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Abstract: We develop the online process parameter design (OPPD) framework for efficiently handling
streaming data collected from industrial automation equipment. This framework integrates online
machine learning, concept drift detection and Bayesian optimization techniques. Initially, concept
drift detection mitigates the impact of anomalous data on model updates. Data without concept drift
are used for online model training and updating, enabling accurate predictions for the next processing
cycle. Bayesian optimization is then employed for inverse optimization and process parameter design.
Within OPPD, we introduce the online accelerated support vector regression (OASVR) algorithm for
enhanced computational efficiency and model accuracy. OASVR simplifies support vector regression,
boosting both speed and durability. Furthermore, we incorporate a dynamic window mechanism
to regulate the training data volume for adapting to real-time demands posed by diverse online
scenarios. Concept drift detection uses the EI-kMeans algorithm, and the Bayesian inverse design
employs an upper confidence bound approach with an adaptive learning rate. Applied to single-
crystal fabrication, the OPPD framework outperforms other models, with an RMSE of 0.12, meeting
precision demands in production.

Keywords: online processing parameters design; online machine learning; concept drift detection;
Bayesian optimization

1. Introduction

With the advancement of computer technology and increased computational capa-
bilities, the field of machine learning has had a profound impact on industry, particu-
larly within the context of Industry 4.0 [1]. Industry 4.0 standards encourage the use of
intelligent sensors, devices and machinery, enabling smart factories to continuously collect
data relevant to production. By processing the gathered data, machine learning techniques
can generate executable intelligence, thereby improving production efficiency without
significantly altering the required resources [2]. Traditional machine learning [3] is typically
associated with offline machine learning, also known as batch machine learning. It involves
training on historical data to obtain machine learning models. To update the model, it
is necessary to retrain it on a new dataset. In contrast, online machine learning refers to
the process of continuously training and dynamically updating models as data stream in.
This approach allows models to track changes in data in real time, leading to improved
predictive performance [4].

In the era of Industry 4.0, the level of automation and informatization of equipment
is exceptionally high. Devices are equipped with sensors that enable real-time monitoring
of equipment parameters, with the collected data being sent back to monitoring databases,
resulting in a continuous stream of data. In the context of streaming data [5], online machine
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learning addresses the limitation of offline machine learning, which cannot update models
in real time. This capability can significantly enhance the accuracy of model predictions.
Consequently, online machine learning exhibits unique advantages in industrial applications.
Currently, while there is some research in the field of online machine learning, its application
in the industrial domain remains relatively limited. The primary challenges [6] include:

(1) Computational efficiency of algorithms: Currently, there are numerous online incre-
mental algorithms, such as online decision tree models and incremental clustering
algorithms. These algorithms require setting hyperparameters based on different
streaming data. In contrast, online support vector regression models do not necessitate
this prior knowledge. Ma et al. proposed accurate online support vector regression,
also abbreviated as AONSVR [7]. However, this method exhibits high computational
complexity, making it unsuitable for meeting the rapid computation requirements of
industrial applications. Subsequent researchers have made various improvements to
AONSVR [8–10], but their primary focus has been on enhancing predictive accuracy,
without in-depth investigation into the computational performance of the model. The
ORSVR approach introduced by Yu has improved computational performance but ob-
tains a lower predictive accuracy than AONSVR because of its robustness. Therefore,
it is essential to enhance computational speed while maintaining predictive accuracy.

(2) Concept drift detection [11]: Concept drift is a phenomenon in which the statistical
properties of a target domain change over time in an arbitrary way [12]. In online
machine learning, where the model is trained on each streaming data point, the model
tends to update in the wrong direction gradually when data undergo concept drift. As
a result, it is crucial to monitor the streaming data. Concept drift detection algorithms
perform real-time monitoring of the data distribution in streaming data. When drift is
detected, that portion of data is discarded and it is not used for model training. The
system can then issue an alert for human intervention or other necessary actions to
address the concept drift.

To overcome the challenges outlined above, this paper introduces an online process-
ing parameter prediction and design framework that integrates online machine learning,
concept drift detection and Bayesian optimization. The primary contributions of this paper
are as follows:

(1) A revolutionary framework optimizes dynamic industrial processes through dynamic
machine learning. A framework for online processing parameters design and design
in industrial applications is introduced. The framework integrates online machine
learning for prediction, concept drift detection and reverse design based on Bayesian
optimization. It is capable of addressing dynamic scenarios that require tasks such as
drift detection in equipment processing data, dynamic performance prediction and the
online optimization and design of equipment processing parameters.

(2) Innovative OASVR model for dynamic industrial efficiency. To meet the rapid com-
putation demands of industrial environments, we introduce the online accelerated
support vector regression (OASVR) model. OASVR decomposes the original problem
of online support vector regression into two smaller quadratic programming problems,
resulting in more than a 2× improvement in computational speed while maintaining
a prediction accuracy similar to the classic AONSVR algorithm. Additionally, we
incorporate the EI-kMeans algorithm for concept drift detection in streaming data,
further ensuring the accuracy of the model predictions.

(3) OASVR outperforms mainstream algorithms in single-crystal growth applications.
The OASVR algorithm introduced in this paper has demonstrated excellent results
when applied to a dataset on the growth of single crystals. It outperforms other
mainstream online incremental learning algorithms. By using an adaptive learning
rate maximum upper bound function in the Bayesian optimization acquisition func-
tion, the algorithm strikes a balance between exploration and exploitation. The root
mean square error (RMSE) between the predictive recommendations of the algorithm
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and actual experimental results is only 0.12, meeting the stringent requirements of
production standards.

The organizational structure of this paper is as follows: Section 2 provides an overview
of related works. Section 3 presents the online process parameter prediction and reverse
design framework. Section 4 discusses the experiments and analyzes the results. Section 5
discusses our current results and outline potential directions for future work Finally, in
Section 6, we summarize the entire paper.

2. Related Work

The OPPD framework proposed in this paper is closely related to online streaming
data machine learning at the algorithmic level and has strong connections to material
informatics and industrial applications at the application level. The following section
provides a comprehensive review of relevant work in these areas.

2.1. Online Streaming Data Machine Learning

Online streaming data machine learning is specifically designed to handle continu-
ously generated data streams rather than static datasets. It allows models to be incremen-
tally updated as new data arrive, without the need to retrain the entire model. This learning
paradigm is particularly useful for coping with real-time data streams and concept drift.
Mainstream models and algorithms in this domain include online support vector machines,
online decision tree models, deep learning models and incremental clustering algorithms,
among others. Online decision tree models encompass approaches like online random
forests [13] and Hoeffding trees [14], which can adapt to new data by adding new trees
without retraining the entire forest. Deep learning models can be incrementally learned
through techniques based on model structure, replay-based methods and regularization
methods. Incremental clustering algorithms, such as incremental k-nearest neighbors
(KNNs) [15] and k-means [16], update cluster centroids based on new data to dynamically
adapt to streaming data. While the aforementioned methods may require some prior
knowledge about the data stream, online support vector machines do not necessitate any
prior knowledge [17].

For processing data streams using support vector regression (SVR), Liu et al. [18]
introduced an ensemble SVR. This technique generates subsequent models based on the
original, where each model corresponds to distinct time segments within the data stream.
At its core, online SVR merges traditional SVR techniques with online learning strategies to
tackle regression challenges present in streaming data [7–10]. A notable implementation
of this methodology is by Ma et al. [7], who presented ϵ-SVR in an online algorithm
called accurate online support vector regression (AONSVR). Further advancing this field,
Cauwenberghs et al. [19] introduced a new adaptation method to fine-tune the model.
The primary objective of the online SVR algorithm is to check whether all samples satisfy
the Karush–Kuhn–Tucker (KKT) conditions when a new sample is added. In the new
adaptation method, when samples meet the KKT conditions, they are categorized into
three sets: remainder, support and error sets. The support set includes the training samples
strictly on the bound. The error set includes the training samples exceeding the bound. The
remainder set includes the training samples covered by the bound. Gu et al. [8] then further
improved this adaptation method to address additional shrinkage issues in the ν-SVR
algorithm, resulting in the incremental ν-SVR algorithm (INVSVR). To handle uncertain
data streams, Yu et al. [9] decomposed the classical ν-SVR into a dual ν-SVR model and
applied the same adaptation method as in INVSVR to Gu et al. [10]’s model.

However, these online SVR algorithms have two main drawbacks: first, the robustness
of the model is limited and, second, the core idea of incremental learning algorithms
involves adjusting the weights of new samples in an infinite number of discrete steps
until they satisfy the KKT conditions. Existing samples must continue to meet the KKT
conditions after each step, which can be computationally intensive. ORSVR, proposed by
Yu et al. [17], addresses the above-mentioned issues, but its high robustness comes at the
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expense of a certain impact on prediction accuracy. Our proposed new algorithm follows
the same approach of ORSVR for AONSVR.

2.2. Online Machine Learning Applied to Materials and Other Industrial Scenarios

The use of machine learning algorithms to establish the structure–performance rela-
tionship between material properties, composition, processes and microstructure has found
widespread applications in enhancing material performance and optimizing processes.
Many of these applications involve online prediction frameworks. Here are some examples
of such applications: Carvajal et al. [20] proposed a machine learning and coordination
framework for the Internet of Things (IoT), which was applied to detect faults in surface
mount equipment during the production process, to build a scalable and flexible online
machine learning system. Xie et al. [21] designed a deep learning model for the online
prediction of mechanical properties of industrial steel plates, including yield strength (YS),
ultimate tensile strength (UTS), elongation (EL) and impact energy (Akv) based on the
process parameters and the composition of the raw steel. The DNN model achieved low
root mean square percentage errors (8%) on all four mechanical properties, outperforming
classic machine learning algorithms. This model is valuable for the online monitoring and
control of the mechanical properties of steel and guiding the production of customized
steel plates. Malaca et al. [22] compared two different approaches, ANN and SVM, for
the real-time classification of fabric texture for automotive industry in an industrial case
scenario, where multiple marshaling methods are used for the feature vectors to achieve
a better balance between the processing time and the classification rate. Unfortunately,
these online frameworks do not dynamically update the model weights and still batch train
machine learning.

3. Online Processing Parameters Prediction and Reverse Design Framework

The proposed framework, which is shown in Figure 1, for the online processing
parameters design in this paper follows the subsequent workflow: when the collected
streaming data do not meet the pre-training quantity, a simple prediction is made. Once the
quantity meets the pre-training requirement, concept drift detection is performed on the
new streaming data. If concept drift is detected, this portion of data is discarded to prevent
incorrect updates to the model. If no drift occurs, the online machine learning model
parameters are updated to predict the next round of process performance. The streaming
data without concept drift are used to update a Gaussian process regression model and
Bayesian optimization is carried out using a Gaussian maximum upper confidence acqui-
sition function with an adaptive learning rate. This process completes the reverse design
and recommendation of process parameters. Factory equipment automatically adjusts
according to the designed process parameters. Then, new streaming data are collected
again for the next round of process parameter recommendations.

Notation: To make the notations easier to follow, we give a summary of the notations
in the following list:

ϵ is the ϵ−insensitive loss function and is defined as |Y − f (x)|ϵ = max{0, |Y − f (x)| − ϵ}
for a predicted value f (X) and a true output Y;

K is the kernel function;
b is the bias;
C is a regularization constant;
αi is the weight of K(Xi, Xj);
ξi, ξ∗i are slack variables correspond to the magnitude of this excess deviation for positive

and negative deviations, respectively;
∗1i is the ith * variable in the upper function;
∗2i is the ith * variable in the lower function.
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OASVR

Gaussian process regressionAcquisition Functions
Processing Parameter Design

Concept Drift Detection

dynamic window

devices 
dynamically 
adjust

Stream data

Figure 1. Online processing parameters design framework. Apply concept drift detection on the
streaming data collected from industrial equipment, eliminate data affected by drift and incor-
porate these refined data into the OASVR model for online learning. Utilize Bayesian optimiza-
tion based on the predictions of model for processing parameter design. The industrial devices
will automatically adjust according to the recommended process parameters to achieve enhanced
manufacturing outcomes.

3.1. Online Accelerated Support Vector Regression

For a training set T = (xi, yi), i = 1, . . . , l, constructing a linear regression equation on
the feature space F, as shown in Equation (1).

f (X) = ⟨w · Φ(X)⟩+ b (1)

where w is a vector in the F space, Φ(x) maps the input x to a vector in F and ⟨·, ·⟩
denotes the inner product in reproducing kernel Hilbert space (RKHS). Here, optimization
techniques can be employed to obtain w and b for solving problems.

min
w,b

P =
1
2
∥w∥2 + C

(
ϵ +

1
l

l

∑
i=1

(ξi + ξ∗i )

)
s.t.(⟨w, Φ(Xi)⟩+ b)− Yi ≤ ϵ + ξi

Yi − (⟨w, Φ(Xi)⟩+ b) ≤ ϵ + ξ∗i
ξi, ξ∗i ≥ 0, ϵ ≥ 0, i = 1, . . . , l

(2)

where ∥w∥ is a regularization term that characterizes the complexity of the regression
model. The optimization criterion is used to penalize those values of Y that differ from
f (x) by more than ϵ.

Then, the original problem Equation (2) is converted into a pair of functions:

min
w1,ϵ1,b1,ξ1i

{
1
2
∥w1∥2 + C1

(
ϵ1 +

1
N

N

∑
i=1

ξ1i

)}
s.t.⟨w1 · Φ(Xi)⟩+ b1 − Yi ≤ ϵ1 − ξ1i and ξ1i ≥ 0, ϵ1 ≥ 0, i = 1, . . . , N

(3)

and

min
w2,ϵ2,b2,ξ2i

{
1
2
∥w2∥2 + C2

(
−ϵ2 +

2
N

N

∑
i=1

ξ2i

)}
s.t.⟨w2 · Φ(Xi)⟩+ b2 − Yi ≤ ϵ2 − ξ2i and ξ2i ≥ 0, ϵ2 ≥ 0, i = 1, . . . , N

(4)

Each of these two equations determines the upper and lower bounds. Meanwhile, to
make the constraints independent of the training size, the objective function of Equation (3)
is multiplied by the size of the training sample set. Therefore, the problem of seeking the
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upper bound function f1(x) = ⟨w1 · Φ(Xi)⟩+ b1 is transformed into solving the following
primal problems (QPPs):

min
w1,ϵ1,b1,ξ1i

{
N
2
∥w1∥2 + C1

(
B1N +

N

∑
i=1

ξ1i

)}
s.t.⟨w1 · Φ(Xi)⟩+ B1 ≥ Yi − ξ1i and ξ1i ≥ 0, i = 1, . . . , N

(5)

where B1 is denoted as b1 − ϵ1. Its corresponding pairwise problem is shown in Equation (6).

max

{
−1

2

N

∑
i=1

N

∑
j=1

α1iα1jQij +
N

∑
i=1

α1iYi

}

s.t.
N

∑
i=1

α1i = C1N

α1i ∈ [0, C1], i = 1, . . . , N

(6)

where Q is a positive definite matrix Qij = (1/N) · K(Xi, Xj). The lower bound function
f2(X) = ⟨w2 · Φ(Xi)⟩+ b2 can be obtained by the same modification.

Based on Equations (3) and (5), this algorithm solves a pair of quadratic programming
problems (QPPs) instead of one QPP. This means that a data point only needs to satisfy the
conditions of one of these functions. This indicates that there is only one set of constraints
on all data points in OASVR. This strategy of solving two smaller-sized QPPs instead of
one large QPP means that OASVR is simpler than classical SVR.

With these modifications, the classical AONSVR is transformed into OASVR, where
two smaller-sized QPPs need to be solved. Furthermore, the estimated upper and lower
bounds of a regression model by OASVR effectively encapsulate the data distribution’s
properties. This can enhance the robustness of the model in many situations. After
estimating the upper and lower bound functions, the final regression function can be
expressed as Equation (7).

f (Xi) =
1
2
[ f1(Xi) + f2(Xi)]

=
1
2

[
N

∑
i=1

(α1i − α2i)K
〈

Xi · Xj
〉
+ (B1 + B2)

] (7)

The process of incremental learning is to change the weight corresponding to the new
sample in a finite number of discrete steps until it meets the KKT conditions, while ensuring
that the existing samples in the training set continue to satisfy the KKT conditions at each
step [17]. And, decremental learning is employed when an existing sample is removed
from the training set. If a sample is in the remainder set, then it does not contribute to the
SVR solution and removing it from the training set is trivial; no adjustments are needed. If,
on the other hand, the sample has a nonzero weight, then the idea is to gradually reduce
the value of the weight to zero while ensuring that all the other samples in the training set
continue to satisfy the KKT conditions.

Although the above modifications will reduce the training time of the model, with
the continuous increase in streaming data, the training time of the model will inevitably
increase. In order to ensure that the model can meet the computation time requirements
of different industrial scenarios, we add a dynamic window for the training data, and the
dynamic window will be adjusted according to the model performance. At the beginning
of training, the initial size of the dynamic window is set and the model will keep training
until the window size is satisfied. After each online update of OASVR, we determine
whether the RMSE of the model decreases; if the RMSE of the model decreases, the size
of the dynamic window is increased by 1. If the RMSE of the model increases, we apply
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decremental learning to the first streaming data in the dynamic window. The maximum
window size can also be set to ensure computational efficiency.

3.2. Concept Drift Detection

Concept drift detection refers to techniques and mechanisms that characterize and
quantify concept drift by identifying change points or change intervals. Common concept
drift detection methods are categorized into the following three types: model-error-rate-
based methods, data-distribution-based methods and multiple-hypothesis-testing-based
methods [11]. Among them, data-distribution-based methods use a distance function to
quantify the difference between historical data distributions and new data. If the difference
between the two proves to be statistically significant, it indicates that concept drift has
occurred. Classical data-distribution-based detection algorithms include model-capability-
based drift detection (SCD) [23], a least squares density difference change detection test
(LSDD-CDT) [24] and others [12,25,26].

Liu et al. [27] proposed a data-distribution-based drift detection algorithm called
equal intensity k-means space partitioning (EI-kMeans) for concept drift detection via
histograms. Traditional data-distribution-based algorithms for detecting distribution-
based drift seek to develop a novel test statistic to quantify the disparity between two
distributions and craft a tailored hypothesis test to assess the significance of drift [28].
Conversely, EI-kMeans concentrates on the efficient transformation of multivariate samples
into multinomial distributions, subsequently employing established hypothesis tests for
concept drift detection. Utilizing Pearson’s chi-square test [29] as its hypothesis testing
method, EI-kMeans enables the direct calculation of drift thresholds from the chi-square
distribution, facilitating online implementation. In this paper, if the p-value, which is the
result of the Pearson’s chi-square test, is greater than 0.05, the test data are considered to
have experienced concept drift.

3.3. The Reverse Design of Processing Parameters Based on Bayesian Optimization

The adaptability of online machine learning allows models to quickly adjust to chang-
ing data distributions, providing more accurate predictions. Bayesian optimization [30]
efficiently selects the most promising experimental configurations during experiments,
thereby reducing costs and time. Combining the strengths of both, the reverse design of
Bayesian optimization using high-precision online machine learning models that continu-
ally adapt to new data is highly beneficial for rapid iteration in industrial settings.

In Bayesian optimization, the choice of the acquisition function is crucial as it directly
impacts the performance and efficiency of the Bayesian optimization algorithm. The
primary role of the acquisition function is to help Bayesian optimization select the next point
in the candidate point set for experimentation or evaluation, with the aim of maximizing
the expected improvement in the objective function while striking a balance between
exploring unknown regions and exploiting known optimal regions. Currently, an effective
strategy [30] for achieving this balance is to encourage the selection of data points in
unknown regions during the early stages of model iterations when there are limited
observed data and the model has greater uncertainty. As the model undergoes multiple
iterations, the focus shifts toward selecting points in regions where the optimal solution
is likely to exist, given the increased amount of observed data and that the model has
converged toward the optimal solution.

We select the maximum confidence upper bound function with an adaptive learning
rate as the acquisition function, and its formula is as follows:

αGP−UCB = µt(x) +
√

βt · σt(x) (8)

where t is the time step, µt denotes the mean, σt denotes the variance and
√

βt is the weight,
according to Srinivas et al. [28], who formulated a schedule for µ(, ). For the weights of
this framework, we adopt the following calculation method:
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βt = 2 log
(

t22π2

3δ

)
+ 2d log

(
t2dbr

√
log
(

4da
δ

))
(9)

where δ is a constant from 0 to 1, a, b and r are constants greater than 0, d is the dimension of
the optimization objective and t is the time step. In the maximum confidence upper bound
function, the mean represents exploitation (knowledge of the model) and the variance
represents exploration (selection of data in an unknown region). The adaptive learning rate
decreases from large to small over time. The larger the weighting of variance, the greater
the model uncertainty and the more likely it is to explore areas not observed by the model;
conversely, the smaller the weighting of variance, the more the model focuses on stability
and favors existing data. The adaptive learning rate can be weighed against the importance
of the mean versus the uncertainty.

The reverse design process for process parameters is as follows: set the candidate
range for process parameters and the objective function as the minimum difference between
the predicted value and the target performance of material. Update the Gaussian process
regression model based on the acquired streaming data. The Gaussian process regression
model can predict the mean and variance of material performance based on the input
process parameters. Use the acquisition function, Equation (8), to select the most likely
candidate values in the candidate range of process parameters and input them into the
objective function. Iterate until the maximum number of rounds, selecting the candidate
point that best satisfies the objective function as the recommendation for the next round of
process parameters.

The overall algorithm execution flow for the online optimization and design of process
parameters combining EI-kMeans concept drift detection, OASVR and adaptive learning
rate Bayesian optimization is shown in Figure 2. Utilizing this framework allows for
online data drift detection and warning in industrial scenarios and the online prediction of
equipment processing performance, as well as the online optimization and recommendation
of equipment process parameters.

start

streaming data

Meet pre-train 
number

EI-kMeans Drift 
Detection

Concept drift
Model discards

update
early warning

online prediction

OASVR update

If RMSE decrease

Dynamic window 
size+1

Gaussian process 
regression

acquisition function
Equation (9) & (10)

Is target achieved

Recommend 
process parameters

No

No

Yes

Yes

Yes

Yes

unlearning first data 
in dynamic window

No

Device 
dynamically 

adjusts to 
recommended 

points

Concept Drift 
Detection

Online Learning

Bayesian Optimization

No

Figure 2. The flowchart of OPPD framework, including three main parts: concept drift detection,
online machine learning and Bayesian optimization.
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4. Experimental Section and Results Analysis

Taking germanium single-crystal growth as an example, we apply the online accel-
erated support vector regression (OASVR) model. Through online model training, we
predict the diameter of germanium single crystals and employ Bayesian optimization for
the reverse design, recommending the pulling rate for the next moment in crystal growth
to maintain the uniform radial growth of the single crystal.

4.1. Dataset

The production of photovoltaic-grade germanium single crystals using the Czochral-
ski process [31] primarily includes seeding, necking, shoulder formation, shoulder ro-
tation, radial growth and tailing. A seed crystal is positioned above the molten germa-
nium ingot and under controlled temperature conditions, and it is immersed into the
molten germanium to induce non-uniform nucleation. By designing an appropriate ther-
mal field, both longitudinal and radial temperature distributions are effectively managed.
During the radial growth stage, the seed crystal is rotated at a specific speed and pulled
upward, allowing the newly solidified crystal to gradually grow into a single crystal.
Of particular importance in crystal growth is the radial growth stage. We collected data
from industrial equipment. To effectively build the model, we selected four datasets that
represent relatively complete and valid data from the radial growth stage. Four datasets
are denoted as K1 (1123 data points), K2 (400 data points), K3 (2015 data points) and K4
(1501 data points). Given that the primary parameters affecting germanium single-crystal
growth are the crystal pulling rate (mm/h), crystal length (mm) and average liquid surface
temperature (°C), these three parameters are chosen as the three-dimensional features for
the model input. The objective of the experiment is to provide recommendations for the
crystal growth pulling rate to maintain the uniform radial growth of the single crystal.

4.2. Experimental Setup

As a baseline comparison algorithm, this paper selects three other incremental learning
algorithms, adaptive Hoeffding tree [32], SAM-kNN regressor [33] and adaptive random
forest [34], for comparing the predictive and process parameter design performance of
OASVR, as well as OASVR with regular SVR and AONSVR. Both tree-based models
have high learning performance and low demands with respect to input preparation
and hyperparameter tuning. And, the size of the sliding window for SAM-kNN can be
continuously adapted during training.

The online model is trained incrementally with each incoming data point. At times-
tamp t, the model predicts the data at timestamp t based on the training data from times-
tamp 1 to t − 1. The performance of the model is evaluated by calculating the difference
between the actual and predicted values.

We use RMSE and R2 as evaluation metrics for the model. RMSE stands for root mean
square error and is a commonly used metric in statistics and machine learning to measure
the accuracy of predictions of the model. It quantifies the difference between predicted
values and actual values, providing a single number that represents the overall error of the
model. The equation for RMSE is as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (10)

where n is the number of the dataset, yi is the actual value for the i-th data and ŷi is the
predicted value. The lower the RMSE, the better the model performance.
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The coefficient of determination, often denoted as R2, is a statistical measure that
assesses the proportion of the variance in the dependent variable that can be explained by
the independent variables in a regression model. The formula for R2 is given as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (11)

where ȳ is the mean of the actual values, and other variables have the same meanings as
the variables in the RMSE formula. A higher R2 value suggests that the model is better at
explaining the variability in the dependent variable.

The experiment was conducted on a system running the Windows 10 operating system
with an AMD Ryzen 7 4800H CPU with 16 GB of memory. Python version 3.8 and scikit-
multiflow version 0.5.3 were employed.

4.3. Experiments and Result Analysis

The experiment utilized 60 pre-training samples with model evaluation based on
R2. Comparative machine learning algorithms employed default hyperparameters, while
AONSVR and OASVR utilized specific settings: C = 1, epsilon = 0.1, gamma = 0.1 and
bias = 0.5. The initial size of the dynamic window was 200.

From the results in Table 1, it can be seen that the improved OASVR performs better on
all datasets compared to AONSVR and regular SVR. For the four datasets, OASVR shows
an average R2 that is 2.2% higher than SVR and 4.15% higher than AONSVR, respectively.
This indicates that the method of decomposing the original problem into two smaller
quadratic programming problems is effective and demonstrates high robustness in such
high-noise datasets. Among other incremental learning algorithms, OASVR performs
best on all datasets. Adaptive Hoeffding tree and adaptive random forest are both tree-
based ensemble learning regression algorithms, obtaining the final result through the votes
of multiple decision trees. This approach may not perform well for small samples and
low-dimensional datasets. The SVR series models, on the other hand, can effectively handle
such types of data.

Table 1. Comparison of prediction accuracy (R2) between OASVR and other algorithms.

Models
Dataset

K1 K2 K3 K4

Hoeffding Adaptive Tree 0.654 0.632 0.664 0.795
Adaptive Random Forest 0.941 0.911 0.874 0.865
SAM-kNN 0.938 0.908 0.865 0.911
SVR 0.920 0.894 0.887 0.912
AONSVR 0.941 0.881 0.851 0.862

OASVR 0.957 0.924 0.898 0.922

4.3.1. Comparative Experiments between OASVR, SVR and AONSVR

We compared OASVR with offline SVR, with the experiment set on the same dataset
(K3 dataset). Initially, we pre-trained both models with 500 data points using the same
hyperparameters. We then compared the prediction performance of OASVR and offline
SVR, and the results are shown in the following Figure 3.

OASVR has an RMSE of 0.126, while offline SVR has an RMSE of 0.36. It is evident
that dynamic model updates can lead to better model prediction performance.

We conducted a comparative experiment on the performance of AONSVR and OASVR
on the same dataset (K3 dataset), with the same hyperparameter set. We compared the train-
ing time and model accuracy of the two models, and the results are shown in Figure 4 below.
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(a) Offline SVR (b) OASVR

Figure 3. Comparison of prediction results between offline SVR and OASVR.

(a) Training time (b) RMSE

Figure 4. Comparison of OASVR and AONSVR training time and prediction accuracy.

Figure 4a represents the training time of the model. From the graph, we can see that,
with the same training samples, the training time of the model is reduced by half, while,
comparing with Figure 4b, the prediction performance of the model is not significantly
reduced. With a training data size of 500, the RMSE for OASVR is 0.09, while the RMSE
for AONSVR is 0.07. This indicates that the OASVR algorithm has similar performance to
AONSVR but is more efficient.

4.3.2. Visual Analysis of Different Online Machine Learning Models for Prediction

The predictive results illustrated in Figure 5 reveal that OASVR performs best on four
datasets. There is concept drift to varying degrees in all four datasets, which shows that,
where concept drift occurs, there will be significant fluctuations between the predicted
values of the model and the actual values. These concept drift occurrences will affect the
performance of the model. Therefore, for actual industrial scenarios, it is necessary to
conduct concept drift detection on newly collected streaming data.

(a) K1 (b) K2

(c) K3 (d) K4

Figure 5. Predictive results from five online machine learning models, SVR, OASVR, AONSVR,
Hoeffding adaptive tree and adaptive random forest.
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4.3.3. Dynamic Window Size and Computation

Figure 6 shows the size of the dynamic window and the corresponding time required
to train each streaming data during the OASVR training process on different datasets. The
training time for each streaming data is approximately 5 s, and the addition of the dynamic
window effectively controls the training time as the size of dataset increases compared to
the original model. Furthermore, it allows for the adjustment of appropriate window sizes
in various industrial scenarios to meet diverse time constraints. According to Figure 6c,
it can be observed that the window size reaches only up to 394 when the train number
reaches 2000 due to the presence of a dynamic window mechanism. This significantly
reduces computational load while still maintaining favorable model performance.

(a) K1 (b) K2

(c) K3 (d) K4

Figure 6. Dynamic window size and corresponding training time for each streaming data during the
OASVR training process on four different datasets: K1, K2, K3, K4.

4.4. Concept Drift Detection

The EI-kMeans method is chosen to perform concept drift detection for OASVR. The
detection window size refers to the number of detection data points used for concept drift
detection. In industrial scenarios, we aim to minimize the lag in concept drift detection.
And, the Pearson’s chi-square test requires a minimum data count of 5 for detection. So,
the window size is set to 10 and the number of clusters is set to 2.

When the number of new streaming data points reaches the detection window size,
the Pearson’s chi-squared test is applied to the new data to detect concept drift. The
test calculates a p-value and, if the p-value is greater than 0.05, it indicates that concept
drift has occurred. For the detected drift data, they will be discarded and not used in
the model training. The results with the inclusion of concept drift detection are shown in
Table 2 below:

Table 2. Before and after OASVR incorporates concept drift detection results.

Models
Dataset

K1 K2 K3 K4

OASVR 0.957 0.924 0.898 0.922

OASVR-EIk 0.973 0.944 0.932 0.926



Future Internet 2024, 16, 94 13 of 16

The predictive results after incorporating concept drift detection are shown in Figure 7.
From Table 2, we can know that the average R2 of OASVR-EIk is 1.85% higher than OASVR
on four datasets. Figure 7 shows the predictive result of OASVR-EIk. While OASVR
demonstrates some capability in handling noise, it still struggles with abrupt concept drift.
OASVR-EIk does not online train the data detected by EI-kMeans as experiencing concept
drift. This prevents OASVR from updating weights for erroneous data, allowing the model
to fit a more reasonable data distribution and thus improving the overall performance.

(a) K1 (b) K2

(c) K3 (d) K4

Figure 7. Predictive results of OASVR-EIk on four different datasets: K1, K2, K3 and K4.

4.5. Process Parameter Design Based on Bayesian Optimization

In this experiment, the model was applied to four germanium single-crystal datasets.
Due to the inherent time delay associated with adjusting the average liquid level temper-
ature, the optimized process parameter was the actual crystal growth rate. The hyper-
parameters for Bayesian optimization were set with a maximum of 20 iterations and the
acquisition function used Equation (9). The target prediction value was set to 104 and the
objective of Bayesian optimization was to make the predicted diameter value of model as
close as possible to the target prediction value. Figure 8 shows the prediction results.

(a) K1 (b) K2

(c) K3 (d)K4

Figure 8. Comparison between predictive results of recommended pulling rate and the real one on
four different datasets: K1, K2, K3 and K4.

On the four datasets K1, K2, K3 and K4, the RMSE values are 0.21, 0.09, 0.13 and 0.05,
with an average RMSE of 0.12. From Figure 8, it can be observed that the recommended
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points obtained through Bayesian optimization mostly remain within a range of ±0.5 from
a diameter value of 104. Additionally, it is noticeable from the figure that the first half of
the iterations for the recommended points show significant variations, while, in the later
stages, they tend to approach the actual values. This suggests that the adaptive learning
rate helps to balance exploration and exploitation effectively. Comparing the trends in
actual values and predicted values, such as the section between 100 and 200 in the K1 chart
and the section between 50 and 100 in the K3 chart, the actual diameter values start above
104. With the changes in recommended points, the actual values gradually decrease and
approach 104, ultimately maintaining the actual diameter values within the allowable error
range of the target diameter value.

5. Discussion

The OASVR model outperforms other online models across all datasets. The method
used by OASVR to calculate upper and lower bounds separately shows higher robust-
ness compared to AONSVR, especially performing better on datasets with concept drift.
Adaptive Hoeffding tree and adaptive random forest struggle to effectively handle low-
dimensional and small-sample datasets, which may be a contributing factor to their subpar
performance. For the streaming data where concept drift is detected, the current drift
adaptation method only discards these data. Changing the algorithm to adapt to concept
drift to incrementally update the model will be one of our future works.

To enhance computational efficiency, we introduced a dynamic window, adjusting its
size dynamically based on the performance of the model. This approach has effectively
improved efficiency, yet some issues persist. In real industrial scenarios, the real-time
requirement of the model is very high and only the algorithm has been improved; in
the future, we will combine hardware and software acceleration, such as putting the
matrix calculation into the FPGA computing unit for calculation, to further improve the
computational speed of the model.

6. Conclusions

In this paper, we propose an online process parameter prediction and design framework
that integrates online machine learning, concept drift detection and Bayesian optimization
to enhance computational efficiency and adaptability in dynamic industrial settings.

We refine the AONSVR algorithm, proposing the online adaptive support vector
regression (OASVR). The OASVR doubles computational efficiency with equivalent data
sizes to AONSVR. Our framework employs online machine learning models for real-
time process prediction and reverse engineering. The online machine learning model can
dynamically update weights and Bayesian optimization is used to dynamically design
process parameters. An acquisition function with an adaptive learning rate is used in
Bayesian optimization to balance exploration and exploitation. We incorporate concept
drift detection to ensure accurate model updates and a dynamic window size to optimize
computational efficiency. These strategies enhance the capability of the framework to cater
to the varied requirements of diverse industrial environments. We applied this framework
to the germanium single-crystal dataset and achieved excellent results.
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