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Abstract: The growth of the Internet of Things (IoT) has led to a significant rise in cyber attacks and an
expanded attack surface for the average consumer. In order to protect consumers and infrastructure,
research into detecting malicious IoT activity must be of the highest priority. Security research in this
area has two key issues: the lack of datasets for training artificial intelligence (AI)-based intrusion
detection models and the fact that most existing datasets concentrate only on one type of network
traffic. Thus, this study introduces Dragon_Pi, an intrusion detection dataset designed for IoT devices
based on side-channel power consumption data. Dragon_Pi comprises a collection of normal and
under-attack power consumption traces from separate testbeds featuring a DragonBoard 410c and a
Raspberry Pi. Dragon_Slice is trained on this dataset; it is an unsupervised convolutional autoencoder
(CAE) trained exclusively on held-out normal slices from Dragon_Pi for anomaly detection. The
Dragon_Slice network has two iterations in this study. The original achieves 0.78 AUC without
post-processing and 0.876 AUC with post-processing. A second iteration of Dragon_Slice, utilising
dropout to further impede the CAE’s ability to reconstruct anomalies, outperforms the original
network with a raw AUC of 0.764 and a post-processed AUC of 0.89.

Keywords: IoT time series power dataset; IoT hardware security; IoT intrusion detection;
convolutional autoencoder; unsupervised learning; cyber attacks on IoT; explainable AI

1. Introduction

The Internet of Things (IoT) has become a cornerstone of modern networks. the IoT,
a term synonymous with the interconnectivity of “Things”, has led to internet-facing de-
vices flooding the markets in recent years, with a prediction of approximately 25 billion
devices by 2030 [1]. This rapid expansion has led many companies to release their IoT
product into the growing market as fast as possible. Security is often a second thought,
or not considered at all for many of these devices, as it would only slow down produc-
tion. As such, the market overflows with an ocean of insecure, unprotected and, in some
cases, hazardous IoT devices [2]. Indeed, the expansive Internet of Things has vastly
spread the attack surface for the average citizen, likely exposing them in ways they do not
even consider.

For example, in 2021, the cloud-based security camera service Verkada was breached
after malicious actors discovered viable admin credentials on the internet, exposing the
live feeds of over 150,000 cameras worldwide [3]. These cameras were located in hospitals,
classrooms, jails, factories and many other sensitive locations. Poor user privilege hygiene
emerged as the leading cause of the breach, with over 100 Verkada personnel having
‘super admin’ permissions. Even without the breach, this was a significant infringement of
customers’ privacy as these super admins had access to clients’ live feeds, likely without
the customers’ knowledge.
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In the same year, critical national infrastructure was attacked in Florida, USA. This
time, the target was a city’s water treatment facility [3]. Malicious actors accessed a plant
employee’s computer remotely and, using the applications on this PC, adjusted the water’s
sodium hydroxide (NaOH) levels by a factor of 100. This might have proven to be one of
history’s most deadly cyber attacks, if not for swift intervention from the facility, readjusting
the chemical levels. This attack illustrates the potential danger of outdated systems, which
most critical national infrastructures rely upon, and the danger of omitting safety systems
from critical infrastructure. If a safety system (for example, requiring two operators to
authorise the change in chemical concentrations far outside normal specifications or the
swiping of a physical key card to authorise the operation) was used, it would have made it
much harder for attackers.

Due to the unique, and often resource-constrained nature of the IoT ecosystem, tradi-
tional security practices cannot be easily applied. Extensive research has been conducted in
signature-based intrusion detection systems (IDSs) and anomaly detection-based IDSs for
IoT devices to detect cyber attacks. Typically, signature-based IDS relies on training with
well-known normal and attack signatures, exhibiting high performance on previously en-
countered attacks but limited capability to handle unpredictable or unseen zero-day attacks.
On the other hand, anomaly-based detectors operate by identifying deviations from the
baseline, usually trained solely on normal behaviour. They excel at detecting unseen attacks
but may not perform as well as signature-based approaches with well-known attacks.

Parallel to the growth of IoT in recent years, artificial intelligence (AI) has seen substan-
tial growth in activity and use, especially in security. Fully supervised AI approaches have
been deployed for signature-based detection in IDSs and, more recently, semi-supervised
and unsupervised approaches have been deployed for anomaly detection in IoT. These
recent approaches will be reviewed in the related works Section 2.

One main limiting factor disadvantaging security operators is the lack of training
data. This training data can be considered both from the perspective of training humans
on attack patterns to understand and mitigate them and training automated AI-based
detection methods. In our previous work [4], we discussed IoT security from a somewhat
unconventional point of view, focusing on device power consumption (as a linear time
series) rather than internet packets. In that work, we attempted to illustrate that studying
these signatures from a human perspective is an invaluable asset for security teams in
understanding how the attacks work and how to defend against them. Importantly, we
showed that device power, while not as readily available as internet traffic, should not
be overlooked in security. To this end, we adopt some key concepts from popular side-
channel attack methodologies, e.g., simple power analysis (SPA) and differential power
analysis (DPA) [5], to study the power signatures for use in security. The more data sources
and defensible positions we consider in security research, the more we can close the gap
between attacker and defender.

To this end, we present Dragon_Pi, which is an IoT power dataset containing labelled
normal and attack scenarios captured from two of the most popular IoT platforms (Rasp-
berry Pi and Snapdragon). We also present Dragon_Slice, which is the first attempt at
designing an automated IDS based on these data. Dragon_Pi fills a fraction of the massive
gap in IoT security. To the best of the authors’ knowledge, Dragon_Pi and Dragon_Slice,
respectively, constitute the first publicly available IoT security power dataset and unsu-
pervised convolutional autoencoder based on IoT power consumption. Dragon_Pi is the
first step of many in supplementing traditional security approaches to IoT security using
side-channel data, such as power consumption. We invite others to repeat the process and
generate datasets of a similar nature, exploring IoT security from a different perspective.

1.1. Contributions

The Dragon_Pi, Dragon_Slice framework extends our previous work [6]. Indeed, this
work can be considered as part two of our recent work [4], where we discuss and analyse
the signatures of both normal and attack behaviours within the Dragon_Pi dataset. This
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recent work seeks to illustrate the value of power data in cybersecurity and discuss possible
usages. Dragon_Pi and Dragon_Slice seek to fulfil some of the possible works that we said
were possible based on the data in [4,6]. The specific contributions are as follows:

1. Dragon_Pi: The first contribution is a fully labelled device power behaviour dataset
containing normal and attack scenarios from two popular IoT devices. Dragon_Pi
explores various attack scenarios and, to the authors’ knowledge, is the only publi-
cally available IoT Security power dataset. Dragon_Pi focuses on IoT devices, and
the insights gained from studying this dataset can be applied to the entire cyber-
security field. Dragon_Pi serves as a step forward for IoT security, encouraging
security professionals to consider as many data sources as possible rather than focus
on internet traffic.

2. Dragon_Slice: The second contribution is Dragon_Slice for anomaly detection within
linear time series. Importantly, Dragon_Slice is a single model trained only on the
normal power behaviours of both the DragonBoard and Raspberry Pi. Using the
Dragon_Slice framework, a single IDS model can be trained on the normal power
consumption data of different devices. This model can then detect unseen anomalies
across the different devices. This is a massive contribution to the field of IoT, which
is filled with heterogeneous devices. In this way, a single model can serve as many
devices as desired, rather than requiring specifically trained models per device type.

3. Explainability: The third contribution involves explaining the AI used in this paper.
To this end, we explain Dragon_Slice from the perspective of inputs and outputs,
and, thus, why the AI is making particular decisions. In AI research, many works
under-explain the presented AI. This hinders readers from effectively understanding
what the AI is doing or from reconstructing similar AI for themselves. Another
key issue with under-explained AI is the lack of verification of the AI functionality.
Readers can only confirm the plausibility of the presented results if they are able to
understand the AI demonstrated.

1.2. Organisation

The remainder of this work is organised as follows. Section 2 surveys some of the
most popular IoT security datasets and some recent AI applied to those datasets. Section 3
discusses the over-arching framework and a brief overview of the dataset itself. Section 4
describes the Dragon_Slice architecture and training methodology as well as the results
from the two paths taken for the AI. Section 5 discusses some of the key findings of the
study and further explains some aspects of the architecture. Limitations of the study
are discussed in Section 6. The conclusions and possible further works are presented in
Section 7 .

2. Related Works

As IoT Security is an emerging and essential field, much work has been conducted to
create automated security systems (such as IDSs) for them. Much of this research has used
AI to secure these IoT systems. AI is a pervasive paradigm within most recent technology
fields and has seen great success in IoT security and the wider security field.

Before any AI algorithm can be trained, there must be data available to train and test
upon. As such, a large and vital portion of IoT security research has involved creating
and labelling datasets of IoT attack data. The data must be realistic, relevant, and of
good quality.

Much surveying has been conducted in the field of IoT intrusion detection [7–9], in par-
ticular, presented extensive research on a wide range of algorithms used by researchers
and summarised the popularity of well-known datasets in the reviewed work. Importantly,
they realised that most of the works they surveyed used simulated or outdated datasets.
This clarifies the need for as many new and up-to-date datasets as possible in cybersecurity
and IoT security. The overuse of outdated datasets has led to research results, which may
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not translate to acceptable performance in the modern cyber threat topography. Table 1
lists some well-known datasets chronologically, along with their proportionate usage in [9].

In [9], the oldest work they reference is from 2016; when consulting Table 1, we can see
a disproportionate percentage of papers using outdated datasets. The fact that researchers
must rely on such outdated data illustrates the distinct lack of data in the field of IoT
cybersecurity and, thus, motivates the creation of the Dragon_Pi dataset presented in
this work. By consulting Table 1, it is also clear that the overwhelming majority of the
dataset work conducted on IoT focuses entirely on network packets. While this makes
sense, since cybersecurity has been dominated by network-based security for decades, it
is imperative to consider security from as many points of view as possible in the modern
cyber threat topography.

Table 1. Popular IoT datasets and recent works.

Dataset Type of Data Year Published Recent Studies on
This Dataset

Percentage Usage
Observed in [9]

KDD CUP 99 [10,11] Network Packets 1999 [12,13] 9%

NSL-KDD [14] Network Packets 2009 [15–18] 12%

UNSW15-NB15 [19] Network Packets 2015 [20–22] N/A

N-BaIoT [23] Network Packets 2018 [24–27] 9%

ToN-IoT [28] Telemetry data of IoT Services and Network Packets 2020 [29,30] 2%

IoT 23 [31] Network Packets 2020 [32–34] N/A

Derived from the 1998 Defence Advanced Research Project Agency (DARPA) dataset [35],
the Knowledge Discovery and Data Mining (KDD) 1999 dataset was created to be used in
the development of security-focused ML [10,11]. In essence, the KDD dataset transforms
the DARPA dataset’s network traces into a collection of features found in the connec-
tion between two hosts, with each connection constituting its own record in the dataset.
These features are broken into basic (e.g., duration), content (e.g., logged_in), time-based
(e.g., srv_count), and connection-based (e.g., dst_host_count) categories.

Due to its acceptance as a de facto benchmark for cybersecurity research, many re-
search works today are still conducted using the KDD dataset, regardless of its age and,
indeed, its outdatedness. In 2019, ref. [13] applied three different artificial neural network
(ANN) approaches to the KDD dataset. Utilising learning vector quantization (LVQ), the
radial basis function (RBF), and multilayer perceptron (MLP), they achieved accuracies of
97.5%, 99.4%, and 99.86%, respectively. Notably, however, the presumably inference time
performance of the algorithms was compared, and it was found that LVQs were far more
time efficient, requiring only 4.56 s for the best-performing model, with time requirements
of 22,610 s for RBFs and 28,811 s for MLP s.

In 2022, ref. [12] compared K-nearest neighbour (K-NN), support vector machines
(SVMs), and a novel hybrid approach utilising the SNORT IDS [36] and a naïve Bayes (NB)
algorithm on the KDD 99 dataset. In this hybrid approach, traffic is first analysed by the
SNORT IDS and, if SNORT classifies the traffic as normal, the NB algorithm is applied
to the traffic to confirm the result. The work achieved results of 93% for SVMs, 94.4% for
K-NNs, and 96.6% for the proposed SNORT-NB hybrid model.

Given the infancy of networking security at the time, the KDD dataset naturally leaves
much to be desired, being one of the first of its type in the field. In the decades since its
release, the dataset has garnered much criticism; for example, in [14], the authors present
the argument that excess redundant and duplicate records are some critical shortfalls of the
KDD dataset. In 2009, they created NSL-KDD, a shorter and more curated version of the
KDD dataset. They achieved this by removing duplicate records or, more precisely, records
that seemed like duplicates, which were generated during the creation process of the KDD
dataset. Notably, in the creation process of the KDD dataset, the start time of connection,
source, and destination IP addresses and source and destination ports were stripped from
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the internet packets. Thus, many traffic flows, such as ICMP, resulted in what appeared to
be duplicated and redundant traffic flows, as they were missing these five key pieces of
information that could distinguish them.

In 2016, ref. [17] proposed a hybrid approach to IoT security. A proposed framework
based on the MapReduce architecture was developed with the goal of distributed detection
capabilities. Importantly, this framework considered IoT security from two key perspec-
tives: internet traffic and wireless sensor network (WSN) traffic. The proposed framework
featured both misuse-based and anomaly-based methodologies, utilising optimum path
forest models. Based on the RPL routing protocol, a WSN was created to simulate the
6LoWPAN traffic. For the internet traffic aspect of the framework, the NSL-KDD dataset
was implemented. The proposed hybrid approach achieved detection rates (DRs) of 80.95%
and 96.20% for the anomaly detection and misuse-based modules, respectively. These
modules also achieved false alarm rates (FARs) of 5.92% and 1.44%, respectively. Notably,
the misuse-based model focused on internet traffic, while the anomaly detection model
focused on the generated WSN traffic.

In 2017, ref. [16] proposed an unsupervised conditional variational autoencoder
(CVAE) IoT network-IDS (NIDS) trained on the NSL-KDD dataset. The architecture in-
tegrates intrusion labels within the decoder layers, and the approach boasts better per-
formance than other unsupervised approaches, with a multi-class accuracy of 80.10%, all
while being less complex. An essential aspect of the proposed architecture is the ability
to reconstruct features from incomplete training sets, in particular, the protocol, flag, and
service features, with accuracies of 99.02%, 92.84% and 71.42%, respectively. This is an
important feature for the KDD and NSL-KDD datasets, which lost much information when
the KDD dataset was created from the DARPA dataset. This framework introduced the
first algorithm capable of performing feature recovery while also being the first work to
present a CVAE in network intrusion detection.

To combat the lack of comprehensive network-based datasets, UNSW-NB15 [19]
was created. Previous benchmarks, DARPA98, KDD99, and NSL-KDD09, had become
significantly outdated. Thus, UNSW-NB15 was generated to provide a dataset representing
modern network traffic, information regarding the depth structure of the network, and
minimal footprint intrusion. UNSW-NB15 contains real normal network traffic mixed with
synthesised attack traffic.

In 2021, ref. [22] proposed an edge-centric NIDS utilising deep neural networks,
particularly long short-term memory (LSTM) models and gated recurrent units (GRUs),
with the specific goal of DDoS detection in IoT. The model was trained and evaluated
on the UNSW-NB15 dataset, achieving a high accuracy of 99%. The model proposed in
the framework is lightweight and requires few resources, allowing for implementation
in resource-constrained environments, such as the IoT. In [22], the proposed framework
models were deployed on Raspberry Pi, and their resource usage was compared to find the
most suitable model for IoT, balancing accuracy with resource usage. From this comparison,
it was found that the FastGRNN (fast-gated recurrent neural network) was the most suitable,
with an accuracy of 99.95% and reasonably small resource requirements and inference times.

In 2022, ref. [20] presented an IDS for IoT trained on the UNSW-NB15 dataset. The pro-
posed framework utilised particle swarm optimisation-based gradient descent (PSO-LightGBM)
for feature extraction. These features were then fed into a one-class SVM (OC-SVM)
for classification between normal and anomalous. Evaluating the UNSW-NB15 dataset,
the framework achieved an accuracy of 86.68%. The framework was specifically robust at
detecting small sample data within UNSW-NB15, such as Shellcode, Worms, and Backdoor.

To mitigate the threat caused by compromised IoT devices, as well as develop a tech-
nique that can differentiate between hours-long and seconds-long attacks, the N-BaIoT [23]
model, and the resulting dataset, were created in 2018. N-BaIoT is an IoT NIDS framework
that can extract snapshots from network traffic behaviour of interest and detect compro-
mised IoT devices using deep autoencoders. To generate the data for training and testing,
testbeds consisting of commercially available IoT devices were infected with the Mirai and
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BASHLITE IoT-based botnets. The proposed methodology had a true positive rate (TPR) of
100% detecting attacks launched from a compromised IoT device with a low false positive
rate (FPR) of 0.007% and only between 174 ms and 212 ms to detect an attack.

In 2023, ref. [27] proposed a semi-supervised AE approach to the N-BaIoT dataset.
To cope with the scalability of IoT, the proposed framework allows for the training of a
single model, which can work across many devices. The N-BaIoT dataset was split into
multiple datasets based on the separate IoT devices in the testbed. The Deep AE was then
trained on only the normal traffic flows from separate IoT devices, with the malicious
traffic constituting separate test sets based on different IoT devices. The proposed approach
achieved high performance with an all-in-one F1 score of 0.9996–0.9998, depending on the
specific IoT device.

Thus far, recent decades have brought very few IoT-based intrusion detection bench-
mark datasets. The datasets released all have the common theme of capturing normal
and malicious network traffic only, without any new data vectors included for cyberse-
curity research. To combat the lack of available benchmarks and provide a new avenue
of data to explore for data-driven IDS, the ToN_IoT [28] telemetry dataset was developed
and released in 2020. ToN_IoT includes not only the network traffic of the IoT network
but also the operating system logs and telemetry data of IoT services. ToN_IoT has an
advantage over other datasets in the area as it contains IoT telemetry data and diverse
attack scenarios, a representative and realistic testbed with IoT scenarios, labels for the data,
and heterogeneity of IoT data sources. Many machine learning approaches were explored,
such as logistic regression (LR), linear discriminant analysis (LDA), K-nearest neighbour
(k-NN), classification and regression tree (CART), random forest (RF), naïve Bayes (NB),
support vector machines (SVMs), and long short-term memory (LSTM). The machine
learning algorithms first were evaluated on specific device datasets, i.e., fridge sensor (best
performance: LSTM with 100% accuracy), garage door (best performance: all method-
ologies with 100% accuracy), GPS sensor (best performance: k-NN with 88% accuracy),
Modbus (best performance: CART with 98% accuracy), Light_Motion (best performance:
all approximately 58% accuracy), thermostat (best performance: all approximately 66%
accuracy) and, finally, weather (best performance: CART with 100% accuracy). Combining
all individual IoT device datasets into one, the CART approach emerged as dominant with
an overall accuracy of 88% for binary classification and 77% for multi-class classification.

As part of the Avast AIC lab, the IoT-23 [31] dataset was published in 2020. The dataset
contains labelled traffic flows of benign and malicious behaviour captured between 2018
and 2019. IoT-23, named because it consists of 23 separate scenarios, contains over 300
million labelled records from sixteen categories, each record having eighteen features.
These features are divided into static, basic, content, and time.

In 2021, ref. [33] described designing and developing a convolutional neural network
(CNN) for IoT network anomaly detection. Using the IoT-23 [31] dataset, the multi-class
CNN model was initially evaluated. CNNs using 1D, 2D, and 3D convolutions were
then evaluated. Then, using transfer learning, a binary classifier CNN was trained from
these initial multi-class models. In this use case, transfer learning from multi to binary
classification proved effective as the binary classifier was trained on a subset of the data
used to train the multi-class classifier. Over the datasets mentioned above, both the binary
and multi-class classifiers achieved average accuracies of over 99% for 1D, 2D, and 3D
CNN models.

In particular, in the field of cyber security, and as witnessed in the majority of datasets
and the works reviewed above, security datasets tend to be focussed on one data vector:
network traffic. This can easily be justified as the main avenue to explore in cybersecurity,
as the network tends to be the key ingress point for most malicious activity. But even if
network traffic is the main defence concern, exploring other data types within the security
spectrum is also important. One main concern for most authors is the distinct lack of
IoT-based internet traffic datasets—if datasets are sparse in the most explored area in IoT
security, how much more sparsity is there in other data types? TON_IoT [28] is one work
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that seeks to bring new data types to the cybersecurity dataset repertoire; however, the field
remains completely unsaturated in all forms of data. As such, the work presented in this
Dragon_Pi study calls for more datasets in the field. Only by exploring as many avenues for
security as possible will defence personnel be empowered to catch up to the ever-adapting
malicious actors.

Table 2 summarises the performance of the reviewed works on the reviewed datasets.

Table 2. Performance of the reviewed works.

Dataset Publication Accuracy

KDD CUP 99 [10,11] [13] 97.5% (LVQ), 99.4% (RBF), 99.86% (MLP)

[12] 93% (SVM), 94.4% (K-NN), 96.6% (SNORT-NB)

NSL-KDD [14] [16] 80.1% (CVAE)

UNSW15-NB15 [19] [22] 99% (LSTM, GRU), 99.95% (FastGRNN)

[20] 86.68% (PSO-LightGBM & OC-SVM)

ToN-IoT [28] [28] 88% (Binary Class CART), 77% (Multi-Class CART)

IoT-23 [31] [33] 99% (Binary and Multi-Class 1D, 2D and 3D CNNs)

Detection Rate (DR) and False Alarm Rate (FAR)

NSL-KDD [14] [17]
80.95% DR (Anomaly Based MapReduce), 96.20% DR (Misuse Based
MapReduce), 5.92% FAR (Anomaly Based MapReduce), 1.44% FAR

(Misuse Based MapReduce)

True Positive Rate (TPR) False Positive Rate (FPR)

N-BaIoT [23] [23] 100% (TPR Deep-AE), 0.007% (FPR Deep-AE)

F1-Score

N-BaIoT [23] [27] 0.9996–0.9998 (Deep-AE)

Lost Feature Reconstruction Accuracy

NSL-KDD [14] [16] 99.02% (Protocol CVAE), 92.84% (Flag CVAE), 71.89% (Services CVAE)

Regarding alternative data types, some research has been conducted into anomaly
detection using various types of time series data.

In [37], a reconstruction-based approach to anomaly detection in the linear time
series was taken. Autoencoder-based models were utilised in the anomaly detection
process, which is similar to the research presented in this work. Rather than fine-tune
hyperparameters by hand, a neural architecture search technique was employed to find
the best model configuration. A custom dataset that included time series features, such as
temperature and luminance, CO2 concentration, power consumption, and humidity, was
used to train the AE models. Notably, the authors had no access to an anomaly detection
dataset during testing; as such, synthetic anomalies were injected into the normal behaviour
of the custom dataset during testing.

Generally, deep learning requires a vast amount of labelled data to train a model
effectively. When working with real-world times series, the data collection is thought
to be easy; the annotation of data, however, is time-consuming and relatively expensive.
The works surveyed in [38] demonstrate a solution to this problem through deep transfer
learning. In essence, deep transfer learning allows for the training of a model on a far more
extensive or diverse dataset, even if it is unrelated to the current problem. This pre-trained
model gains far more general features from the larger datasets, which can be transferred
effectively to the target problem during the fine-tuning stage on the much smaller and
more limited dataset.

Another concern stemming from the lack of data in cybersecurity is the performance
creep of many models on these well-known benchmark datasets. Part of the survey
performed in this work is to illustrate that, even in recent years, studies are still being
conducted on decades-old and obsolete datasets, likely due to the lack of available data.
With datasets so over-explored, researchers may feel the need to set themselves, attempting
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techniques that may end up negating the validity of their model, such as the biased selection
of samples for training and testing as a subset of an overall dataset. Far too many models
are achieving results of 99% and 100% on datasets. These results are unlikely to transfer to
real-life scenarios and should strongly indicate that either the model or dataset is lacking
(either with models trained on the path of least resistance features, or datasets far too
simple for the ever-adapting cyber landscape).

There is a clear need for more datasets as well as datasets of varying data types. This
need guides the research that follows in this study. Dragon_Pi and Dragon_Slice represent
initial steps to explore the effectiveness of power consumption data in security. The insights
gained during this study will guide future efforts to incorporate heterogeneous data sources
into the security pipeline.

3. Materials and Methods
3.1. Testbed, Data Acquisition, and Framework

For the testbed, two different IoT devices were chosen: Raspberry Pi 3 Model B and
DragonBoard 410. DragonBoard, powered by a Qualcomm Snapdragon 410 processor,
has gained widespread popularity, boasting over 200 million units shipped. Similarly,
Raspberry Pi, a prevalent single-board computer, has seen a significant market presence
with over 40 million units sold over its ten-year history.

Despite variations in manufacturers and typical applications, both devices surprisingly
share almost identical specifications, possessing Quad Core 1.2 GHz 64-bit CPUs and
1.2 GB of RAM; this deliberate selection aims to provide a thorough understanding of
common attack signatures across devices of different manufacturers, software, etc. Our
previous study [4] investigated whether these signatures exhibit general patterns, possibly
simplifying the detection and understanding of attacks on IoT devices and heterogeneous
networks. The previous work justifies the choice of devices and further explains other
aspects of the device operation and testbed composition.

Both boards were connected to the internet via Wi-Fi, and SSH was enabled to broaden
the potential attack surface. Bluetooth functionality enabled communication with a TI
CC2650STK SensorTag, equipped with ten low-power MEMS sensors. A Python script on
the testbed requested sensor data over Bluetooth, and DragonBoard and Raspberry Pi were
linked to an Agilent Technologies N6705A DC Power Analyzer to unobtrusively monitor
side-channel IoT power behaviour.

The framework, outlined in Figure 1, proposes a generic data acquisition framework
for IoT. This framework was initially proposed in our previous work [4]. In addition to
the previous framework, Figure 1 showcases the focus of this current study, emphasising
AI-based anomaly detection in IoT security based on the power acquisition framework.
In this framework, power consumption data serve as input to the AI security system,
returning a classification of either normal or anomalous for each power data segment.

The convolutional autoencoder (CAE) architecture employed in this study operates
on the principle of reconstruction, where the AI attempts to reconstruct the input based
on what it was trained on. In the case of the framework in this study, the AI is trained
only on “clean-room” normal data obtained from the testbed. In this case, “clean room”
describes a situation where the normal data were sampled and held aside, almost like it was
quarantined in a different room. As such, the training set and test set are mutually distinct,
and the training and test sets are two separate datasets, with one sampled in a quarantined
environment with no anomalies and one with more real-world events and attacks.

During testing, real-world normal and attack data are passed to the AI, which attempts
to reconstruct these inputs. If trained properly, a CAE should be able to reconstruct normal
unseen data well, as they are similar to the training data. However, this methodology
should struggle to reconstruct the anomalous attack data, which looks different from the
normal baseline. The quality of the reconstruction and the resultant mean squared error
(MSE) lead to a normal or anomaly classification (with low error meaning normal, and high
error meaning anomaly).
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This framework results in quite explainable AI, where the reconstructed output pro-
vides insights into what the AI perceives as normal or anomalous within the input signal,
aiding in understanding the factors influencing its decision. This can significantly aid
security experts in further identifying an attack or, possibly, a false positive from the AI
output. Further analysing these factors would allow human intervention within the AI
loop, or hierarchical AI, to oversee the output of many models. Human experts can assess
both the input and output, making crucial decisions regarding security procedures. While
the system can function autonomously, human oversight is vital as certain decisions can
only be partially entrusted to AI. For example, AI can detect anomalous activity on a critical
system, such as radar or health monitoring equipment. However, only a human can be
responsible for making the call to shut down that device.

In hierarchical approaches, federated models could greatly enhance the system’s
capabilities. Individual models could operate per device, or IoT gateway, overseen by a
hierarchical AI that could supervise the models’ outputs, making predictions over many
AI model outputs. This would enable security teams to make more informed decisions
for individual devices or even families of devices, thereby facilitating the identification of
individual devices or device groups under attack, predicting potential targets, or tracing
the propagation vector of an attack through a network. Such insights empower security
teams to make more informed decisions during an attack, swiftly isolating affected devices
without shutting down an entire network topology.

This framework could extend beyond IoT devices to encompass every level of comput-
ing. Any system exhibiting a baseline normal operation could benefit from this framework,
including internal servers, workstations, high-performance computers, manufacturing
devices, robotics, and supervisory control and data acquisition (SCADA) systems.

Attacks can be very intensive on a system; even if the normal information is very noisy,
training an AI framework, such as the CAE featured in this study, should make it simple to
detect large-amplitude anomalies. For example, denial of service (DOS) and distributed
DOS (DDOS) attacks could be easily detected using AI trained on the server’s, router’s,
or gateway’s normal baseline power consumption. This type of attack has maximum
detectability since it exhibits such large power consumption signatures. This detection
capability is enhanced by the increased availability of resources at these levels, which can
allow more complex models to be deployed.

Figure 1. IoT power data acquisition and anomaly detection framework.

3.2. Dataset Overview

In this work, the test environment faced three distinct attack scenario topics, each
encompassing a fundamental security concept related to the CIA triad [39]: confidentiality,
integrity, and availability. Specifically, these attack scenarios are of three main types:
reconnaissance, brute force, and denial of service. Our previous work [4] provides a more
detailed exploration of these attacks.



Future Internet 2024, 16, 88 10 of 38

The dataset is comprised of 5 normal files and 65 attack files. Each file contains
the linear time series power consumption of the testbed, either under normal or attack
conditions. All data were sampled at a rate of 488,28 samples per second. This was the
maximum rate the power analyser used in this study could achieve with the specific settings.
The normal data were collected in a controlled environment, ensuring complete normalcy
without any anomalies. This becomes crucial when considering using these five normal
files as the training class for a semi-supervised or unsupervised approach. The remaining
65 files can then serve as an entirely unseen test set. The 65 under-attack files, in general,
contain 50% normal and 50% attack signatures. This makes them perfect as balanced and
unseen test sets.

Each file contains three levels of annotation specificity, a simple normal/anomaly
annotation for each signature within the file, the specific attack type and, finally, the specific
tools and settings used for that specific signature. Each signature in each file is labelled
individually and precisely, rather than a label spanning an entire file.

From the topic of reconnaissance attacks, the port scan attack was applied. In this
case, the tool Nmap was used to probe the testbed for open ports. This process was
repeated many times to give as many attack signatures as possible. The attack was also
repeated for Nmap tool settings “T2–T5” to give a range of signatures from different tool
settings. The “T” setting for the Nmap tool adjusts the timing and performance of the
attack. Increasing this value increases how aggressive the attack is. Each Nmap setting has
its own file, as shown in Table 3.

For the brute force attacks, the SSH brute force attack was applied. The Hydra tool was
used to perform the attack on the testbed. Like the port scan attacks, the brute force attacks
were repeated for different tool settings. In this case, the adjustment of the Hydra “t” option
between “1–32” controls the number of connections in parallel to the target. The smaller this
value, the smaller the resultant signature, but with a reduced password attempt frequency.
For example, in the files pertaining to Hydra “t1”, these resultant signatures are each for
a single password attempt, while in files related to Hydra “t32”, the resultant signatures
are (simultaneously) for 32 password attempts. Importantly, for the brute forcing related
files in the dataset, half of the files will be named “IKE” and the other “CKE”. IKE, in this
case, refers to an incorrect key event; in other words, the password was not found while
brute-forcing the testbed. In the CKE files, the password was included in the Wordlist
used to brute force the testbed. Thus, the CKE stands for “Correct Key Event” and refers
to a little signature after the brute force attempt, resulting in the correct password being
attempted. This concept is discussed in much greater detail in our previous work [4]. Each
Hydra setting has its own file, as shown in Table 3.

Using the Hping3 tool, the SYNFlood denial of service attack was applied to the
testbed. There was no repeating of the attack or variation in the tool settings as the resultant
signatures for the tool were as expected (large amplitude, etc.) and were not as intricate
as the other signatures. In the Raspberry Pi SYNFlood DOS file, the attack seems to die
midway. However, it was impossible to discern if the attack had actually stopped and if the
testbed had returned to normal behaviour. As such, the entire period when the tool was
attacking the testbed was labelled as an anomaly. This may lead to some false negatives
when training machine learning for this specific file.

The final file type involves capture the flag (CTF) scenarios. These files utilise the
reconnaissance and brute force topics from before in a more realistic scenario. In the CTF
scenarios, rather than repeating the attacks to simply view the signatures, the attacks are
used in a more practical and realistic way to infiltrate the testbed and exfiltrate a hidden file.
The generic process of one of the CTF attacks would be as follows: ping the testbed, conduct
a port scan attack to identify a potentially open port for the attack, launch a brute force
attack to gain entry, SSH login with the stolen credentials, explore the testbed by viewing
files remotely (using Linux commands on the device), exfiltrate the hidden file when found,
and finally withdraw from the testbed. In some of the CTF scenarios, a file is edited on the
device to simulate the attacker affecting the integrity of the attacked system. In other CTF
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scenarios, a payload is uploaded to the device, which, when executed, performs intensive
memory operations, simulating a methodology the attacker may take to drain the battery
of the device after they exfiltrate the important information.

Each file in the dataset is accompanied by a legend file detailing what signatures to
expect and the exact indexes of those signatures. This can aid in efficiently finding specific
attack signatures.

The attack data files typically contain equal portions of normal and anomalous in-
formation. For instance, in a 5 min file, 2.5 min may contain anomalous data, while the
remaining 2.5 min may consist of normal data interspersed around anomalies.

The data are tightly labelled, with each anomalous instance within a file labelled to
the best of our ability. Figure 2 depicts the accuracy of labelling in this dataset. Specifically,
the figure illustrates a 1-second data window with a port scan attack in the middle, show-
casing the tight labelling, which is approximately 0.6 s long. These precise labels are crucial
for dataset users to pinpoint the specific anomalous segment in each signal.

Figure 3 displays an example header for one of the data frames from the dataset, featur-
ing multiple levels of annotation. “anno_string” provides a binary classification annotation
(normal or anomaly) for each sample. “anno_type” indicates the overall type of anomaly,
such as port scan or brute force. “anno_specific” provides an exact annotation derived from
the attack tool and settings that produced the signature. For example, it includes instances
such as “Hydra_T16”, representing an SSH brute force signature observed when the Hydra
tool was employed with T16 settings to target the testbed.

Table 3 enumerates the dataset contents, with each file categorised by the showcased
anomaly. Generally, each file maintains a balanced annotation with a 50/50 distribution of
anomalous to normal behaviour (excluding files consisting solely of normal data).

Figure 2. Example of annotation accuracy from the dataset.
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Figure 3. Example data frame header from the dataset.

Table 3. Enumeration of files in the Dragon_Pi dataset.

Label Type Specific Label # Files DragonBoard # Files Raspberry Pi

Normal Normal 3 2

Port Scan Attack Nmap_T5 2 1

Nmap_T4 1 1

Nmap_T3 1 1

Nmap_T2 1 1

SSH Brute Force Hydra_T32 4 2

Hydra_T16 16 2

Hydra_T4 8 2

Hydra_T1 5 2

SYNFlood DOS SYNFlood DOS 1 1

Capture the Flag Misc Attacks 3 5

4. Methodology

Figure 4 illustrates the machine learning pipeline featured in this work. Take note of the
two separate datasets for training and testing the machine learning model, rather than the
test dataset being a subset of the training dataset. Both the training and test data underwent
the same preprocessing. Importantly, the training and, thus, testing and post-processing
stages were repeated for compressed regions of sizes 1024, 512, and 256. The contents of
Figure 4 will be discussed in far greater detail in the respective sections below.

Figure 4. UML diagram of the machine learning pipeline featured in this work.
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4.1. Data Preprocessing

In our previous study [4], there was no need to preprocess the data. However, some
minor preprocessing was required to train an algorithm effectively with these data as
input here.

Before preprocessing, the raw data were sampled from the testbed at 48,828 samples
per second (SPS), which is the maximum sampling rate of the power analyser used in this
study. This is a relatively high data sampling rate and tends to require an expensive piece
of equipment. However, in this study, preprocessing reveals that one can obtain excellent
results with a much lower sampling rate and, thus, significantly less expensive equipment.

Before any preprocessing, it was essential to ascertain the input length of the algorithm
in real-time (in other words, how many seconds of data the algorithm would process). This
epoch was determined by studying the normal data, and judging how long it took for a
sufficient amount of normal data to accrue in a window to make an informed decision.
This epoch was determined to be exactly one second for this work. As visible in Figure 5,
the normal Bluetooth signature fits perfectly into a window of one second. Although one
could use a slightly smaller window, perhaps half a second, this study urges caution against
using too little input data.

It is essential to provide the algorithm (in this case, a convolutional autoencoder (CAE))
with sufficient data to learn complex patterns and useful global features. Presenting the
algorithm with a window containing too little important information results in too little
for it to learn. For instance, if one uses an epoch of 100 ms, there might not be enough
information for the algorithm to make a useful, informed decision.

In fact, in the case of a CAE with fewer data in a window, one could expect more
overfitting as a result, as the features the network is trained on become less complex.
Imagine a detailed landscape painting. When you zoom out to view the entire piece,
there is a rich feature landscape; when you zoom in too far, all that is visible are strokes
with no discernible relation to the overall picture. In this analogy, if the network learns to
reconstruct simple lines and angles with no complex global features, it can easily reconstruct
most normal or abnormal inputs. This is not the desired ability here. With the application
of a CAE in this work, the network should be able to reconstruct only the normal data well
while being unable to reconstruct any anomalous data.

Once the desired input window length was determined to be one second in real-
time, it was essential to ascertain a decimation rate for the data. One second of the raw
data contains 48,828 samples, which is too long an input window (in samples) for many
algorithms. Windows of this size would prove to be far too memory-intensive during data
loading while training, especially regarding the amount of memory required per batch on
the GPU. As such, a new sampling rate, much lower than the original, was chosen as the
decimation target. The new sampling rate of 2048 sps was chosen. This new sampling rate
is relatively compatible with readily available and inexpensive off-the-shelf hardware on
the market today, meaning one would not require an expensive and large power analyser
to recreate a framework similar to this study.

The sampling rate of 2048 sps was chosen as it jointly minimises the window size
in samples while maximising the resolution of the signature. Sampling rates below this,
for example, 1024 sps or 512 sps, have a visible reduction in quality. Vital information could
be lost and, thus, the network might not be trained sufficiently if these lower sampling
rates were used. Studying Figure 5, it is difficult to visually discern any difference between
the raw data (A) at 48,828 sps and the decimated data (B) at 2048 sps.

After decimating the data, some noise remained. This noise is visible in Figure 5A,B
as spikes above and below the baseline data. In our previous work [4], the fundamental
aspects of the signatures were studied. It is safe to assume these spikes are noise, possibly
from the power analyser, which can be removed. As such, a moving average filter (MAF)
was used to remove this noise in the background. A window length of 15 samples was
used for the MAF as this was the maximum window size, which reduced the background
noise without negatively affecting the signature of the data. The effect of the MAF can be
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seen in Figure 5, where the MAF not only reduces the background noise but also effectively
cleans the signature of the normal data.

Finally, the data were segmented into windows of equal length for input into the
network. One second was already determined as the correct window size, so the data
were segmented into windows of 2048 samples. As there was a limited amount of train-
ing and testing data, a relatively long sliding window overlap per segment of 75% was
chosen for the data. This gives the network more opportunity to view specific features
from slightly different perspectives, with new information being introduced with each
overlapping window.

Notably, the success observed in this work using this lower sampling rate proves that
one can obtain excellent results with relatively inexpensive equipment. This fact should
enable the scalability of such a framework, where expensive equipment is not imperative.

Figure 5. Preprocessing pipeline: (A) raw data at 48,828 sps, (B) decimated data at 2048 sps, and
(C) MAF filtered data, 2048 sps, MAF size 15.

4.2. Metric Definition

The receiver operating characteristic (ROC) curve is a graphical representation de-
picting a classification model’s performance across various classification thresholds. The
following is imperative for this metric: the calculation of true positive (TP), i.e., correct
positive case classifications, e.g., a sample correctly identified as an anomaly; false positive
(FP), i.e., incorrect positive case classifications, e.g., a sample incorrectly identified as an
anomaly; true negative (TN), i.e., correct negative case classifications, e.g., a sample cor-
rectly identified as normal; false negative (FN), i.e., incorrect negative case classifications,
e.g., a sample incorrectly identified as normal.

The ROC curve illustrates the relationship between the following two key parameters:
1. True positive rate (TPR), also known as recall, is defined as follows:

TPR =
TP

TP + FN
2. False positive rate (FPR) is defined as follows:
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FPR =
FP

FP + TN
The ROC curve showcases the TPR vs. FPR at different classification thresholds.

Lowering the threshold increases the number of positive classification actions, thereby in-
creasing false positives and true positives; raising it results in more negative classifications,
increasing both false negatives and true negatives.

The area under the ROC curve (AUC) quantifies the entire two-dimensional area
beneath the complete ROC curve, ranging from (0,0) to (1,1). It offers a measure of per-
formance across all potential classification thresholds. A way to interpret AUC is the
probability that the model assigns a higher rank to a randomly chosen positive example
than a randomly chosen negative one. A value closer to 1.0 on the AUC is optimal for
a system.

4.3. Architecture and Training
4.3.1. Architecture

In our [4], we highlighted the dynamic nature of attack signatures, which vary from
one attack to another and can be changed significantly, simply by adjusting the attack tool
settings. Consequently, we discouraged the reliance on supervised or signature-based
detection methods for anomaly detection in IoT power traces.

Supervised learning (signature-based) involves training an algorithm on a fully la-
belled dataset, often with multiple classes. This would mean training the algorithm on
normal and anomaly data from the dataset. On the other hand, unsupervised learning
operates without requiring two or more training classes. In this study, an unsupervised
approach was chosen, training an algorithm using only the held-out normal data. This
trained algorithm is tested on an unseen dataset comprising contaminated normal and
attack data, essentially a completely separate dataset. This approach helps mitigate compli-
cations arising from the variability in anomaly signatures while effectively utilising easily
labelled and obtainable normal data.

Convolutional autoencoder (CAE) architecture was chosen to fulfil the need for an
unsupervised algorithm. CAEs comprise encoder and decoder sides, employing convolu-
tional layers for feature extraction. The embedding layer between the encoder and decoder
compresses input data, and the decoding process seeks to reconstruct input from this
compressed representation. The network’s performance is evaluated by comparing the
mean squared error (MSE) between the reconstructed and original inputs. The MSE was
chosen as larger errors are penalised more than smaller ones, reducing the number of
misclassifications of normal samples as anomalous. For simplicity, MSE was chosen as
the only metric. During training, the objective is to minimise this error, ensuring optimal
reconstruction quality, particularly for normal data (the training target). In the testing phase,
the network’s architecture allows for the adequate reconstruction of normal-unseen data in
the test set but should encounter challenges when reconstructing anomalous-unseen data.

Convolutional layers with strides of 2 in the encoding phase were used for downsam-
pling on the encoder side instead of convolutional layers, followed by max-pooling. This
allowed for a more straightforward approach to designing the decoder side. Using trans-
posed convolutional layers with a stride of 2, the compressed input can be upsampled to its
original dimensions (reversing the encoder process). The use of convolutional layers with
strides and transposed convolutional layers with strides simplifies the overall architecture,
allowing for max-pooling to be omitted from the design. The omission of max-pooling also
avoids any complications arising from using the dropout along with convolutional layers
and pooling [40].

In the context of the particular architecture highlighted in this study, the network
takes as input a segment of a 1D current trace from the testbed, specifically a length of
2048 samples. Consequently, the network output is an attempted reconstruction of this
input. The desired functionality of the network involves achieving high performance in
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reconstructing previously unseen normal data while encountering challenges in recon-
structing unseen anomalous data.

As mentioned, the architecture featured in this work consists of encoder and decoder
blocks. Focusing initially on the encoder, it can be seen that it consists of three convolution
banks, consisting of 3, 2, and 2 separate convolution layers each. Instead of using max
pooling, the spatial dimensions of the input are reduced using strides. As such, the last
convolutional layer of each bank, with a stride of 2, halves the spatial dimension of the
input. At the end of the encoder block, the network is flattened to feed into the dense
compression region, where the main compression of this autoencoder architecture occurs.
The dimension of 8192 for the flat layer can be obtained by multiplying the dimensions of
the output of the last convolutional layer (256 × 1, due to the stride of 2) by the filter depth.

In the dense compression region, the dimensions of the network are further com-
pressed from 8192 to three levels of 1024, 512, and 256 (or 8×, 16×, and 32× compression)
to reduce the input further. The more compression, the harder it should be for the network
to reconstruct the inputs.

The decoder process is simply an inverse of the encoder, using transposed convolu-
tions with a stride of 2 to increase the dimensions of the input (i.e., upsampling). Each
convolutional layer features a filter depth of 32 and a kernel size of 3.

Figure 6 shows the Dragon_Slice CAE architecture designed in this work.

Figure 6. Dragon_Slice CAE architecture.

4.3.2. Training

Like any problem in machine learning or deep learning, the approach to the train–test
split is a critical detail. In this study, the training is exclusively conducted on one class,
the normal class. It is crucial to understand that the network in this research is trained
solely on “clean room normal” data.

In this context, “clean room normal” implies that the training set has no overlap
with the test set, ensuring the complete novelty of the test set. Consider a room with no
external influence; the normal training set is sampled within that room, while the testbed
operates as normal, free from external influences on the sampled data. The test data are
hypothetically sampled outside this room. Although approximately 50% of the test set
also consists of normal data, this normal information is interspersed between attacks, just
before or after attacks, etc. Therefore, the normal training data must be sampled and kept
separate without mixing with the test set to guarantee the unseen nature of the test set’s
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normal data. The normal data of the “clean room” will be referred to as “held-out” normal
data for the remainder of this work.

The theory behind this work relies on the network’s ability to learn key features com-
prising normal behaviour and, thus, enabling it to reconstruct unseen normal information
encountered in real-world scenarios, while facing challenges in reconstructing unseen
abnormal data, leading to the detection of this anomaly.

It is essential to note that this network was trained on the held-out normal data from
both devices within a single dataset, allowing one model to work across multiple device
types. Our previous work [4] demonstrated the similarity in signatures of attacks and
normal behaviour across these devices, albeit with different current amplitudes.

Like most deep learning methodologies, autoencoders tend to overfit as they train
over many epochs. Considering the limited data available for training and testing, valida-
tion during training was omitted. Instead, multiple models were saved during training,
and testing was conducted over these epochs. While this could be considered fitting to
the test set without a validation set as a bias buffer, the abundance of test data (compared
to train) and unseen nature justify this approach. The network was exposed to various
unseen anomalies and normal behaviours during testing, providing a valid representation
of real-life circumstances.

In addition to obtaining multiple models over numerous epochs, the architecture was
trained with multiple compression ratios in the embedding layer to explore the impact of
compression on anomalous reconstruction. The objective was to balance poor reconstructive
abilities of high compression (ineffective on normal but even more so on anomalous)
and the good reconstructive abilities of low compression (effective on both normal and
anomalous). Too many reconstructive errors in the normal class could lead to excessive false
alarms. In contrast, overly good reconstructive abilities might classify abnormal, anomalous
behaviour as normal; both situations need minimisation for real-world applications.

The specific target during training was to minimise the mean squared error (MSE)
of the reconstruction compared to the input. Reducing this error enhances the network’s
ability to reconstruct seen and unseen information.

The construction and training of each model were executed utilising the Python Py-
Torch package. A consistent learning rate of 5e-5, a batch size of 64, and the Adam optimiser
were used during the training process. No learning rate scheduling was implemented
throughout training.

The network’s performance in training and testing relies on the MSE of the recon-
struction versus the input. During training, the MSE serves as the loss function for the
network to reduce and better fit the training set. In testing, the MSE indicates how poorly
the network has reconstructed an input test sample. Ideally, the MSE for a normal unseen
data segment should be minimal, while abnormal unseen data should result in a large error.

It is crucial to note that the MSE is a value obtained for an input–output pair, meaning
that there is only one MSE value for every 2048 samples in the input segment. This
aspect will be explored in greater detail when discussing the results, considering metric
performances and reconstructions, and visually inspecting the MSE in later sections.

The latent compression in the central squeeze of the network increases incrementally,
with the chosen compression ratios in this work being 8× (1024), 16× (512), and 32× (256).

4.3.3. Results

As outlined in Section 4.3.2, the CAE network detailed in this study underwent training
on held-out normal data, progressively increasing the compression in the central squeeze
of the network (i.e., a smaller latent space). The chosen compression ratios were 8× (1024),
16× (512), and 32× (256).

The best-performing epochs for each compression ratio are compared below. The use
of validation or cross-fold validation was omitted from this work. Instead, these models
were tested on the entire unseen test set simultaneously, resulting in performance metrics
for the entire set of 66,306 unseen segments. It is essential to emphasise that the test set is



Future Internet 2024, 16, 88 18 of 38

entirely unseen, treated separately from the held-out training set. The training and test sets
are distinct entities, resembling a clean room analogy where normal training data have no
contamination, and the test data are obtained later after acquiring the normal training data.
The unseen test set should not influence the design or training of the model. As such, it
was deemed inappropriate to use data from the unseen test set for validation during the
training process in the case of this specific work.

Crucially, the mean square error (MSE) of the test data underwent processing through
a moving average filter (MAF) to broaden the inference response and reduce noisy spikes
during normal inferences. The impact of this filtering is evident in Table 4. This study con-
siders the moving average-filtered MSE when determining the best epoch for each model.

Various MAF window lengths were experimented with to find the most optimal over
the unseen test set, as shown in Figure 7. While there is debate about fitting a filter or a
threshold to the test set directly, the study presents a range of area under the curve (AUC)
values per MAF window length in Figure 7. This provides a suitable MAF range as a
suggested approach. The remainder of the study operates based on the best-performing
MAF for this network. Given that the MAF is fit over the entire unseen test set, much larger
than the training set, this should be closer to an appropriate value as in a real-world scenario.
It is also crucial to remember that the unseen data in this study represent real-world data,
as the normal test set was held out before the test set was even sampled.

An MAF with a window length of 16 (approximately 4 s of data) was found to be the
most effective over the entire dataset. It is worth exploring whether employing specific
MAF window lengths for each anomaly type, varying between larger and smaller lengths,
could enhance network performance, but this is out of the scope here.

The necessity of the MAF on the MSE stems from the labelling of the dataset. Since
the data were hand-labelled, care was taken to label each anomaly correctly. Instances were
labelled as anomalous from the start of a known anomaly (easily identifiable) to when the
data returned to normal (somewhat ambiguous). However, the CAE may not capture the
entire window, leading to false negative and positive predictions of anomalies, especially
in cases like brute force segments. In such cases, a longer label was applied, and the MAF
widened the MSE response (over more input windows), aiding the network in aligning
with longer labels.

The network’s best performance, albeit marginally, occurred at a compression level
of 1024 in the central squeeze of the network (8× compression), which is a reasonable
compression amount for a network.

There was a slight performance drop at higher compression ratios, but the training
time to reach the best-performing epoch increased considerably. This was expected, as more
compression makes it more challenging for the network to reconstruct the input, neces-
sitating a longer training time to learn the same data. The most extreme case was the
best performance for the highest compression ratio (32× at a latent size of 256), requiring
4750 epochs, as shown in Table 4.

Figure 7 further explores the performance of the best-performing network (1024 in the
latent space compression). ROCs for the raw MSE (without MAF) are depicted, revealing
a result of approximately 0.778 AUC. This indicates a skilled classifier, as an AUC of
0.50 represents random choice. Figure 7B illustrates the AUC of the network over the
entire unseen test set while increasing the MAF window length for the MSE output. This
figure demonstrates improved performance with MAF values, likely influenced by how
the dataset is labelled. An MAF window length of 16 (approximately 4 s) performed the
best, exhibiting a substantial increase in AUC from 0.778 raw to 0.876 with an MAF of 16.
This ROC is visible in Figure 7C.

The good detection versus false alarm rate is demonstrated in Figure 7D. This figure
illustrates the event-based metric of the number of anomalies correctly identified compared
to the total number of anomalies (as opposed to each window, it looks at each instance
of an anomaly). A false alarm is calculated as a rate measured over one hour. As visible
in Figure 7, this network can detect up to 50% of anomalies with no false detections, 70%
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of anomalies with fewer than ten false detections per hour, and 80% with approximately
50 false detections per hour. False detections per hour are crucial, as more false detections
can disrupt the system’s normal operation.

The effect of such an MAF on the MSE can be seen in Figure 8. It is essential to
note that each data point in this figure represents the MSE value for an entire window
input to the network, to be explored further in this work. As seen in this figure, the MAF
not only broadens the network response to anomalies—aiding in detecting more of the
overall anomaly—but also helps in smoothing out and reducing the Bluetooth segment
error, reducing the number of false positives where normal data have momentarily higher
errors than the threshold (anomalous regions and normal Bluetooth regions are labelled in
Figure 8).

Figure 7. Performance of the Dragon_Slice_1024 CAE architecture in terms of raw AUC (A), best
MAF size for MSE (B), AUC at best MAF size, (C) and GDR (D).

Figure 8. Effect of the MAF on the MSE.
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Table 4. Best performing epoch for each compression amount.

Compression Best Epoch RAW MSE AUC MAF MSE AUC MAF Window Length

1024 250 0.778 0.876 16

512 500 0.768 0.874 16

256 4750 0.772 0.868 16

4.3.4. Reconstruction Examples

In this age of AI, it is crucial to prioritise explainability in conjunction with the cho-
sen methodologies. This entails justifying the steps taken and delving into a network’s
functionality from a comprehension perspective.

As previously mentioned, the input to the CAE network is a one-second segment of the
testbed’s current data. With preprocessing, this segment consists of 2048 samples in length.
The output, being a reconstruction-based approach, represents the network’s attempted
reconstruction of this input. An input sample is classified as normal or anomalous based
on how well, or poorly, the network reconstructs the unseen input data. The metric for
reconstruction quality is the mean squared error (MSE). This also serves as the loss function
during training, and while other loss/error options exist, MSE is the industry standard for
this problem case. Examples of the actual MSE output of the network will be detailed in
the next section, but firstly, the network’s reconstructive ability will be explored.

The fact that the network produces a tangible output is of utmost importance in
explaining this AI, understanding how it operates, and making informed decisions on the
presented unseen data.. Crucially, the architecture in this study outputs no probabilistic
output but, rather, a reconstruction and the associated MSE for the entire input window.
Inspection of this can be far more explainable than probability-based outputs.

Using the reconstructed output, it is possible to identify areas where the network had
difficulty reconstructing. This allows for the referral of that specific anomalous segment to
a higher level, such as a human expert, for inspection. This utility is somewhat similar to a
fully convolutional neural network (FCNN) operation, whose unique design enables tracing
back from the probabilistic output to the exact part in the input signal that contributed to
that decision.

Figure 9 displays the reconstruction of various input types, comparing the reconstruc-
tion for DragonBoard versus Raspberry Pi. It is important to remember that this network
was trained on both devices’ held-out normal data simultaneously. Thus, this model works
across two devices. Our previous work showed the similarity in signature, albeit at vastly
different amplitudes, attacks, and normal behaviours across these devices. The ability to
use one model across two devices suggests great scalability for such architecture.

Figure 9A,B illustrate the network’s reconstructive ability on unseen normal data,
demonstrating impressive results. This proves that the network successfully learned to
reconstruct the normal information. The lower the associated error compared to anomalies,
the better the network’s performance.

The reconstructions in Figure 9A,B support the hypothesis from [4], i.e., the shape of
the signatures of the normal data were close enough, regardless of the significant difference
in current amplitude between the two boards, allowing one network to be trained on
both boards’ normal data and detect anomalies in both. This similarity in signature,
despite the difference in maximum amplitude, can be seen in Figure 9A,B, ranging from
approximately 0.16 Amps for the DragonBoard to approximately 0.38 Amps for Raspberry
Pi. However, regardless of this amplitude difference, the network performed remarkably at
reconstructing the normal information for each board.

More importantly, the network’s reconstruction of anomalies is investigated through-
out the rest of Figure 9. In Figure 9C,D, the reconstruction of a port scan attack, namely
Nmap_T3, is shown for both DragonBoard and Raspberry Pi. Notably, the signature for this
specific attack setting for DragonBoard, Figure 9C, has a remarkably low amplitude, almost
equal to Bluetooth for DragonBoard and far lower than that of Raspberry Pi. Anomalies
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like this are instrumental in demonstrating that the network is reconstructing based on a
learned shape rather than simply struggling with high amplitudes. The only way for the
network to struggle to reconstruct this specific anomaly signature is based on its shape,
which is the main contributor to the anomalous classification of this segment.

In the case of Raspberry Pi in Figure 9D, while it is observable that the network strug-
gles with the shape, most of the error contributing to the anomalous classification comes
from the much higher amplitude of this anomaly over the normal expected amplitude.
In fact, throughout the entire training set, the normal data peaks for Raspberry Pi reach an
amplitude of approximately 0.38A. It follows that the network cannot reconstruct inputs
far greater than those to which it was fit during training, which is most certainly the case in
Figure 9D.

Figure 9E shows the reconstruction of a brief and low amplitude signature SSH
brute force attempt, technically, a single password attempt using Hydra_T1. As visible in
Figure 9D, the amplitude of the attack is not that different from that of the Dragon_Pi’s
normal Bluetooth and is much lower than that of Raspberry Pi. As such, it can be assumed
that the error contributing to the anomalous classification must be from the abnormal shape
of the signature rather than the network struggling with a large amplitude signature.

Figure 9F shows the same Hydra_T1 SSH brute force attack on Raspberry Pi. In this
case, the amplitude is much lower than that of the port scan attack at Nmap Setting T3.
While the amplitude is slightly higher than the expected normal at approximately 0.45A, it
would be more appropriate to say that the contributing factors are almost equally shaped
parts of the signature and its amplitude, as the network struggles to reconstruct both.

Figure 9G shows the reconstruction attempt for Hydra_T16 on the DragonBoard.
While this amplitude is double what is usually expected from the DragonBoard, it is still
lower overall than the maximum expected for the normal data overall. As such, it is
possible to conclude that the contributing factor to the error is, in fact, the shape of this
anomaly rather than amplitude. It is also clear that with such a divergent shape from
normality, the network greatly struggles with reconstruction.

Figure 9H shows the reconstruction of Hydra_T16 on Raspberry Pi, a much higher
amplitude signature than that of DragonBoard and, indeed, that of any normal information.
As such, it is clear that the main contributing factor for the error in this case and, thus,
the anomalous classification, is this large amplitude. It is safe to assume that anything
largely above normal behaviour will be completely irreconstructible, always resulting in an
anomaly classification.

Figure 9I shows signatures taken when the devices were infiltrated by attackers rather
than just a network response; specifically, Figure 9I shows a command run on the device.
This signature is unique and much lower than the expected normal behaviour. As such,
studying the input in Figure 9I, it is simple to conclude that the contributing factor to the
error is a mixture of both the inability of the network to reconstruct the unseen pattern
and the inability to reconstruct the high-frequency component that can be seen in parts of
Figure 9I.

Figure 9J shows signatures obtained while the attacker infiltrated Raspberry Pi; specif-
ically, the attacker viewed some files on the target over SSH using the CAT command.
In this case, as the signature is somewhat higher in amplitude than expected in the normal
behaviour, the main contributing factor to the anomalous classification is the amplitude,
with the shape being the secondary contributing factor.

By studying the reconstruction of the network over both normal expected behaviours
and anomalies, it is straightforward to draw some conclusions about this specific network’s
operation. Firstly, the network fits well with the normal data exhibited in Figure 9A,B.
This positively demonstrates half of the desired operation of the network, which must
(a) well-reconstruct unseen data close to their training class and (b) struggle to reconstruct
anomalous patterns entirely dissimilar to the normal training class.

Regarding Figure 9C, which is a low amplitude anomaly, while there is clearly an
increase in error, the network does a surprisingly good job of reconstructing the anomaly.
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While there is some struggle with the shape of the anomaly during reconstruction, it seems
that the network can fit unseen data to a degree. This ability is undesired, with the desired
behaviour being a significant struggle with anomalous samples. This specific case serves
as a good benchmark for reconstructive ability; as such, it will be further explored in
Section 4.3.5.

In cases such as Figure 9D,F,H, it is clear there is a maximum learned amplitude that
the network can reconstruct, with a complete inability to reconstruct past this point. This
was learned passively during training, as the training set peaked at approximately 0.38 A.
In cases such as Figure 9C,E,G, the amplitude of the anomaly is significantly below that of
the maximum expected normal behaviour, so it can be inferred that the main contributing
factor to the error, in these cases, would be the unexpected shape. This is the most desirable
behaviour of the network—the purpose of using a CAE is the ability to learn and reconstruct
complex expected normal patterns while struggling, as much as possible, with patterns
that would be entirely unexpected for the network.

Overall, the reconstructions are relatively close to the input. This is not desirable.
The best-case scenario is to minimise the normal class error while maximising the abnormal
class error. Figure 9 shows a network that fits very well with normal examples while only
minimally struggling with lower amplitude anomalies. Of course, anomalies vastly outside
normal operating amplitudes are completely irreconstructible. This suggests overfitting in
the network or at least some similar phenomenon. This can occur when a network is too
complex for the task, or the test set is far smaller than the training set. In the case of this
network, the former is more likely the issue. Before any changes are made to the network,
a specific MSE case is explored in Section 4.3.5.

Figure 9. Cont.
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Figure 9. Dragon_Slice_1024 DragonBoard and Pi reconstructions.

4.3.5. MSE Exploration

Given its significant role in the network’s operation, it is imperative to explore the
mean square error (MSE) of the network’s reconstruction output. In the era of AI, clar-
ifying how decisions are made in the network is crucial. This involves examining both
the reconstructions (the actual outputs of the network) and the errors associated with
these reconstructions.

Figure 10A illustrates the MSE of 101 segments (specifically segments 1360 to 1460). It is
essential to note that each point in this graph represents the MSE of an entire output segment
(a reconstruction of 2048 samples) versus the original input (the original 2048 samples
corresponding to the output).

In the normal class, a burst of Bluetooth behaviour occurs every five seconds, leading
to an expected rise in the MSE. However, this error increase should not surpass the baseline
significantly and should be markedly lower than any error spike caused by an anomaly.

Upon closer inspection of Figure 10, some concerns arise. Despite the network’s
relatively good metric-based performance, the MSE output for the anomalous window
(e.g., window 1410, highlighted in red) appears too close to the normal Bluetooth segments
(e.g., windows 1400 and 1423, highlighted in green). A detailed examination of these
windows reveals that the network excels in reconstructing normal Bluetooth behaviour
(Figure 10B,C) but, unexpectedly, reconstructs the anomaly at window 1410 quite well
(Figure 10D). This can be attributed to the unique overfitting nature of autoencoders,
wherein, without sufficient compression, they can reconstruct most inputs.

While the network undeniably functions, the results on anomalies, such as example
1410, which have much lower power than the brute force segments, exhibit errors too
close to normal behaviour for the network to be deemed robust. For improved robustness,
the network must encounter more challenges in reconstructing anomalous behaviour, thus
establishing a more substantial gap between the MSE of normal behaviour and anomalies.

The anomaly featured in Figure 10 is particularly challenging to detect due to its low
amplitude. Overall, it is evident that the network fits exceptionally well with this type of
anomaly, as evidenced by the remarkably low MSE error (around 7e-6) and the amplitude
of the anomalous error compared to the surrounding Bluetooth regular data. Applying a
straightforward classification threshold to the MSE (as depicted in Figure 10A at around
6e-6) highlights the closeness of anomalous classification to normal Bluetooth information.
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Therefore, enhancements to the network architecture are necessary architecture to
make it more difficult to reconstruct abnormal, unseen information, ultimately creating a
more resilient network. Even if the performance improvements are marginal, a network
that struggles significantly with abnormal data would be far more trustworthy and robust.

Figure 10. Dragon_Slice_1024 and the Pi reconstruction MSE explored.

4.4. Dropout Architecture and Training
4.4.1. Architecture

Networks like CAEs often tend to overfit. Various strategies exist to mitigate overfit-
ting, such as utilising a smaller, less complex network or enhancing compression. However,
previous observations from Section 4.3.2 indicated that increased compression did not yield
improved performance.

The decision was made to incorporate dropout [41] in the network rather than altering
the overall architecture, such as removing layers. Dropout, a regularisation technique com-
monly used in deep neural networks, can significantly alleviate overfitting. By randomly
excluding nodes during training, based on a predetermined probability, dropout introduces
noise to the training process. This noise forces other nodes within a layer to assume more or
less responsibility, limiting the influence of adjacent nodes. Dropout intensifies the training
difficulty, pushing each node to learn more independently rather than relying on neigh-
bouring nodes, where a path of least resistance might occur for classification. In AEs and
CAEs, this reduces overfitting and introduces complexity to the learning process. The in-
termittent deactivation of neurons makes the reconstructive process more challenging to
learn, compelling the network to grasp intricate patterns within the training set rather than
allow for nodes to rely only on their neighbours to make decisions.

The notion of introducing noise to an autoencoder-based network extends beyond
the use of dropout. Denoising autoencoders intentionally corrupt the input to the network
or the input in transit through the network during training [42]. The objective is for the
network to learn to navigate around this corruption, encouraging it to reconstruct the
original uncorrupted input. While denoising is typically employed to remove noise, this
study employs a similar concept for anomaly detection. Instead of corrupting the input,
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dropout is used to train the network noisily. This compels the network to learn around the
noise, resulting in more robust reconstructions. In the case of anomalies, the network aims
to reconstruct them as it deems ‘normal’, replacing the anomaly in the unseen data with its
own ‘normal’ reconstruction.

Comparing the dropout-based reconstruction to the original input reveals a more
significant error for anomalies. This approach enhances the network’s robustness by
preventing it from merely attempting to fit whatever input it is presented with, leading to a
more reliable and trustworthy network.

While dropout was employed in this study to introduce noise, this study hypoth-
esises that corrupting the actual input could yield similar, or even better, results. This
theoretical approach could also generate additional training data by creating multiple
permutations for a single training sample, which could assist in cases with sparse training
sets. Although outside the scope of the current study, it will be explored in future research.

The probabilistic deactivation of nodes during training is disabled during testing.
As such, the entire network is used during testing. Apart from the dropout layers, which are
applied after the GELU activation functions, the architecture remains the same. The proba-
bility of dropout on convolutional layers remains very low at 0.1, as in [41]. The probability
of dropout in the dense layer was 0.5. Figure 11 shows the revisions to the Dragon_Slice
CAE architecture designed in this work. Note the addition of dropout.

Figure 11. Dragon_Slice CAE architecture with dropout.

4.4.2. Training

Apart from the addition of dropout, the training process remains the same as in
Section 4.3.2. Notably, with the addition of dropout, the number of epochs required to reach
the best-performing model increases. For example, for 1024 net, the best model went from
performing best at the 250th epoch to performing best at either the 1500th or 2250th epoch
for the same architecture with dropout (both epochs included as they achieved almost
identically the highest performance). Figures for the remainder of the study use the 2250th
epoch for the 1024 dropout network.

4.4.3. Results

Incorporating dropout into the network resulted in a reasonable improvement in
MAF-based performance (from 0.876 without dropout to 0.89 with dropout), accompanied
by a marginal decline in raw performance, as seen in Table 5.
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Once again, a slight reduction in performance is observed as latent compression
increases. This reaffirms that the 1024 dropout network, with the lowest compression ratio,
remains the best-performing configuration. Consequently, all figures in this section pertain
to the 1024 dropout network.

Beyond the enhanced AUC performance, there is a notable improvement in the GDR,
reaching approximately 65% correct detection at 0 false positives per hour, 77% correct
detection with fewer than 10 false detections, and 85% correct detection with fewer than
50 false positives per hour. This is shown in Figure 12.

More crucially, the focus shifts to the reconstructions themselves and the overall
resilience of the network in terms of the gap between MSE for normal Bluetooth behaviour
and an anomaly. This aspect will be thoroughly discussed in the following section.

Table 5. Best performing epoch for each latent compression (with dropout).

Compression Best Epoch RAW MSE AUC MAF MSE AUC MAF Window Length

1024 2250 0.766 0.890 17

1024 1500 0.764 0.890 17

512 2000 0.759 0.886 18

256 3250 0.752 0.884 17

Figure 12. Performance of the dropout-based Dragon_Slice CAE in terms of raw AUC (A), best MAF
size for MSE (B), AUC at best MAF size (C), and GDR (D).

4.4.4. Reconstructions with Dropout

Figure 13 depicts the reconstructions of the same normal behaviour and anomalies as
Figure 9.

In Figure 13A,B, it is evident that the network performs satisfactorily in reconstructing
normal behaviour, albeit with an overall increase in error compared to the non-dropout
network. Despite this heightened error, the network demonstrates an evident ability to
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reconstruct normal behaviour. An increase in the overall network error is acceptable, as the
crucial factor lies in the gap between the normal and anomalous error, rather than the
minimisation of the overall error. The anticipated reduction in reconstruction quality with
dropout was also observed.

With the edition of dropout, the network is less prone to overfitting, resulting in a
reconstructed output that is more reliable and robust. This means one can have greater
confidence in its performance.

Figure 13C,D show the reconstruction of the Nmap_T3 anomaly. In this case, the net-
work with dropout performs poorly in reconstruction, which is the desired outcome (the
main aim is to have adequate performance for normal data and poor performance for
abnormal data). In Figure 13C, the network struggles significantly more to reconstruct the
anomaly than the non-dropout network, where reconstruction is more successful and seems
to follow the signature more accurately. With dropout, the network fails to reconstruct
the abnormal part of the signal effectively due to the unexpected shape of the signal. This
behaviour is highly desirable, showcasing a more robust response to anomalies.

Figure 13D demonstrates even poorer reconstruction performance, considerably worse
than without dropout. This is because a part of this signal exceeds the maximum expected
normal operational amplitude, causing the network to struggle to make sense of the signal.
Instead of attempting to follow the input, the network attempts to fit a shape it deems
most appropriate for the entire signal, not just the anomalous part, as seen in Figure 13C,
leading to a much higher overall error for this window. Again, this behaviour is desirable,
indicating a more robust response to anomalies.

Figure 13E displays a notable decline in reconstructive performance for the SSH
Brute Force Hydra_T1 anomaly on both the DragonBoard and Raspberry Pi. As the
amplitude of the anomaly on the DragonBoard is not greater than the maximum for the
normal class, the network does a reasonable job of reconstructing the normal behaviour
around the anomaly (if the amplitude was more significant, the reconstruction would fail
for the entire window). However, when it comes to abnormal behaviour, the network
struggles significantly to reconstruct the anomaly, which is another desirable outcome.
A comparison with the non-dropout network highlights how much closer the non-dropout
network reconstructs the anomaly. In the dropout network, there is a complete inability to
reconstruct the anomaly, aligning with the system’s desired behaviour.

Figure 13F exhibits the reconstruction of an example of the SSH Brute Force Hydra_T1
for Raspberry Pi. In this case, the network cannot reconstruct the input, likely due to the
information within the window spiking well beyond the maximum normal operational
amplitude. The network attempts to reconstruct the input based on some pattern of normal
information learned during training, thus failing to reconstruct the input at all.

Figure 13G shows the reconstruction attempt for SSH brute force Hydra_T16 for
the DragonBoard, where a complete inability to reconstruct is observed. Interestingly,
the network reasonably reconstructs the baseline normal behaviour before the significant
amplitude spike. This reconstruction continues for the large amplitude anomaly rather
than attempting to reconstruct it in this segment.

Figure 13H displays the SSH brute force Hydra_T16 anomaly on Raspberry Pi and
the attempted reconstruction. Again, instead of reconstructing the anomaly, the network
seems to be attempting to fit the reconstruction to some pre-learned pattern. However, it
is challenging to determine what it is trying to fit the reconstruction to in this case, as it
seems to be somewhere between the behaviour of the DragonBoard and Raspberry Pi.
Nevertheless, the poor reconstruction is the most desirable output for this kind of network.
Notably, as the anomaly far exceeds the amplitude of the normal behaviour for both boards,
the network cannot reconstruct any of the signal, not even the normal information around
0.3 A at the start of the signature. This is good as it results in a higher error for the segment.

Figure 13I,J show the reconstruction attempts for current traces obtained from an
attacker exploring the victim’s device and investigating files. There is a complete inability
to reconstruct the anomalies in both cases (highly desirable behaviour).
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With the addition of dropout to the network, the system can reasonably reconstruct
normal information while struggling significantly more with the reconstruction of anoma-
lies. This aligns precisely with the intended results when incorporating dropout into
the network.

Upon studying the reconstruction attempts of anomalies with dropout, it is evident
that shape plays a much more substantial role in confusing the network. While shape plays
a supporting role in contributing to the error in the network without dropout, it now plays
a key role, equal to amplitude, in the dropout-based network. This behaviour can be quite
interesting, especially for anomalies below the normal maximum operational amplitude,
such as Figure 13C,E,F, all of which exhibit a complete inability to reconstruct the anomaly
while remaining well below the maximum amplitude values observed in the normal data.

In cases where the anomaly spikes above the maximum amplitude of normal data,
as seen in the dataset, unlike the non-dropout network where large spikes seem to be
reconstructed to a point with a plateau at approximately 0.45 A, the dropout-based network
becomes highly confused. This results in the network attempting to fit some unusual shapes
and signatures based on its learned memory to fill the gap in its knowledge, resulting in a
much higher overall error.

Overall, adding dropout to the network accomplished precisely what was intended,
with anomalies being nearly impossible for the network to reconstruct, while normal data
are still reasonably well reconstructed. This creates a much more robust network overall,
with a much more pronounced distinction between normal and anomalous behaviour.

Figure 13. Cont.
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Figure 13. Dragon_Slice_1024_Dropout DragonBoard and Pi reconstructions.

4.5. MSE Exploration With Dropout

Examining the MSE for the network’s reconstructions highlights the success of dropout.
When observing the same segments as in Figure 10, a distinct separation in the error of the
Bluetooth and the anomaly becomes apparent.

In the case of the two Bluetooth reconstructions shown in Figure 14B,C for segments
1400 and 1423, reasonably good construction is evident on this normal data, albeit at a higher
error compared to the non-dropout network. This additional error for the normal data is
acceptable and expected. After all, this model’s primary objective is to reconstruct normal
information reasonably well while struggling significantly with anomalies, as demonstrated
in Figure 14.

The error caused by the port scan attack at Nmap setting T3 in Figure 14D is now
distinctly separated from the normal Bluetooth spikes around it, almost six times higher.
Applying an arbitrary threshold, for example, around midway between normal and ab-
normal, illustrates substantially greater room to minimise false positives with the dropout-
based network.

The clear distinction in error between normal and anomalous behaviour proves that
the edition of dropout results in a much more trustworthy and robust network. A more
detailed exploration of the improvements will be undertaken in Section 5, where the
non-dropout and dropout networks are more specifically compared.

Figure 14. Cont.
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Figure 14. Dragon_Slice_1024_Dropout DragonBoard and Pi reconstruction MSE explored.

5. Discussions
5.1. Comparison between the Non-Dropout and Dropout Networks

This section explores distinctions between the best-performing dropout and non-dropout
models. Figure 15 provides a more accessible comparison between the non-dropout and
dropout networks, presenting reconstructions of various anomalies selected from the
two boards.

In Figure 15A,B, the focus is on the specific reduction in the quality of the recon-
struction of normal Bluetooth behaviour between the two networks, specifically for the
DragonBoard. With its adept ability to fit the input data, the non-dropout network excels
at reconstructing the normal signal. On the other hand, the slightly constrained reconstruc-
tive ability of the dropout-based network is evident in (B). Despite a reconstruction error
increase, the dropout network still performs well in reconstructing normal Bluetooth data.
The ideal dropout value should maximise normal reconstruction quality while minimising
anomalous data reconstruction.

Comparisons in Figure 15C,D evaluate the reconstruction quality of the non-dropout
network against the dropout-based network for a port scan attack with an Nmap setting T3
signature on the DragonBoard. Both networks struggle with the high-frequency component
of the spike. However, the dropout-based network distinctly refuses to reconstruct the
entire anomalous signal, unlike the non-dropout network, which follows the anomalous
signal far more faithfully. Both networks effectively reconstruct the normal information
in the background, with the non-dropout network exhibiting the expected higher quality
than the dropout network. The dropout network’s more robust behaviour, attempting to
reconstruct from well-learned shapes rather than simply reproducing the input, is evident.

In Figure 15E,F, the reconstruction of the SSH Brute Force Hydra_T1 anomaly on the
DragonBoard is showcased. The non-dropout network fits well with the anomaly, display-
ing minimal error, while the dropout network significantly struggles to reconstruct the
anomaly, resulting in a much higher error. The dropout network’s behaviour highlights its
robustness, relying on well-learned shapes for reconstruction rather than a straightforward
input replication.

Examining Figure 15G,H involves the reconstruction of a high-amplitude attack of
SSH brute force Hydra_T16 for Raspberry Pi. Both networks exhibit poor reconstructive
ability, but the non-dropout network attempts to reconstruct up to a specific maximum
amplitude of approximately 0.45A, following the input, as seen in the plateaued recon-
struction in Figure 15G. With dropout, the network significantly struggles to reconstruct
the anomaly, displaying an entirely incorrect reconstruction and not following the input.
The dropout network’s more robust behaviour is evident, relying on well-learned shapes
for reconstruction rather than explicit amplitude.

In Figure 15I,J, a particularly challenging anomaly is presented, depicting a small
signature of an attacker running a command on the target after infiltration. This anomaly
only has a small fraction of the amplitude of normal Bluetooth behaviour and is closely
embedded within normal background data, sharing a similar dynamic range. As such,
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it poses a significant detection challenge. The non-dropout network reconstructs this
anomaly almost perfectly, which is undesirable. In contrast, the dropout-based network
visibly struggles with reconstructing this anomaly based on shape alone, showcasing its
more robust behaviour and heavy reliance on the input’s shape rather than its amplitude.

Notably, many of the anomalies featured here have low amplitudes (specifically
Figure 15C–F,I,J), intentionally chosen to illustrate the dropout network’s inability to
reconstruct these small amplitude anomalies, all below the maximum values expected for
Bluetooth in the dataset. The dropout network relies on the unexpected shape of the input
for reconstructive ability rather than merely responding to a significant power surge in
the input. This behaviour highlights the dropout network’s robustness in attempting to
reconstruct from well-learned shapes rather than a straightforward replication of input.

To summarise, this system aims to reconstruct normal data well while struggling as
much as possible with abnormal data. With the addition of dropout, it is clear that the
network struggles heavily with reconstructing anomalies while maintaining the ability to
construct normal data. This desirable behaviour is contrasted well with the non-dropout
network, which has near-perfect normal class reconstruction but reconstructs the abnormal
class far too well. This proves that the addition of dropout in the network creates a far more
robust and trustworthy network.

Figure 15. Cont.
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Figure 15. Dragon_Slice_1024 architecture; non-dropout and dropout comparison.

Figure 16 compares the same anomalous window. This is accompanied by the mean
squared error (MSE) over the fifty adjacent windows on either side of this anomalous
window. The purpose of this figure is to compare the non-dropout network with the
dropout-based network, illustrating the increased robustness of the dropout network.

Examining the reconstructions alongside the MSE graph, explicitly focusing on the
error of this particular window in the middle, clearly highlights the positive impact of
dropout. The Bluetooth error in the dropout network is now significantly lower than the
error created by the anomaly. Consequently, the addition of dropout has notably enhanced
the network’s robustness, creating a more pronounced distinction between normal and
anomalous classes.

A direct comparison of the reconstructions and mean squared error (MSE) output
between the non-dropout and dropout scenarios demonstrates the significantly positive
impact of introducing dropout to the network. The result is a more robust network charac-
terised by a more pronounced distinction between normal and anomalous classes.

This heightened division between normal and anomalous classes contributes to creat-
ing a more reliable and resilient network. In the absence of dropout, the network could only
identify anomalies based on its moderate struggle to reconstruct them, yet it still manages
to reconstruct anomalies to some extent. The incorporation of dropout, however, eradicates
the network’s capacity to reconstruct abnormal signals, leading to a substantial increase in
error specifically for anomalies. This is by far more robust and trustworthy behaviour.

5.2. Unsupervised AI

This study’s most important aspect is its adoption of an unsupervised approach. In our
previous study [4], we showcased the dynamic nature of attack signatures with simple
setting variations. Consequently, we discouraged using supervised approaches to detect
anomalies in device power data.

This advice was not because supervised approaches would underperform on the test
set; rather, their limitation lies in their lack of real-world applicability. A fully supervised
approach to anomaly detection in this dataset might perform well in controlled lab testing.
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However, it would be likely deceptive since anomalies are inherently meant to be unexpected
and completely unseen. Training on normal and anomalous data could yield higher results
on lab tests, but these results would likely be artificial with poor real-world generalisation.

While there are some techniques for supervised training, such as excluding one
anomaly type for testing while training on all others, these methods still overlook the
fundamental fact that anomalies are inherently diverse in a real-world setting; thus, even if
a network has good leave-one-out supervised performance, it may not translate well to an
anomaly setting vastly different to the test set. Focusing on normal operation is far more
logical in the context of IoT, where one has complete control over normal behaviour.

Figure 16. Dragon_Slice_1024 architecture; a comparison between non-dropout and dropout based
on MSE, with an anomaly in the centre surrounded by normal behaviour.

In the authors’ view, training on anomaly data in the dataset would compromise the
training process by excessively guiding the network. As such, the work presented in this
study opts to train the network solely on held-out normal data. The normal and anomalous
data in the test set were obtained in more realistic conditions outside this controlled
environment. Since the network’s performance relies on entirely unseen data, particularly
in the case of anomalies, the results in this study are argued to be more applicable to the
vast array of anomalies in a real-world setting, demonstrating the robust generalisation of
the network.

5.3. Human in Loop

Importantly, this framework allows humans to be included in the AI loop, with seg-
ments or epochs of worry being sent for inspection by a human expert. As the network out-
put is so easily understood, with input, reconstruction, error and classification—provided
the rate of false positives is not too high—a security team in a company could have little
to no problem identifying segments of worry and, thus, attacks in a system. In this way,
a security team can make far more informed decisions during the occurrence of an attack
or take extra defensive measures in the case of early detection of a possible attack.
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5.4. Explainability of the AI

A crucial aspect of the CAE network highlighted in this study is the explainability of
the AI system. Since the classification hinges on the mean squared error (MSE) between
the input and its reconstruction, retracing the classification process becomes straightfor-
ward. This can be achieved by identifying segments with high error and comparing the
input against the reconstructed output of the network, as demonstrated in earlier figures
within this study. The poor reconstruction of anomalous data readily reveals where the AI
encounters challenges in recognising such anomalies.

This operation of the AI in this study differs from that of other anomaly detection
options. In these other techniques, the AI outputs only a probability of the input being a
specific class rather than a more tangible output, such as the reconstruction and associated
errors. This does not help human experts determine what contributed to the classification or
verify the correct classification process. Systems such as the CAE highlighted in this paper,
or fully convolutional neural networks (FCNNs), allow for tracing back to the portion of
the input signal that contributed significantly to the classification.

The network effectively reconstructs the normal data surrounding the anomaly for less
pronounced signatures, like the DragonBoard port scans or Hydra_T1, where the attack
signature’s amplitude is low. This clarity enables precisely identifying the segment within
the input signal associated with the anomaly. Conversely, with substantial amplitude
signatures, the network may struggle to reconstruct even normal information. However,
the existence of data with such amplitude clarifies why the AI made its decision despite
the challenges in reconstruction.

By examining the input–output pair associated with the high error, a human expert
can readily discern the reasons behind the classification of a segment as anomalous. When
dealing with low-amplitude attacks, it becomes apparent that the primary factor influenc-
ing classification is the shape of the anomaly signature, which the network struggles to
recognise. Conversely, in cases of high-amplitude anomalies, it is evident that the network
cannot reconstruct them at all, as they surpass the maximum amplitude expected from the
learned normal class.

Considering these factors, the proposed CAE system can be confidently labelled as
highly explainable, and its decisions should be easily comprehensible to security experts
managing a similar system.

The transparency of the AI in this study not only ensures the correctness of its op-
eration but also eliminates the possibility of fabricated results. In AI-related studies,
understanding the exact operation of the AI can be challenging for readers, with details
such as the training set, test set, actual input to the AI, output, decision-making process,
etc., often being concealed. The clarity in the network operation in this study confirms its
authentic functioning.

5.5. Advanced Persistent Threat Detection

The dataset featured in this work and the AI trained upon these data may be useful in
future work specifically aimed at advanced persistent threat (APT) detection and mitigation.
A large concern many governments currently have involves the infiltration of IoT devices
by APT actors, who generally work on behalf of an enemy state. These infiltrated devices
can be used for many nefarious activities, such as espionage, trading illicit or classified
material, and creating underground communication networks. The US Federal Bureau of
Investigation (FBI) released a public service announcement on this topic for IoT devices [43].
The capture the flag (CTF) scenarios, detailed in Section 3.2, can be seen as the beginning of
research into this specific topic. Rather than simply focusing on the device’s infiltration,
these scenarios illustrate some of the attacker’s activities after gaining access. This is
somewhat closer to the activities of an APT actor. Importantly, many of the activities
of an APT actor will not be network-related but rather involve malicious code on the
device. The CTF scenarios in Dragon_Pi illustrate the effectiveness of inspecting the power
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consumption of a device to detect unexpected code and commands, which could indicate
an APT actor using an IoT device for nefarious purposes.

6. Limitations of the Work

As Dragon_Pi is our first step into creating alternative datasets, it comes with its limitations.

• Normal behaviour: The normal behaviour in the Dragon_Pi dataset is rather simple.
In future work, a far more complex and challenging dataset would more significantly
contribute to IoT security.

• Scalability: This intrusion detection methodology requires obtaining the power con-
sumption of the devices it protects. Even a low-cost and easy-to-install power monitor
may become an issue to install if there are too many devices to protect in a specific net-
work. As such, future research must tackle the problem of making this methodology
as scalable as possible.

• Accuracy of dataset annotation: The dataset was labelled as accurately as possible,
but a more appropriate labelling methodology may exist, such as labelling an epoch
rather than an individual anomaly. This will be investigated for labelling any fu-
ture datasets.

• Size of the dataset: The overall dataset size is not that large. Future datasets will aim
to capture as much data as possible. This will further assist in training deep learning
models, which require much more data to train.

• Homogeneity of the dataset: The purpose of Dragon_Pi is to promote the use of
alternate data types in IoT security. Ironically, Dragon_Pi itself focuses on only one
data type—power consumption data. A heterogeneous dataset encompassing as many
data types as possible, including power consumption and network traffic, will be
obtained, rather than focusing on a single type.

7. Conclusions

In this study, we introduce two significant contributions to the field of IoT secu-
rity, i.e., Dragon_Pi, a diverse dataset containing normal and under-attack current traces
from a DragonBoard 410c and a Raspberry Pi, as well as Dragon_Slice, an unsupervised
convolutional autoencoder anomaly/intrusion detector for IoT based on this data.

The CAE network in this investigation demonstrates two levels of robustness, one with-
out dropout and another with dropout. The non-dropout network achieved a 0.7778 AUC
without post-processing and 0.8764 AUC with a mean absolute filter (MAF) of length 16 on
the network’s mean squared error (MSE).

Although this network exhibited nearly perfect normal class reconstruction, it proved
overly skilled in reconstructing anomalies. Consequently, a more robust solution was
sought to enhance the distinction between normal and anomalous unseen errors. In-
troducing dropout, aimed at reducing overfitting and incorporating identity mapping,
yielded excellent results. The dropout network, with an AUC performance of 0.764 without
post-processing and an AUC of 0.89 with a MAF on the MSE of length 17, not only outper-
formed the original network using the MAF-MSE but also demonstrated a significantly
more robust output, with a more substantial gap in error between normal and anomalous
classes due to its inability to reconstruct anomalies. This rendered the dropout network
more reliable, trustworthy, and robust.

This study leverages the explainable output of the CAE network to explain the featured
AI. The AI’s explanation revolves around reconstruction, the error of the input–output
pair, and classification. The unique operational approach of reconstruction-based networks
enhances the AI’s explainability, allowing for a straightforward comparison between input
and output. This facilitates understanding the network’s decision-making process and
provides insights into potential ways to enhance AI. The explainability of this AI assists
in the involvement of humans in the AI loop within the system. In real-world scenarios,
segments of interest classified by the AI can be referred to human experts for further
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analysis. How the network attempts to reconstruct the input can aid human experts in
comprehending why a particular segment is deemed anomalous.

Our future work on this topic will continue to investigate the overall subject of het-
erogeneous data types in IoT security. To this end, we will seek to create a new dataset,
containing power consumption data as well as network traffic and device telemetry. This
dataset, and the subsequent work thereon, will explore a methodology of incorporating
power consumption data and other telemetry data into the pre-existing security pipelines.
New anomaly detection architectures will be explored based on this dataset, with a focus
on the heterogeneous nature of the dataset, allowing the use of a single model across not
only multiple devices but also multiple data types.
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