores (4 performance and 4 efficiency cores), and 8 GB of
RAM, running macOS Monterey version 12.6. Our test programs were developed in Elixir
version 1.14.3, compiled with Erlang/OTP 25. The EMQX MQTT broker was deployed
within a Docker container on macOS, and the MQTT clients were operational on Ubuntu
VMs, version 22.04.1.

6.1. Latency Testing

We initially focused on response time, defined as the interval between dispatch request
initiation by the driver application and its receipt by the passenger application. More
specifically, the driver application sends the location to the broker, and the passenger
application subscribing to the same topic in the broker will process the location message
from the driver application. This test scrutinized system responsiveness, including Phoenix
LiveView’s hot code loading capabilities. To mimic real-world conditions, the Locust
script’s “wait_time” parameter controlled the dispatching of real-time location updates at
10 to 30 s intervals. This parameter means that every virtual driver will send the real-time
location in every 10 to 30 s.

Further iterations of the test varied the number of virtual drivers and their spawn
rate to observe the system’s behavior under different loads. As depicted in Figure 6, we
executed five sets of tests with varying user counts and spawn rates. The term “spawn
rate” here describes the velocity of virtual user generation per second during the test. For
instance, in the first group, with a spawn rate of 2 and a target of 100 users, the system
incrementally added two users per second until it reached the full count. The results were
promising: the median latency stayed below 5 ms, showcasing efficient data processing for
the majority of transactions. At the 80th percentile, even with 2000 users, the latency only
peaked around 8 ms, indicating that 80% of the transactions were processed within 8 ms.
Such performance underscores the framework’s aptness for edge computing scenarios,
where swift response times are critical.

100/2 500/10 1000/20 2000/40 5000/50 5000/100

5

10

15

Median (50th percentile)

Mean

80th percentile

90th percentile

Response Time vs Number of Users/Spawn Rate

Number of users/Spawn rate

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Figure 6. Latency comparison of different groups.



Future Internet 2024, 16, 81 16 of 23

Elixir’s functional programming paradigm and the Erlang VM’s robust concurrency
model contribute to this consistent performance under complex, concurrent processing
scenarios. These features equip the system for the real-time demands of edge computing.

Furthermore, to present a more vivid and direct representation of our system’s per-
formance, we conducted uninterrupted tests with 2000 and 10,000 users, respectively. Key
segments of these tests are illustrated in Figures 7 and 8. The plots predominantly show
that the majority of response times are maintained below 8 milliseconds. Notably, while
occasional latency spikes were observed, the system leveraged Elixir’s fault tolerance capa-
bilities to quickly return to optimal latency ranges under 8 milliseconds. This demonstrates
the resilience and stability of our system even under fluctuating conditions.

22:05:30

Dec 24, 2023

22:06:00 22:06:30 22:07:00 22:07:30 22:08:00

0

20

40

60

80

100

120

140

Driver App to Passenger App Message Transmission Latency Over Time (20,00 Drivers Test)

Timestamp

L
a
t
e
n
c
y
 (

m
il
li
s
e
c
o
n
d
s
)

Figure 7. Latency from passenger app to driver app of 2000 users group.

20:39:00

Dec 24, 2023

20:39:30 20:40:00 20:40:30

0

20

40

60

80

100

120

140

160

Driver App to Passenger App Message Transmission Latency Over Time (100,000 Drivers Test)

Timestamp

L
a
t
e
n
c
y
 (

m
il
li
s
e
c
o
n
d
s
)

Figure 8. Latency from passenger app to driver app of 10,000 users group.



Future Internet 2024, 16, 81 17 of 23

In scenarios simulating extreme conditions with up to 10,000 users, the system still
sustained its performance level. Even with the increased load, the scatterings of peak
latency did not exceed 160 ms. This resilience under high user volume is particularly
significant, highlighting the system’s compatibility with smart transportation applications
that demand low latency and high-density user environments.

Latency Comparison with EdgeX Foundry

EdgeX Foundry is a well-known, highly flexible, and scalable open-source edge
computing platform that facilitates interoperability between devices and applications at the
IoT Edge [34]. We conducted stress tests on the EdgeX Foundry platform under the same
testing conditions. Specifically, we configured our test environment on an Ubuntu virtual
machine and adjusted the conditions described in Section 6.1. Using EdgeX’s built-in
device-virtual service, we simulated a cab client and a passenger client, and we conducted
the stress tests by using the wrk tool. The tests had the following results: with 8 threads
and 50 connections, the average latency was 15.77 ms, with a latency distribution of 75%
at 19.04 ms and 90% at 23.52 ms. In comparison, stress tests conducted on our framework
using locust demonstrated a lowest average latency of 5 ms, with a 90% latency distribution
at 9 ms. This comparative testing showcases the low-latency advantage of our framework.
Further detailed comparative research with other frameworks will be conducted in our
future work.

6.2. Throughput Testing and Resource Utilization under Load

The next evaluation focused on throughput, analyzing concurrency handling capability
under load. The Locust script’s “wait_time” was set to 2–8 s to simulate peak traffic
conditions, alongside increasing user numbers and spawn rates up to 40,000 users and
5000 spawn rate. Requests per second (RPS) serves as a crucial metric reflecting the
system’s ability to process incoming requests. Figure 9 illustrates the system’s consistent
RPS performance across various stress conditions. The results confirm robust performance,
efficiently handling high request volumes during peak traffic periods.

10000/1000 20000/1000 20000/2000 40000/2000 40000/5000
0

50

100

150

200

type

Highest RPS

RPS

Comparison of Highest RPS and RPS for different Number of users/Spawn rate

Number of users/Spawn rate

R
e
q
u
e
s
t
s
/s

Figure 9. Throughput testing in different sets of groups.

Additionally, resource utilization, defined as the ratio of the actual time spent by re-
sources executing the workload, is another critical metric in the edge computing
paradigm [35]. In the throughput testing under load, we also monitored the CPU uti-



Future Internet 2024, 16, 81 18 of 23

lization to assess the overall resource utilization. We focused specifically on the 40,000 user
and 5000 spawn rate scenario, and observed a peak CPU utilization of 58%. This figure
indicates a balanced resource usage. While lower utilization suggests the availability
of additional resources, higher average CPU utilization does not necessarily equate to
more efficient orchestration [36]. Indeed, high levels of CPU utilization might indicate
load accumulation on other resources due to inefficient load or resource management [37].
The relatively modest resource utilization observed in our tests could be attributed to
Elixir’s lightweight process model. However, it also highlights opportunities for further
optimization of resource usage in future work.

6.3. Constrained Network Conditions Testing

In real-world edge network environments, a variety of factors can contribute to unsta-
ble network conditions. Examples in edge networks include varying signal strengths due to
geographical locations, network congestion caused by high user density, and intermittent
connectivity issues in remote areas. Testing system performance under such unstable
network conditions is crucial for improving our framework in edge computing scenarios.

We set three groups of contained network conditions and evaluated them as shown in
Figure 10.

Figure 10. Different constrained network conditions testing.

• Constrained_1: This scenario involved a network condition with a fixed delay of
100 ms and a packet loss rate of 1%. Under these conditions, the system managed to
handle 8184 requests without any failures, maintaining an average RPS of 28.0. The
mean latency was recorded at 114.19 ms, with the 90th percentile latency reaching
119.0 ms.

• Constrained_2: This scenario set a base latency of 100 ms with a random fluctuation
of up to ±20 ms. The system processed 4575 requests and exhibited an average RPS of
20.7. The mean latency increased slightly to 121.32 ms, and the 90th percentile latency
rose to 165.0 ms, reflecting the impact of variable delay conditions.

• Constrained_3: This scenario tested the system’s response to a higher packet loss rate
of 5%. Despite this challenge, the system processed 6358 requests and achieved an
average RPS of 22.6. Without extra latency added in this test, the mean latency in
this scenario was significantly lower, at 29.92 ms, and the 90th percentile latency was
20.0 ms.

For comparison, under normal conditions without any imposed network constraints,
the average latency of the system was around 8 ms. The observed latency showed an
accordingly additional increase over the standard measurements, demonstrating a linear
response to the network delay introduced.

6.4. Fault Tolerance Testing

In fault tolerance testing, we designed two primary experimental scenarios to assess
the system’s performance on fault tolerance: interruptions of the MQTT Broker service
and terminations of Elixir processes. The system’s response in these scenarios reflects its
recovery capabilities and robustness.

• MQTT Broker Service Interruption: In this experiment, we demonstrate the system’s
resilience when a critical communication component fails. With the MQTT broker
positioned at the network edge, maintaining the integrity of complex event transmis-
sions is crucial, especially when encountering unforeseen incidents such as power



Future Internet 2024, 16, 81 19 of 23

outages. Equally important is the ability of MQTT clients to reconnect and quickly
return to low-latency operations. As shown in the logs and the accompanying figure,
we simulated the latency variations during a broker power outage and subsequent
restart. Here, latency refers to the delay experienced by the passenger application
in reconnecting to the restarted broker. The log data, with initial latencies exceed-
ing 3000 ms back to the average condition of 10 ms, indicate that the reconnected
passenger application rapidly processed messages sent during the outage. When
the broker is powered down, the connection between the broker and clients breaks
down immediately, the message sent by the driver application will be stored in the
broker immediately, and the passenger will automatically keep trying to reconnect
and listen to the same topic. When the MQTT broker is powered again, the system
will process the omitted events first then quickly return back to normal performance.
The system swiftly transitioned from high latency back to low latency, demonstrating
rapid recovery capabilities.

• Elixir Process Interruption:
Before the details of the experimental setup, it is necessary to briefly explain the
language logic of Elixir that underpins its fault tolerance.
In BEAM-based systems, resilience is fundamentally rooted in the complete isolation
and independence of each process. This isolation is a key aspect of Elixir’s fault
tolerance, ensuring that a crash in one process does not affect others. BEAM processes
are lightweight, concurrent entities managed by the virtual machine (VM), which
schedules their execution. Typically, BEAM employs as many schedulers as there are
available CPU cores, with each scheduler operating in its own thread, while the entire
VM runs within a single OS process [38]. Figure 11 shows a simplified version of
the real experiment environment. Moreover, each process can maintain its state and
communicate with other processes to manipulate or access this state. In Elixir, data
immutability is a core principle. Processes act as containers for this data, preserving
immutable structures over time, sometimes indefinitely.
In addition to its inherent resilience, Elixir further enhances fault tolerance through
the implementation of specialized supervisor processes. These supervisor processes
are solely responsible for supervision processes, which are called child processes.
Whenever a child process terminates, the supervisor promptly initiates a replacement,
utilizing various strategies to manage these processes. This approach effectively
reduces the cascading failures and the frequency of restarts that might be triggered by
linked process crashes.
Our experimental setup within the passenger application is depicted in Figure 11,
which includes a primary supervisor executing the rest_for_one strategy. This
strategy ensures that when a child process crashes, the supervisor terminates all sub-
sequently listed processes in the child specification. This is particularly crucial for
Process_1, which gathers other system components and needs to maintain consistent
state updates to avoid data conflicts. Both the SystemSupervisor and ServerSuper-
visor employ the one_for_one strategy, whereby the crashing and restarting of their
supervised processes do not impact the operation of others.
The experimental results under the supervisor tree are presented in Table 1. Differing
from the random process terminations of chaos monkey experiments, we deliberately
terminated processes to observe the anticipated restart/no-restart behaviors. As
shown in the table, the outcomes matched our expectations: terminating Process_1
led to the restart of all processes; terminating Process_2 did not trigger any restarts;
and since Process_3 and Process_4 are linked, the crash of either affected the other.
In summary, Elixir’s process and supervisor mechanisms flawlessly uphold its fault
tolerance capabilities. Within the edge computing paradigm, these features can offer
vast prospects for smart transportation applications.



Future Internet 2024, 16, 81 20 of 23

Table 1. Testing of processes to be killed and the existence/nonexistence.

Process
Killed Process Process_1 Process_2 Process_3 Process_4

ine Process_1
✓ ✓ ✓

ine Process_2
✗ ✓ ✓

ine Process_3
✗ ✓ ✓

ine Process_4
✗ ✓ ✗

Scheduler

ProcessProcessProcess

OS Thread

Scheduler

ProcessProcessProcess

OS Thread

Scheduler

ProcessProcessProcess

OS Thread
BEAM

Supervisor
(rest_for_one)

Process_1 SystemSupervisor
(one_for_one)

ServerSupervisor
(one_for_one)

Process_2

Supervisor Process 1. Start the
supervisor

Process_3

2. Takas
different strateges

for isolated processes

Process_4

Linking processes

OS process

Figure 11. BEAM works as a single OS process and the processes under the supervisor tree.

6.5. Multicore Programming

Listing 3 presents a simulation involving 500 concurrent events, each calculating the
Euclidean distance from the origin to a random point. By invoking :erlang.system_info,
we determined the number of schedulers used by the Erlang runtime system (typically
one scheduler per CPU core). Not only for this individual experiment, but all the above
testings were also monitored to use multicore during the process. Our results confirmed



Future Internet 2024, 16, 81 21 of 23

that the Erlang runtime utilized all eight cores of the Apple M1 chip, demonstrating Elixir’s
effectiveness in leveraging multicore architecture.

Listing 3. Elixir multicore programing example.

1

2 defmodule ConcurrencyTest do
3 def distance_to_origin(x, y), do: :math.sqrt(x * x + y * y)
4

5 def test_concurrency(num_tasks) do
6 tasks = 1.. num_tasks
7 |> Enum.map(fn _ ->
8 Task.async(
9 fn ->

10 x = :rand.uniform (1000)
11 y = :rand.uniform (1000)
12 distance_to_origin(x, y)
13 end) end)
14 |> Enum.map(&Task.await /1)
15

16 IO.puts("Schedulers:
17 #{:erlang.system_info
18 (: schedulers_online)}")
19 end
20 end
21

22 ConcurrencyTest.test_concurrency (500)
23

24 IO.inspect (: erlang.system_info
25 (: schedulers_online))

6.6. Summary

The evaluations, encompassing both response time and throughput under high load,
demonstrate the system’s reliability and scalability. In an edge computing environment,
the cab dispatch system exhibits both agile response and sturdy concurrency management,
making it well suited for edge-centric solutions.

7. Concluding Remarks

This paper proposed an edge computing architecture tailored for real-time, distributed
applications. Our solution leverages Elixir’s unique capabilities: its lightweight concurrent
processing model for efficient resource utilization, and robust fault tolerance mechanisms
inherited from Erlang/OTP for enhanced system resilience. Additionally, we employed the
MQTT protocol for asynchronous event transport due to its proven efficiency and reliability
in distributed environments.

The evaluation of our framework through a cab dispatch prototype demonstrated its
strengths. The prototype achieved low-latency and high-concurrency capabilities, under-
lining the effectiveness of Elixir’s multicore utilization for edge computing scenarios. This
successful prototype exemplifies the potency of Elixir in crafting scalable and responsive
edge applications.

Our findings offer a valuable contribution to the field by furthering the integration of
Elixir and event-driven models within edge computing domains. This paves the way for
further scholarly discourse and exploration of Elixir’s potential in addressing the evolving
demands of real-time distributed systems at the edge.

In this study, we presented two case studies that collectively illustrate the unique ad-
vantages of adopting event-driven architecture (EDA) and the Message Queuing Telemetry
Transport (MQTT) protocol in smart transportation applications, demonstrating through



Future Internet 2024, 16, 81 22 of 23

testing the irreplaceable benefits of Elixir’s integration for system performance enhance-
ment. However, our experiments were conducted in a purely software environment; hence,
testing for broader application scenarios remains insufficient. As mentioned in the related
research section, we plan to continue framework improvement and testing on hardware
systems supporting the BEAM system, such as the Erlang-based GRiSP hardware platform,
aiming to propose a more comprehensive and application-enhanced version.

The research into these two case studies has led us to identify the optimal integration
of EDA and smart transportation, notably in rapid response to emergency events and in
reducing decision-making time during peak periods. At the same time, we have identified
other areas requiring further exploration, such as ensuring data protection while maintain-
ing efficient communication. Although Elixir and MQTT 5.0 provide us with high levels of
security, further research in this area will also be a part of our future work.

Author Contributions: Conceptualization, Y.L. and S.F.; methodology, Y.L. and S.F.; software, Y.L.;
validation, Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, Y.L. and S.F.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from
the corresponding author. The data are not publicly available due to as the data are part of an
ongoing study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pan, J.; McElhannon, J. Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J. 2017, 5,

439–449. [CrossRef]
2. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the Internet of Things. IEEE

Access 2017, 6, 6900–6919. [CrossRef]
3. Statista. Internet of Things (IoT) Total Annual Revenue Worldwide from 2020 to 2030. 2021. Available online: https://www.

statista.com/statistics/1194709/iot-revenue-worldwide/ (accessed on 15 January 2024).
4. Grand View Research. Edge Computing Market Size, Share & Trends Analysis Report by Component, by Application (Smart Grids,

Remote Monitoring), by End Use (Manufacturing, Healthcare), by Region, and Segment Forecasts, 2020–2027. 2021. Available
online: https://www.grandviewresearch.com/industry-analysis/edge-computing-market (accessed on 15 January 2024).

5. Li, Y.; Fujita, S. Design of Elixir-Based Edge Server for Responsive IoT Applications. In Proceedings of the 2022 Tenth International
Symposium on Computing and Networking Workshops (CANDARW), Himeji, Japan, 21–24 November 2022; pp. 185–191.
[CrossRef]

6. Rahmani, A.M.; Babaei, Z.; Souri, A. Event-driven IoT architecture for data analysis of reliable healthcare application using
complex event processing. Clust. Comput. 2021, 24, 1347–1360. [CrossRef]

7. Khazael, B.; Asl, M.V.; Malazi, H.T. Geospatial complex event processing in smart city applications. Simul. Model. Pract. Theory
2023, 122, 102675. [CrossRef]

8. Alvarez, M.G.; Morales, J.; Kraak, M.-J. Integration and exploitation of sensor data in smart cities through event-driven
applications. Sensors 2019, 19, 1372. [CrossRef] [PubMed]

9. Xiao, C.; Chen, N.; Gong, J.; Wang, W.; Hu, C.; Chen, Z. Event-driven distributed information resource-focusing service for
emergency response in smart city with cyber-physical infrastructures. ISPRS Int. J. Geo-Inf. 2017, 6, 251. [CrossRef]

10. Saeik, F.; Avgeris, M.; Spatharakis, D.; Santi, N.; Dechouniotis, D.; Violos, J.; Leivadeas, A.; Athanasopoulos, N.; Mitton, N.;
Papavassiliou, S. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control
theory solutions. Comput. Netw. 2021, 195, 108177. [CrossRef]

11. Luo, Q.; Hu, S.; Li, C.; Li, G.; Shi, W. Resource scheduling in edge computing: A survey. IEEE Commun. Surv. Tutor. 2021, 23,
2131–2165. [CrossRef]

12. Dunkel, J.; Fernández, A.; Ortiz, R.; Ossowski, S. Event-driven architecture for decision support in traffic management systems.
Expert Syst. Appl. 2011, 38, 6530–6539. [CrossRef]

13. Lee, W.-H.; Chiu, C.-Y. Design and implementation of a smart traffic signal control system for smart city applications. Sensors
2020, 20, 508. [CrossRef]

14. Ke, R.; Cui, Z.; Chen, Y.; Zhu, M.; Yang, H.; Wang, Y. Edge computing for real-time near-crash detection for smart transportation
applications. arXiv 2020, arXiv:2008.00549.

http://doi.org/10.1109/JIOT.2017.2767608
http://dx.doi.org/10.1109/ACCESS.2017.2778504
https://www.statista.com/statistics/1194709/iot-revenue-worldwide/
https://www.statista.com/statistics/1194709/iot-revenue-worldwide/
https://www.grandviewresearch.com/industry-analysis/edge-computing-market
http://dx.doi.org/10.1109/CANDARW57323.2022.00039
http://dx.doi.org/10.1007/s10586-020-03189-w
http://dx.doi.org/10.1016/j.simpat.2022.102675
http://dx.doi.org/10.3390/s19061372
http://www.ncbi.nlm.nih.gov/pubmed/30893843
http://dx.doi.org/10.3390/ijgi6080251
http://dx.doi.org/10.1016/j.comnet.2021.108177
http://dx.doi.org/10.1109/COMST.2021.3106401
http://dx.doi.org/10.1016/j.eswa.2010.11.087
http://dx.doi.org/10.3390/s20020508


Future Internet 2024, 16, 81 23 of 23

15. Kopestenski, I.; Van Roy, P. Achlys: Towards a framework for distributed storage and generic computing applications for wireless
IoT edge networks with Lasp on GRiSP. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), Kyoto, Japan, 11–15 March 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 875–881.

16. Kopestenski, I.; Van Roy, P. Erlang as an Enabling Technology for Resilient General-Purpose Applications on Edge IoT Networks.
In Proceedings of the 18th ACM SIGPLAN International Workshop on Erlang, Berlin, Germany, 18 August 2019; pp. 1–12.

17. Kalbusch, S.; Verpoten, V.; Van Roy, P. The Hera Framework for Fault-Tolerant Sensor Fusion with Erlang and GRiSP on an IoT
Network. In Proceedings of the 20th ACM SIGPLAN International Workshop on Erlang, Virtual, 26 August 2021; pp. 15–27.

18. Armstrong, J. A History of Erlang. In Proceedings of the Third ACM SIGPLAN Conference on History of Programming
Languages, San Diego, CA, USA, 9–10 June 2007; pp. 6-1–6-26.

19. Lilis, Y.; Savidis, A. A survey of metaprogramming languages. ACM Comput. Surv. (CSUR) 2019, 52, 1–39. [CrossRef]
20. Michelson, B.M. Event-driven architecture overview. Patricia Seybold Group 2006, 2, 10–1571.
21. Taylor, H.; Yochem, A.; Phillips, L.; Martinez, F. Event-Driven Architecture: How SOA Enables the Real-Time Enterprise; Addison-

Wesley Professional: Boston, MA, USA, 2009.
22. Khriji, S.; Benbelgacem, Y.; Chéour, R.; El Houssaini, D.; Kanoun, O. Design and implementation of a cloud-based event-driven

architecture for real-time data processing in wireless sensor networks. J. Supercomput. 2022, 1–28. [CrossRef]
23. Goyal, P.; Mikkilineni, R. Policy-based event-driven services-oriented architecture for cloud services operation & management.

In Proceedings of the 2009 IEEE International Conference on Cloud Computing, Bangalore, India, 21–25 September 2009;
pp. 135–138.

24. Apache Kafka. Kafka Streams. Available online: https://kafka.apache.org/documentation/streams/ (accessed on 15 January 2024).
25. Microsoft Azure. Azure Event Grid. Available online: https://azure.microsoft.com/en-us/services/event-grid/ (accessed on 15

January 2024).
26. RabbitMQ. RabbitMQ. Available online: https://www.rabbitmq.com/ (accessed on 15 January 2024).
27. MQTT Version 5.0, Technical Report; OASIS Standard: Woburn, MA, USA, 2019. Available online: https://docs.oasis-open.org/

mqtt/mqtt/v5.0/mqtt-v5.0.pdf (accessed on 22 June 2020).
28. Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017

IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–7.
29. Ouakasse, F.; Rakrak, S. A comparative study of MQTT and COAP application layer protocols via. performances evaluation. J.

Eng. Appl. Sci. 2018, 13, 6053–6061.
30. Zhao, Y.; Tian, Z. An overview of the usage of adaptive signal control system in the United States of America. Appl. Mech. Mater.

2012, 178, 2591–2598. [CrossRef]
31. Pandit, K.; Ghosal, D.; Zhang, H.M.; Chuah, C.-N. Adaptive traffic signal control with vehicular ad hoc networks. IEEE Trans.

Veh. Technol. 2013, 62, 1459–1471. [CrossRef]
32. Zhao, C.; Wang, K.; Dong, X.; Dong, K. Is smart transportation associated with reduced carbon emissions? The case of China.

Energy Econ. 2022, 105, 105715. [CrossRef]
33. Belson, B.; Holdsworth, J.; Xiang, W.; Philippa, B. A survey of asynchronous programming using coroutines in the Internet of

Things and embedded systems. ACM Trans. Embed. Comput. Syst. (TECS) 2019, 18, 1–21. [CrossRef]
34. EdgeX Foundry. n.d. Available online: https://www.edgexfoundry.org/ (accessed on 15 January 2024).
35. Gill, S.S.; Chana, I.; Singh, M.; Buyya, R. CHOPPER: An intelligent QoS-aware autonomic resource management approach for

cloud computing. Clust. Comput. 2018, 21, 1203–1241. [CrossRef]
36. Aslanpour, M.S.; Gill, S.S.; Toosi, A.N. Performance evaluation metrics for cloud, fog and edge computing: A review, taxonomy,

benchmarks and standards for future research. Internet Things 2020, 12, 100273. Available online: https://www.sciencedirect.
com/science/article/pii/S2542660520301062 (accessed on 15 January 2024). [CrossRef]

37. Aslanpour, M.S.; Ghobaei-Arani, M.; Toosi, A.N. Auto-scaling web applications in clouds: A cost-aware approach. J. Netw.
Comput. Appl. 2017, 95, 26–41. [CrossRef]

38. Juric, S. Elixir in Action; Simon and Schuster: New York, NY, USA, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3354584
http://dx.doi.org/10.1007/s11227-021-03955-6
https://kafka.apache.org/documentation/streams/
https://azure.microsoft.com/en-us/services/event-grid/
https://www.rabbitmq.com/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
http://dx.doi.org/10.4028/www.scientific.net/AMM.178-181.2591
http://dx.doi.org/10.1109/TVT.2013.2241460
http://dx.doi.org/10.1016/j.eneco.2021.105715
http://dx.doi.org/10.1145/3319618
https://www.edgexfoundry.org/
http://dx.doi.org/10.1007/s10586-017-1040-z
https://www.sciencedirect.com/science/article/pii/S2542660520301062
https://www.sciencedirect.com/science/article/pii/S2542660520301062
http://dx.doi.org/10.1016/j.iot.2020.100273
http://dx.doi.org/10.1016/j.jnca.2017.07.012

	Introduction
	Background
	Related Research
	Related Work Concerned with EDA
	Related Work Concerned with Smart Transportation
	Related Work Concerned with Elixir/Erlang-Based Systems


	Elixir Programming Language
	Erlang: A Foundation for Resilience
	Elixir: Building on Erlang's Legacy
	Elixir's Programming Model
	Polymorphism via Protocols
	Powerful Meta-Programming Capabilities
	Concise and Expressive Functional Code

	Summary: Why Elixir for Edge Computing?

	Architecture Design
	Event-Driven Architecture for Edge Computing
	Key Components in the Proposed EDA-MQTT Framework
	MQTT for Event Transport in Edge Computing
	Protocol Comparison for Edge Computing
	Leveraging MQTT 5.0 for Scalability and Feature Enhancement
	Elixir and MQTT: A Symbiotic Synergy for Edge Computing


	Two Case Studies of the Proposed Framework
	Traffic Light System for Smart Transportation
	Motivation and Approach
	System Architecture and Implementation
	Beyond Traffic Flow Optimization

	Cab Dispatch System

	Details of Prototype System
	Event-Driven Design and Components
	Events
	Event Producers
	Event Channels

	Cab Dispatch Scenario: A Sequence of Events
	Basic Components
	Driver Application
	Passenger Application
	Dispatch Service


	Evaluation
	Latency Testing
	Throughput Testing and Resource Utilization under Load
	Constrained Network Conditions Testing
	Fault Tolerance Testing
	Multicore Programming
	Summary

	Concluding Remarks
	References

