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Abstract: The exponential growth in data traffic in the real world has drawn attention to the emerg‑
ing computing technique called Fog Computing (FC) for offloading tasks in fault‑free environments.
This is a promising computing standard that offers higher computing benefits with a reduced cost,
higher flexibility, and increased availability. With the increased number of tasks, the occurrence of
faults increases and affects the offloading of tasks. A suitable mechanism is essential to rectify the
faults that occur in the Fog network. In this research, the fault‑tolerance (FT) mechanism is proposed
based on cost optimization and fault minimization. Initially, the faulty nodes are identified based on
the remaining residual energy with the proposed Priority Task‑based Fault‑Tolerance (PTFT) mech‑
anism. The Minimum‑Cost Neighbour Candidate Node Discovery (MCNCND) algorithm is pro‑
posed to discover the neighbouring candidate Fog access node that can replace the faulty Fog node.
The Replication and Pre‑emptive Forwarding (RPF) algorithm is proposed to forward the task infor‑
mation to the new candidate Fog access node for reliable transmission. These proposedmechanisms
are simulated, analysed, and compared with existing FT methods. It is observed that the proposed
FT mechanism improves the utilization of an active number of Fog access nodes. It also saved a
residual energy of 1.55 J without replicas, compared to the 0.85 J of energy that is used without the
FT method.

Keywords: fault tolerance; fog computing; Internet of Things; neighbour node discovery; pre‑emptive
forwarding

1. Introduction
The exponential growth in network traffic has led to various emerging wireless tech‑

nologies such as 5G and Beyond‑5G. It is anticipated that these new wireless technologies
will grow in importance across multiple industries and make more strides in portable de‑
vice applications. Smart home systems, productivity, animal farms, agriculture, environ‑
mental monitoring, e‑health services, commercial and industrial, motor vehicles and trans‑
portation, space exploration, and wearable devices are only a few of the numerous sectors
in which IoT has generated an unending number of new applications in smart cities. Ev‑
erything is now easier than ever with the help of IoT‑related services. In the Fog network,
the data generated from the IoT/User devices are collected based on priority using big
data from an urban environment [1]. The gathered data must be sent from the source to
the destination for task‑processing with the best possible accuracy and efficiency. Depen‑
dence on the internet and internet‑based services is proliferating worldwide. The volume
of data generated by such electronic devices will increase as more and more devices with
internet access become a part of our daily lives. Global mobile data traffic is forecasted
by ITU, which indicates that 607 Exa‑Bytes (EBs) will be reached in 2025 and 5016 EBs in
2030 with M2M data. New approaches to analysing these enormous data streams are be‑
ing studied. For instance, the Constrained Application Protocol (CoAP) [2] was recently
developed to serve as a link between a wireless network and the global web (Internet). Ad‑
ditionally, sending data to the cloudwill increase the time gap between a task’s occurrence
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and its completion. The current cloud service design is highly centralized, meaning that
numerous applications can only be run in one location, called the data centre. Because
of the rapid progress in cloud computing, the number of data centres is rapidly expand‑
ing. The energy demand of data centres will grow from 200 TW/h in 2018 to 2965 TW/h
in 2030 [3]. Integrating the power of IoT, the Cloud, and Fog computing provides a signif‑
icant opportunity to take educational institutions to the next level in terms of technology.
Cloud‑based data collection from sensors and learning platforms allows educators to track
student progress and identify areas needing improvement. These technologies can create
a more engaging, efficient, and accessible learning environment, empower educators, and
improve the overall educational experience [4].

In response to these issues, Fog computing was introduced, which moves computa‑
tion from the cloud to the edge device. This may result in shorter delays and less traf‑
fic to or from the cloud. A FC network allows for IoT applications by selectively finding
nearby heterogeneous devices like PCs, data centres, gateways, and servers to overcome
time‑sensitive (high‑priority) transmission and bandwidth issues [5]. One of the signifi‑
cant issues in FC is identifying the faults that occur in resource blocks (RBs), which act as
a connecting path between an IoT layer and fog layer with multiple Fog nodes (FNs) to of‑
fload tasks among themduring processing andprovide reliable and fault‑free transmission
to all the connected IoT devices. However, identifying faulty resources is comparatively
easy when determining the Fog node’s fault. The resource block faults were identified and
rectified with the existing OEeRA algorithm to provide effective task‑offloading [6]. As
an extension of the previous research, identifying the faults that occur in Fog nodes and
providing a fault‑free transmission is the focus of this research article. Due to the deple‑
tion of energy levels in the Fog node, neighbour node discovery is required to identify the
alternate Fog nodes for reliable transmission in multi‑hop Fog networks [7].

Overall, these strategies can be categorized into two categories based onwhether they
add efficient nodes or remove ineffective nodes. There are two approaches for adding effi‑
cient active FNs: the extraction of awaking nodes and collaborative neighbouring discov‑
ery nodes. The proposedmethod uses both approaches, resulting in conflict with other dis‑
covery methods. This indicates that two or more types of technologies can be combined.
The inefficient FNs are replaced with efficient active FNs, which have a higher residual
energy. Here, the FNs are subdivided into a fog control node for monitoring and fog ac‑
cess node for task‑processing. The main motive of this work is to deploy the FoG–IoT
network in a fault‑free environment for task‑processing using adequate fog access nodes.
This encourages us to suggest a minimum‑cost‑based neighbouring candidate node dis‑
covery method for replacing the faulty nodes with alternate fog access nodes, where the
faulty fog nodes are identified based on residual energy. To track the information request
received from IoT by the newly assigned fog node, the replication and pre‑emptive for‑
warding method is also suggested for task‑processing, either in the same fog server or a
neighbouring fog server.

In the proposed method, the aforementioned replacement and removal of inefficient
Fog access nodeswith a threshold (Er < 0.1) aremonitored by the Fog control nodes present
in the network. Fog control nodes identify active fog access nodes, which have aminimum
cost, and act as an intermediary to offload the tasks received from IoT devices among other
fog access nodes with appropriate residual energy. The proposed architecture aims to
enhance the task‑offloading process in a fault‑free fog network by optimizing the energy
level and cost. The main contributions of this research article are as follows:
• Propose a Priority Task‑based Fault‑Tolerance (PTFT) mechanism in Fog networks,

which identifies the faulty Fog nodes with minimal residual energy.
− Update the energy level of Fog access nodes automatically after a task is executed

by the Fog control nodes or the Fog server.
− The Fog control nodes also help to find the cost function for each Fog node with

a minimum number of hops connected between them.
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− Identify and remove the faulty Fog nodes if the residual energy (Er) of the Fog
node is less than 0.1.

− Update the cost function of the Fog network.
• Propose a Minimum‑Cost‑based Neighbour Candidate Node Discovery (MCNCND)

approach, which identifies the linked neighbouring candidate Fog access nodes with
minimal costs for task‑offloading.
− Initially, the source Fog access node will broadcast its own cost to the linked

neighbouring candidate Fog access nodes, and will receive the cost of all linked
Fog access nodes.

− Then, it will offload the task to the linked neighbouring Fog access node with the
minimum cost.

− This will be repeated until it finds the candidate Fog access nodes with the mini‑
mum cost in the Fog network.

• Develop and deploy the Replication and Pre‑emptive Forwarding (RPF) process,
which tracks the source information of the Fog access node.
− Pre‑empt and forward the source Fog access node information to the linked neigh‑

bouring candidate Fog access node during the task‑offloading process within the
source Fog server.

− Replicate the source Fog node information in the neighbour(s) Fog server with
minimum cost when all Fog access nodes are busy/faulty in the source Fog server.

This research work is organized as follows: Section 2 contains a detailed literature
review of various existing node discover, replication, and forwarding approaches for reli‑
able fault‑free transmission in Fog computing. The proposed systemmodel is discussed in
Section 3, and Section 4 elaborates on the proposed algorithms. The experimental analysis
and discussion are presented in Section 5, and Section 6 concludes the proposed research
and provides directions for future research.

2. Related Works
The most important challenges addressed in this paper are how to identify the faulty

Fog access nodes using a priority task‑based fault‑tolerance algorithm and reassign the
task‑processing to the new Fog access nodewith aminimum‑cost‑based neighbouring can‑
didate node discovery algorithm. The paper also addresses how to select a Fog access node
in a neighbouring server for task‑processing via replication and a pre‑emptive forwarding
algorithm. Multiple techniques were suggested to ensure fault tolerance in Fog comput‑
ing; some FT techniques employ task replication, which reduces the cloud’s utilization
of resources. Some other methods improve the mean response time by using checkpoint
recovery to overcome faults.

2.1. Fault Tolerance and Node Discovery
The reactive fault‑tolerant systems respond to failures after the occurrence of a fault.

The failures are rectified after the reception of the request service, and then the responses
are implemented. To detect the fault, the cloud or Fog statuses are regularly monitored
and various responses, such as replication, checkpoint, and resubmission, are recorded [8].
Gabriele et al. [9] suggested the use of a Fault‑Tolerance Generic Adaptive Interaction Ar‑
chitecture (FT‑GAIA) software‑based FTmethod for parallel anddistributed environments.
Mainly, this method deals with Byzantine faults and crash errors with the help of server
restoration in the cloud layer, and this is achieved with the help of a replication mecha‑
nism. Semmoud et al. [10] suggested the use of a Replication and Pre‑emptive Migration
based Fault‑Tolerance (RPMFT) technique to identify this fault through a distributed load‑
balancing algorithm by combining proactive and reactive fault‑tolerance techniques. The
authors in [11,12] suggested a fault‑tolerance approach to reductions in cost and dead‑
lines in order to reduce the failure rate in clustering networks. Peng et al. [13] proposed
a WOA algorithm based on a multi‑objective model without a fault‑tolerance mechanism
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for optimal task allocation via maximized system performance and efficiency. The authors
in [14] proposed a scheduling algorithm that is efficient, low‑cost, and FT to minimize the
uncertainty and cost of these resources. They used spot and block‑spot instances as hy‑
brid instances to reduce the execution costs. Ghanavati et al. [15] suggested a new task
scheduling strategy based on Dynamic Fault‑Tolerant Learning Automata (DFTLA). They
used variable‑structure learning automata to identify the most efficient task assignment to
fog nodes. Ramzanpoor et al. [16] proposed a multi‑objective fault‑tolerant optimization
algorithm to reduce bandwidth wastage in a distributed environment.

Zareie et al. [17] used a hierarchical ranking algorithmwith several centrality variables
to find the appropriate means of (key) Fog node discovery in complicated networks for
task‑processing after the occurrence of a fault. Wang et al. [18] developed a new technique
to measure the importance of key nodes in networks with more than two layers. They also
checked the measurements in single/multi‑relationship networks and combined networks.
Ali Jaddoa et al. [19] proposed the Multi‑critEria DecIsion support meChanism for IoT of‑
floading (MEDICI) method to make a dynamic decision regarding task‑processing, which
could be either edge or cloud processing based on the requirements. The authors of [20]
applied sequential decision‑making with the Markova process, improved using the Lya‑
punov optimization method, to minimize an IoT system’s operational costs while offering
strict performance assurances.

2.2. Task Scheduling Based on Cost and Power Consumption
Skarlat et al. [21] proposed a genetic algorithm (GA) to solve the Fog task assignment

and scheduling problem with the help of control nodes, which assign a service to the Fog
control nodes or the Fog cells. The main motive of this optimization is to maximize the
number of task assignments in the Fog network (instead of the cloud) to meet the require‑
ments of user applications. In [22], the authors suggested amethod for creating an environ‑
ment that integrates scheduling, sequencing, and partitioning algorithms while ensuring
a multi‑objective optimization of the competing needs of users and providers. A dynamic‑
threshold‑based task scheduling technique was presented to reduce the transmission and
energy consumption of the IoT devices [23]. Misirli and Casalicchio [24] highlighted the
need for efficient task scheduling in FC to address the challenges modelled by the dis‑
tributed and resource‑constrained environments. They provided various methods and
metrics that can be employed to achieve optimal resource allocation and application per‑
formance. These earlier studies did not take fault tolerance into account, making them un‑
suitable for reliability applications. The Honey‑Bee‑Inspired Load‑Balancing (HBI‑LB) al‑
gorithmwas proposed [25] to examine the load‑balancing in the IoT‑FoG network. Ranjan
et al. [26] proposed a shortest‑path resource allocation algorithm for the optimal allocation
of resources in D2D, which could handle multiple users simultaneously. A component‑
based throttled load‑balancing technique was proposed in [27], involving VM readers, a
free VM owner, and free VM management elements. The VM readers read all VMs that
are available. The free VM element temporarily stores free VMs until they are relocated to
the free VM management element. The delay energy‑balanced task‑scheduling (DEBTS)
algorithm was suggested to reduce average service latency and delay jitter by minimizing
overall energy consumption [28]. Suleiman [29] proposed the framework to address the
challenge of balancing cost, energy‑efficiency, and QoS in cloud–Fog environments. They
provided a method for scheduling tasks that minimizes the overall cost while ensuring
service quality.

In [30], the authors stated that the processing power is the most critical factor in the
Fog network when attempting to accomplish particular tasks. In the Fog network hierar‑
chy, the network communication and storage resources are a few constraints that may dif‑
fer during the efficient distribution of resources. Bozorgchenani et al. [31] examined partial
task‑offloading by assessing the use of centralized/distributed network in edge computing
while considering the trade‑off between energy consumption and Fog node delays. In [32],
the authors developed a simulation of the sound classification system by combining Fog
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computing and cloud computing for urban sound classification. To ensure the scalability
of the proposed sensing system, they focused on the trade‑off between power consump‑
tion, task runtime, and server latency. Jiang et al. [33] examined mobile devices in Fog
systems and started a task‑offloading strategy that reduces the energy consumption of the
mobile devices, as well as the end‑to‑end response time, for task‑processing.

3. Materials and Methods
3.1. Network Model

In this section, the IoT‑FoG network model, which is considered for analysis, is pre‑
sented. The general network model used for the IoT‑FoG network is illustrated in
Figure 1. It has three layers, namely, the cloud, Fog, and IoT layers. The Fog layer is com‑
posed of Fog servers and Fog nodes, which are connected to each other for efficient task‑
offloading activities.
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Table 1 represents the symbols and notations used in the proposed methods.
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Table 1. Notations and symbols used.

Symbol Meaning

BW Bandwidth
ck,na Channel cost between device and Fog access node
N0 Channel noise power
CCmax

i Computational complexity
Clai Cost of initiator/source Fog access node
Claj Cost of linked neighbouring candidate Fog access node
C f Cost of the Fog node
CSj Cost of the neighbouring Fog server
Di Deadline
Eexe Energy consumption for the task during its execution
Eup Energy consumption of the task while transmitting from Kk to fna
Texe Execution time
N(F) Expected number of faults
FAtn Fog node active time
flai Initiator/source Fog access node
fsi Initiator/source Fog server
flan Linked neighbouring candidate Fog access node for task‑processing
BL Maximum battery life of the Fog nodes
f (t) Mean failure rate
flaj Neighbouring Fog access node
fsj Neighbouring Fog server
dij Number of hopes
kk Number of user/IoT devices
pna Power consumption of Fog access node
pk Power consumption of user/IoT device
Pi Priority
δ Priority threshold level
ƥ Probability of fault occurrence
Er Residual energy
σj Selectivity of all possible neighbouring candidate Fog access nodes
σc Selectivity of the Fog control node
ti Set of attributes
fna Set of Fog access nodes
fn Set of Fog nodes
fnc Set of the Fog control nodes
fs Set of the Fog servers
SCmax

i Storage capacity
tc Task computation
Xi Task size/length of the task
ty Task type
Tup Time taken to forward the task from IoT device to the Fog access nodes
BCmax

i Total battery capacity
Econsumed Total energy consumption
Ttot Total time
Ct/(k→na) Transmission channel capacity

The set of Fog servers is denoted as fs = {S1, S2, …….., Ss}, the Fog Node (FN) set is
defined as fn = {N1, N2, ……, Nn}, and the set of user/IoT devices are denoted as kk = {K1,
K2,…..Kk}. In this proposed model, the task‑offloading will take place in three different
stages, as follows:
1. Task‑offloading within a single Fog server;
2. Task‑offloading by a neighbour or another Fog server;
3. Task‑offloading by the cloud centre.

Efficient task‑offloading is obtained based on the availability of active Fog access nodes
in the proposed model. The Fog node (FN) can be subdivided into two types: (1) Fog con‑
trol nodes (fnc) and (2) Fog access nodes (fna). One or more Fog control nodes will control
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every Fog access node. The Fog control node gathered the details of residual energy levels
and the task priorities of user/IoT data to process the task received through the correspond‑
ing Fog server. According to this, it will control the task‑offloading in Fog access nodes
for efficient task‑processing. The Fog control nodes will estimate their own cost and find
the cost of all possibly linked neighbouring candidate Fog access nodes with a minimum
number of hops between the Fog control nodes and the corresponding candidate Fog ac‑
cess nodes.

3.2. Communication Model
The tasks generated from any IoT/User devices are represented as a set of

T = {t1, t2, …, tn}. In this, each element, ti, will describe as a set of attributes, as follows:

ti=
{
Xi, tc, ty,Di

}
(1)

where (i = 1, 2,…, n); Xi stands for the size/length of the task to be transmitted to the Fog
access nodes for task‑processing; tc represents the required computations for task execu‑
tion; ty denotes the task type (i.e., time‑sensitive or time‑tolerance); Di represents the task
deadline for completion. The Fog nodes (fn) set will be divided further into Fog control
nodes, fnc = {Nc1, Nc2, ……, Ncm}, for monitoring and controlling actions and Fog access
nodes, fna = {Na1, Na2, ……, Nan}, for task‑offloading, which can also be represented by
the following details:

Fn = {SCmax
i ,CCmax

i ,BCmax
i } (2)

where i = 1,2,…n, SCmax
i refers to the storage capacity, CCmax

i gives the computing capacity,
and BCmax

i denotes the total battery capacity of the Fog access nodes. The total time taken
for user/IoT task assignment to the Fog access nodes is described as follows:

Ttot = Tup + Texe (3)

where Tup denotes the time taken to forward and offload tasks to a Fog access node within
the same or a neighbouring server, and Texe refers to the execution time of the task in fna.
Tup is related to the transferral of data from the user/IoT device to the selected Fog access
node. From this, the Tup is defined as the ratio of task size/length (Xi) to the transmission
capacity (Ct/(k→na)) between the corresponding user/IoT device (k) and Fog access node
(na), and is expressed as follows:

Tup =
Xi

Ct/(k→na)
(4)

where
Ct/(k→na) = BW× log2(1 +

pk × ck,na
N0 × BW

) (5)

Ct/(k→na) is calculated by Shannon’s formula, where pk indicates the power consumption
of the user/IoT device, ck,na refers to the channel cost between the kk and fna, N0 gives
the channel noise power (dBm/Hz), and BW denotes the bandwidth (Hz). The execu‑
tion time of the task on the Fog access node is defined as the number of tasks and their
size/length, multiplied by the required computation and divided by the computational
complexity (CCmax

i
)
of the Fog access node, and is expressed as follows:

Texe = Xi ×
tc

CCmax
i

(6)

where the computational complexity of the proposed methods mainly depends on the
number of freely available candidate fog access nodes in a fog network, and this can be
represented as O{fs[min(flan)]}. This will find the minimum‑cost Fog access node within
a server that can be used for task‑processing.
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3.3. Energy and Priority Model
The total energy consumption of task‑processing is obtained using three phases: en‑

ergy consumption due to task transmission between IoT and FN, task‑offloading at FN,
and task transmission from FN to IoT after processing. The consumption of energy while
transmitting the task from IoT device to the Fog access node is denoted as Eup, and the
consumption of energy during task execution is denoted as Eexe. This can be represented
mathematically as follows:

Econsumed = Eup+Eexe (7)

where
Eup = Tup × pk (8)

Eexe = Texe × pna (9)

where pk and pna denote the power consumption of the IoT device and fna, respectively,
during task execution.

When the IoT devices generate a task for processing, the corresponding Fog server
identifies the priority level of the task and monitors the residual energy level for each FN.
The faulty FNs are determined based on the residual energy level and removed from the
Fog networks before task‑offloading activities. The residual energy (Er) is obtained by
subtracting the energy consumed by the Fog access nodes during task‑processing from
the initial energy, and the energy level rate can be obtained by dividing the obtained result
by the initial energy.

Er =
Einitial − Econsumed

Einitial
(10)

The proposed model considered the characteristics of residual energy for fault iden‑
tification. The residual energy mainly depends on the battery life of the Fog nodes, which
is represented by Equation (11):

BL =
Er
Iavg

(11)

where BL defines the battery life of the Fog nodes, and this can be obtained by divid‑
ing the residual energy by the average current. The residual energy is also used to es‑
timate the active time of the Fog nodes during task‑processing, and these relations are
represented below:

FAtn =
Er

Xi × duty cycle
(12)

The energy level of each node [28] will be categorized into three levels, as follows:
1. Er ≥ 0.3 → used for executing high‑priority (time‑sensitive) tasks from the

user/IoT devices.
2. (0.1 ≤ Er < 0.3) → used for executing low‑priority (time‑tolerance) tasks, and may

also act as a reserve node for some forms of task‑processing.
3. Er < 0.1 → identified as faulty FN because the battery life is too short, and this indi‑

cates that the FNs will not complete the task efficiently with in the battery’s lifespan.

3.4. Fault Model
Faults have become common in the context of the IoT‑FoGnetworks. As a result, some

Fog access nodes may experience partial or whole faults during task‑offloading activities,
based on their minimum energy levels after the execution of multiple tasks within a partic‑
ular period. In this proposed method, fault identification depends on the residual energy
that remains in the Fog access nodes during task‑processing. The number of faulty nodes
within a specified period and the fault rate are identified based on the residual energy in
the fog access nodes, which can be determined by continuously monitoring energy levels
via fog control nodes. As a result, the expected number of faults during a specific time
interval, from (0 to t), can be obtained using the following relation:
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N(F) =
∫ t

0
µf(t)dt (13)

where µf(t) is the mean fault rate of the Fog nodes, and the probability of fault occurrence
(ƥ) in the Fog nodes during the period of task‑offloading, obtained using the total number
of faults that occurred T(ƥ) within a specified time, with a range of 0 ≤ P(ƥ) ≤ 1, is given
as follows:

P(ƥ|µf ) =
µf

ƥ

T(ƥ)e
−µf (14)

3.5. Cost Model
The following equation can be used to obtain the cost of Fog control and access nodes:

Cf = σcri + ∑
j∈c

σjdij (15)

where σc is the selectivity of the Fog control nodes, and σj represents the selectivity of all
possibly linked neighbouring candidate Fog access nodes for task‑offloading. Here, the se‑
lectivity of all Fog access/control nodes should bemaintained as one (σj = 1 and σc = 1); ri
indicates the number of hops between the source Fog control node (r i = 0

)
and dij denotes

the minimum number of hops between the Fog control nodes and the Fog access node. To
estimate the minimal cost of a Fog network, a minimum of three Fog control nodes are
considered to be necessary for efficient cost estimation, which can be obtained by selecting
the minimum number of hops between the nodes. The minimum‑cost Fog access node is
selected for task‑offloading via the minimum‑cost‑based neighbour candidate discovery
method for efficient task‑processing. In some cases, the source server itself has minimum‑
cost fog access nodes and can be selected using Equation (16). If the source server has busy
nodes, then it will select the minimum‑cost fog access nodes from the neighbouring server
using Equation (17):

sel(Cf) = min

{
σcri + ∑

j∈c
σjdij; Source Fs

}
(16)

sel(Cf) = min

{
σcri + ∑

j∈c
σjdij;NeighbourFs

}
(17)

3.6. Problem Formulation and Objective Function
In the network model considered in this research, the tasks generated by the IoT de‑

vices are evaluated andprocessed based on thismulti‑objective optimizationproblem, such
as optimizing the cost, fault, energy, etc. The issues encountered during task‑offloading are
addressed by two objective functions, as follows:

(1) Fault minimization—the prior identification of faulty nodes and immediate task‑
offloading to the alternate candidate Fog access nodes, either in the same Fog server
or a neighbouring Fog server, without disconnecting the task‑processing activities.

(2) Residual energy optimization—the continuous monitoring of residual energy levels
after the completion of each task by candidate fog access nodes. The optimization
can be achieved by selecting the maximum residual energy for high‑priority tasks
and minimum residual energy for low‑priority tasks.

min(N(F)) = min
{∫ t

0
µf(t) dt;Candidate Fna

}
(18)

Opt(Er) = max{Er;high priority(Xi)} (19)

Opt(Er) = min{Er; low priority(Xi)} (20)
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This is subject to:

C1 : Fnc > 3
C2 : Er ≥ 0.1
C3 : Fna > 1
C4 : Fs > 1
C5 : Fna > Fnc

C6 :
n
∑

i=1

m
∑

j=1
Fnai Fnc j;Er ≥ 0.3; Active f og

C7 :
n
∑

i=1

m
∑

j=1
Fnai Fnc j; 0.1 ≤ Er ≤ 0.3; sleepy f og

C8 :
n
∑

i=1

m
∑

j=1
Fnai Fnc j; Er < 0.1; f aulty f og



(21)

The multi‑objective function of the formulation of problems during task‑offloading
in the distributed IoT‑FoG networks is presented in Equations (18)–(20). The proposed
methodswill minimize the occurrence of faults in the network by continuouslymonitoring
the residual energy levels of all nodes and task‑offloading based on the priority level.

4. Proposed Fault‑Tolerance Schemes
This section discusses the various proposed mechanisms and algorithms for efficient

fault‑free task‑offloading activities in Fog networks.

4.1. Priority Task‑Based Fault‑Tolerance (PTFT) Algorithm
The PTFT algorithm is proposed to identify the faulty Fog access nodes based on the

residual energy, and the Fog control nodes are used to select the appropriate Fog access
node for task‑processing. The task generated by the user/IoT devices is initially received by
the nearest Fog access node (source node). Based on the remaining residual energy in the
fog access nodes and the priority level of the task, the Fog control nodeswill identify the ap‑
propriate Fog access nodes for task‑offloadingwith the help of the neighbouring candidate
node discovery method. This proposed method uses parallel task‑processing activities via
the effective utilization of resource‑sharing and nodes during task‑offloading in an IoT‑
FoG network. In the first case, for time‑sensitive (high‑priority) tasks, if the source node
has residual energy levels that are more significant than 0.3, then the source node itself
acts as a processing node for task‑processing. Otherwise, if the residual energy is less than
0.3, it will identify the next neighbouring candidate Fog access node in the same server or
a neighbouring server for task‑processing through the MCNCND and RPF algorithms. A
few of these nodes can also be reserved as auxiliary nodes for reliable task‑offloading. Fi‑
nally, if the residual energy is less than 0.1, it is identified as a faulty node, and a new node
will be discovered through the MCNCND algorithm for task‑processing. In the second
case, for time‑tolerant (low‑priority) tasks, if the source node has residual energy levels
that more significant than 0.3, then those nodes will be utilized for a higher‑priority task.
The source node will forward the task to the neighbouring candidate Fog access nodes
with residual energy ranging from 0.1 to 0.3 for task‑processing. Otherwise, if the residual
energy ranges from 0.1 to 0.3, then the node itself acts as a processing node.

The proposed PTFT is summarized in Algorithm 1. For a better understanding of the
PTFT algorithm and a more accurate cost estimation of the Fog nodes, a simple example is
proposed, as shown in Figure 2. The use‑case network model contains two Fog servers, a
few control nodes, and a Fog access node. The diamond shape represents the Fog control
nodes, and the circle represents the Fog access nodes. Initially, the Fog server will estimate
the residual energy level of the Fog nodes, and the Fog control nodeswill identify the faulty
Fog access nodes with the help of a threshold value (Er < 0.1). Once the faulty node is
identified, itwill immediately be removed from the Fognetwork. The cost of all Fog control
and access nodes will be calculated by “(15)”. In this model, the cost of the Fog nodes is
calculated via the minimum number of hops between the Fog control nodes through the
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Fog access nodes. For example, the initial cost of Fog control node N7 is calculated as
follows:

C7 = σcri + ∑
j∈c

σjdij = 0 + ∑ (1).dij = 0 + d7,4 + d7,3

C7 = 0 + 2 + 3 = 5
where σc = 1 and σj = 1 for all cases. For Fog control nodes, the initial source cost is 0
(i.e., ri = 0), and the minimum number of hops between the next two Fog control nodes is
added (i.e., the minimum number of hops between N7 and N4 is 2, and that between N7
and N3 is 3). The initial cost of Fog access node N9 is calculated as follows:

C9 = ∑ (1).dij = d9,7 + d9,11 + d9,4

C9 = 1 + 2 + 3 = 6

here, for Fog access nodes, the term σcri is not considered because the selectivity of the Fog
control node is zero and the minimum number of hops between three Fog control nodes
was added (i.e., the minimum number of hops between N9 and N7 is 1, that between N9
and N11 is 2, and that between N9 and N4 is 3).

Algorithm 1 Priority Task‑Based Fault‑Tolerance (PTFT) Algorithm

Initialization: IoT Device, Kk = {K1, K2, …… Kk} and Fog Node, fn = {N1, N2, ……, Nn}
Begin
   Collect input from Kk
   Check the task priority (Pi) and measure the residual energy (Er) of the FNs
   If FN has a higher‑priority task (Pi ≥ δ) // Time‑sensitive task
    If residual energy Er ≥ 0.3
     Declare source Fog node as the processing node
    Else
     Forward the task to the neighbouring candidate Fog access node through
     MCNCND and RPF algorithms 2 and 3
    End if
    If residual energy (0.1 ≤ Er < 0.3)
     Identify the next neighbouring candidate (auxiliary/reserve) node
     Reserve and hold the auxiliary node until the execution of the current task
    Else residual energy Er < 0.1
     Declare it a faulty node
     Remove the faulty node
     Forward the task to the reserve node, called pre‑emptive forwarding
     New node is updated
    End if
   End if
   If FN has a lower‑priority task (Pi ≤ δ) //Time‑tolerance task
     If residual energy Er ≥ 0.3
      Forward the task to the next neighbouring candidate node via Algorithm 2
      New node is updated
     Else residual energy (0.1 ≤ Er < 0.3)
      The corresponding node itself processes the task and declares it a
   processing node
  End if
     If residual energy Er < 0.1
      Declare it a faulty node
      Remove the faulty node
      Identify and forward the task to the next neighbouring candidate node
      via Algorithm 2
      Pre‑emptive forwarding process occurs (Algorithm 3)
      New node is updated
    End if
   End if
End
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4.2. Minimum‑Cost‑Based Neighbour Candidate Node Discovery (MCNCND) Algorithm
The MCNCND algorithm is proposed to discover the alternate candidate Fog access

node to achieve task‑offloading with minimal cost, which the Fog control nodes will com‑
pute. The initial cost of the Fog nodes is calculated and broadcast using all linked neigh‑
bouring Fog access nodes. Then, the algorithm will identify whether the node is in a can‑
didate (ready to process) or busy (already processing) state. In the first case, the source
server has candidate Fog access nodes; once the task is generated by the IoT/user device,
the nearest Fog access node will gather the task for processing, and the cost of all linked
neighbouring Fog access nodes is received. The candidate Fog access node with the min‑
imum cost or the exact cost is selected. The task will be offloaded to the neighbouring
candidate Fog access node with the minimum cost. This process will be repeated until the
selection of the minimum‑cost candidate Fog access node in the Fog network. Then, the
finalized minimum‑cost candidate Fog access node will be declared a processing node.

In the second case, the source server does not have a candidate node, and the gen‑
erated task is directly offloaded to the source server. It identifies the neighbouring Fog
server with candidate Fog access nodes for task‑processing. Finally, the task‑processing is
achieved by the candidate Fog access node with the lowest cost in the neighbouring server.
It declares the corresponding node the processing node for task‑processing.

To obtain a better understanding of the first case presented in Algorithm 2, a simple
example is illustrated in Figure 3, which contains two Fog servers, along with their Fog
nodes. Server 1 has 13 Fog nodes, with 5 Fog control nodes and 8 Fog access nodes, and
server 2 has 10 Fog nodes, with 3 Fog control nodes and 7 Fog access nodes.

Initially, the user’s device sends the task for processing to Fog access node N9; then,
this node will act as an initiator (source node), and receives the cost value for all linked
neighbouring candidate Fog access nodes by sending a request. In this scenario, Fog access
node N9 has the linked neighbouring candidate Fog access node, denoted as N12, and also
has a reduced cost compared to N9. Therefore, the task is offloaded to N12, and again
will request the cost of the linked neighbouring candidate Fog access nodes. Then, it is
identified as nodeN8, with the exact cost. To further check the remaining Fog access nodes,
the task is offloaded to theN8 node. Again, it identifies theminimum cost fromN2 for task‑
offloading. Finally, N2 is declared a processing node for task‑processing because it has the
minimum cost compared with other linked neighbouring candidate Fog access nodes.
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For the second case in Algorithm 2, a simple example is taken from case 1 of the MC‑
NCND algorithm by considering all Fog access nodes and the busy states in the source
Fog server. The structure of this is illustrated in Figure 4. Initially, the user device sends
the task for processing to Fog access node N9, which acts as an initiator. The task will be
offloaded to the neighbouring Fog server, which contains aminimum cost or the exact cost.
Here, there are only two servers, so it offloads the task to server 2. Next, server 2 will find
the next candidate Fog access node for task‑processing; here, Fog access node N9 is identi‑
fied as the initiator. By using the MCNCND algorithm, the node for task‑processing will
be found. Fog access node N9 will request the list of all linked neighbouring candidate
Fog access nodes’ costs; the cost of N1 is shown to be the minimum, so it then offloads
the task to N1 for processing. Then, N1 will request the cost list and identify itself hav‑
ing the minimum cost as compared with other linked neighbouring candidate Fog access
nodes. Finally, N1 is declared as the processing node for task‑processing. The proposed
MCNCND algorithm is summarized in Algorithm 2.
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Algorithm 2Minimum‑Cost‑Based Neighbour Candidate Node Discovery (MCNCND)
Algorithm

  1: Initialization: Fog server, fs = {S1, S2, …….. , Ss},
  2: Fog Node, fn = {N1, N2, ……, Nn};
  3: Fog control node, fnc = {Nc1, Nc2, ……, Ncm},
  4: Fog access node, fna = {Na1, Na2, ……, Nan} with the condition of (a > c)
  5: Begin
  6: For i = 1,2,3, …., k
  7: Receive task from IoT/user device
  8: If fsi ̸= flan {Փ }//Source server with the neighbouring candidate Fog access nodes
  9:    Calculate and broadcast the initial cost of Fog control node Cc1, Cc2,…. , Ccm
  10:  Initiator (i) (source node) computes its own cost, Clai
  11:  Initiator sends a request to every linked neighbouring candidate Fog
  access node ‘flai’ in the same server
  12:  Fog control nodes (fnc) will compute the cost function of all possible linked
  fog access nodes as follows: Cla1, Cla2, …. , Clan
  13:  The initiator node will receive the cost list of all linked neighbouring nodes and
Identify the Fog access node, stating whether the node is a candidate node or a busy node.
  14:  Select the min‑cost candidate node, Claj = min{ Cla1, Cla2, …. , Clan }, and select
  the corresponding candidate Fog access node flaj for task‑processing
  15:  If flai (Clai) < flaj (Claj)//cost of initiator is less than neighbouring nodes
  16:   Declare the initiator node as flai (Clai), a processing node
  17:   Otherwise:
  18:   Consider the min‑cost neighbouring candidate Fog access node as the initiator node
for further processing (replace flaj with flai)
  19:   End if:
  20: Repeat from line 13 to find the min‑cost candidate Fog access node flan
  21: Otherwise: //Source server with no candidate Fog access nodes
  22:   For fsj , j = 1, 2, 3, …. , n−1 //neighbouring Fog server
  23:   Calculate the cost of all neighbouring Fog servers fsj (CSj)
  24:   End for:
  25:   Identify the next min‑cost neighbouring fs, CSj = {min (CS1, CS2, ….. , CSs)}→ fsj
  26:   Select the min‑cost neighbouring Fog server (fsj) with candidate Fog access nodes for
  task‑processing
  27:   Select the nearest candidate Fog access node (flai) as the initiator in the respective
Fog server (fsj)
  28:   Fog control nodes (fnc) will compute the cost function of all possible linked
  Fog access nodes as follows: Cla1, Cla2, …. , Clan
  29:  The initiator node receives the list of the cost of all linked neighbouring nodes and
  identifies the Fog access node states, and whether the node is a candidate node or a busy
node.
  30:  Select the min‑cost candidate node, Claj = min{ Cla1, Cla2, …. , Clan }, and select
  the corresponding candidate Fog access node flaj for task‑processing
  31:   If flai (Clai) < flaj (Claj)//cost of initiator is less than neighbouring nodes
  32:     Declare the initiator node, flai (Clai), a processing node
  33:   Otherwise:
  34:     Consider the min‑cost neighbouring candidate Fog access node as the initiator node
  for further processing (replace flaj with flai)
  35:   End if:
  36:  Repeat from line 29 to find the min‑cost candidate Fog access node flan
  37: End if:
  38: End for:
  39: End
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4.3. Replication and Pre‑Emptive Forwarding (RPF) Algorithm
The RPF algorithm is proposed to forward the task, carrying information from the

source Fog access node to the selected neighbouring candidate Fog access node for task‑
offloading with the same Fog server or a neighbouring Fog server. The proposed Replica‑
tion and Pre‑emptive Forwarding (RPF) algorithm is summarized in Algorithm 3.

Algorithm 3 Replication and Pre‑Emptive Forwarding (RPF) Algorithm

Initialization: Fog server, fs = {S1, S2, …….. , Ss}, and Fog node, fn = {N1, N2, ……, Nn}
  //Replication from S to S—replicating the entire source task information for fault‑free
task‑processing
  //Forwarding occurs from N to N within the same server; S→ Fog server and N→ Fog
access node
  Begin
  1:  If fsi ̸= flan {Փ}//task‑processing within the same server
  2:   Find min‑cost candidate fog access node flaj {Claj} = {min (Cla1, Cla2, …. , Clan)}
  from Algorithm 2
  3:   Check whether if flaj is min‑cost compared with other fog access nodes
  (Claj ≤ Cla1, Cla2, …. , Clan)
  4:   Otherwise, conduct a pre‑emptive self‑forwarding within the source server
  5:   Send the task to the neighbouring candidate Fog access node with min‑cost
  flaj { Claj } for task‑processing
  6:   End if:
  7:  Otherwise, { flai → fsj }, conduct a replication//initiator forwards the task to
neighbouring Fog server
  8:  Find fsj {CSj} = {min (CS1, CS2, ….. , CSs)}//Fog server with min‑cost
  9:   Replicate and pre‑emptively forward the task to neighbouring server {fsi → fsj}
  10:   Find min‑cost neighbouring Fog access node flaj {Claj} = {min (Cla1, Cla2, …. , Clan)}
  and update the process as {fsj → flaj } replication
  11:   Declare min‑cost neighbouring Fog access node flaj as a processing node
  12:  End if:
  End

In case 1 of the MCNCND algorithm, the task‑offloading is achieved with the source
server itself by finding the minimum‑cost candidate Fog access node for task‑offloading,
and this process is called pre‑emptive self‑forwarding. The replication will be performed
in case 2 of the MCNCND algorithm due to the unavailability of candidate Fog access
nodes within the corresponding source Fog server. In this condition, the task will be di‑
rectly replicatedwith the neighbouring Fog server that has theminimum cost and themost
appropriate candidate Fog access node will be selected for task‑processing.

5. Results and Discussion
This section explains the experimental parameter setup and provides a comparative

result analysis of the proposed algorithms for various scenarios using existing methods.
The proposed algorithms are simulated and analysed with the MATLAB R2022a software
platform in Intel Core i5HP computerswith 8GBRAM to evaluate the performance of task‑
offloading activities, and this is compared with other existing fault‑tolerant algorithms.
Table 2 represents the simulation parameters used for the proposed algorithms.
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Table 2. Simulation parameters.

S.No Parameter Value

1 Fog server 5–50
2 Fog control node 20–100
3 Fog access node 50–5000
4 User device 5–1000
5 Number of tasks 50–1500
6 Task length 1000–10,000
7 Node capacity 1500 MIPS
8 Initial node energy 5 J
9 Task selection from IoT/user device Priority based
10 Cloud data‑center 1
11 Bandwidth 500
12 Processing speed 1200 MIPS
13 Fog memory space 1024 MB
14 Deadline of the task Length based

5.1. Average Response Time for Various Tasks with Different Lengths
A Fog environment is created with a Fog server, Fog control nodes, Fog access nodes,

and users to estimate the performance of the proposed PTFT algorithm.
In this research work, the proposed PTFT algorithm is tested and implemented for

1000 users with 50–1500 tasks, with the task length varying from 1000 to 10,000 bytes,
20 Fog servers, 100 Fog control nodes, and 1000 Fog access nodes in order to analyse the
scalability of the proposed Fog‑IoT networks. In this simulation environment, it is clearly
observed that the proposed methods will efficiently work in a large‑scale environment.
The performance of the proposed PTFT algorithm in terms of the average response time
is illustrated in Figure 5a for various tasks with a variable length, and in Figure 5b for
multiple tasks of a variable length.
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It is observed that the average response time increased exponentially, while the tasks
generated by the IoT device increased, and task length also increased. The maximum re‑
sponse time, 49.57 ms, occurred at a higher task count of 1500, with a task length of 5000.
The proposed method provides shorter response times of 0.9 ms, 0.3 ms, and 0.1 ms for
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HBI‑LB [25], Throttled, and Round Robin [27], respectively. This is because an increase
in both factors will directly affect the load of the Fog network and the availability of Fog
access nodes during efficient task‑offloading, significantly increasing the average response
time. Figure 6a,b present a comparison of average response times with various existing al‑
gorithms, such as Round Robin, Throttled [27], and HBI‑LB [25], for variable task lengths
and multiple tasks, respectively. This is identified as the proposed PTFT algorithm with a
shorter average response time of 1 ms, 0.3 ms, and 0.7 ms for HBI‑LB [25], Throttled [27],
and Round Robin, respectively.
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This is achieved because the lowest‑cost path with appropriate residual energy lev‑
els are selected based on task priority and the free availability of alternate candidate Fog
access nodes for task‑offloading following fault occurrence, while also keeping track of
task‑offloading activities in Fog network using RPF algorithm to avoid the under‑ and
overutilization of Fog access nodes.

5.2. Task Completion Rate
The proposed PTFT/RPF algorithm is simulated based on the task deadline (length)

and the obtained results are compared with the existing RPMFT [10] method and repli‑
cation without a fault‑tolerance mechanism. Figure 7a,b illustrate the performance of the
proposed PTFT method in the first scenario, showing the completion rate and failure rate
for 250 tasks of random length generated by the IoT/user devices. It is observed that the
proposed replication and pre‑emptive forwarding method achieved a higher completion
rate than othermethods. Figure 7a indicates the importance of task completion using repli‑
cationmethods, and it is observed that, when 50%, 60%, and 80% failure rates are obtained,
replicas are used to achieve efficient task completion during task‑offloading activities in
Fog networks. From Figure 7b, that the completion rate is shown to be improved for the
proposed method, and an improvement in performance of 62.5% was observed compared
to the RPMFT [10] method.
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In second scenario, Figure 8a,b present the performance of the proposed PTFT/RPF
methods, showing the completion rate and failure rate for 1500 tasks of random length
generated by the IoT/User devices. Figure 8a indicates the importance of task completion
using replicas, and the 30%, 40%, and 50% failure rates were obtained when more replicas
to achieve a better completion rate in Fog networks. Figure 8b shows that the completion
rate is improved for the proposed method, and a 17.3% higher performance was reached
compared to the RPMFT [10] method because the existingmethod uses only the replicas of
specific tasks in the fault‑tolerance mechanism, instead of giving equal priority to all tasks.
In both scenarios, a better performance is achieved with the help of the prior availability
of Fog access nodes for task‑offloading when nodes are in a state of failure, as well as the
proper information tracking of source Fog access nodes via replication and pre‑emptive
forwarding methods.
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5.3. Task Acceptance Ratio and Completion Time
The task acceptance ratio of the proposed PTFT algorithm is compared with the ex‑

isting fault‑tolerance method without replication and forwarding in Fog networks. From
Figure 9, it is observed that the proposed method outperformed the other methods, and
achieved a higher acceptance of tasks with an increase in the number of Fog access nodes.
This can be obtained with the help of efficient task‑offloading activities in Fog networks,
using replication and pre‑emptive forwarding mechanisms, to candidates in the same Fog
server or a neighbouring Fog server. In this, the acceptance rate of tasks was increased by
24% compared with existing methods without FT.
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The task completion time is measured for the proposed PTFT method, and it is com‑
pared to methods without replicas and fault‑tolerance methods. Figure 10 shows that the
proposed method has a minimum task completion time, and this can only be achieved be‑
cause of the task‑offloading in distributed Fog networks. In contrast, the other methods
use a hierarchical placement for task‑offloading in Fog access nodes, using the controlling
function of the cloud data centres. Here, the task completion time is measured for various
Fog access nodes, keeping the task size constant. The proposedmethod outperforms other
methods, with a higher performance of 16.27% compared to those without fault tolerance
and 29.84% compared to those without replicas.
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5.4. Residual Energy
The residual energy of the proposed PTFT algorithm is compared with other meth‑

ods, and the results are illustrated in Figure 11; the proposed method outperformed other
methods and achieved task‑offloading activities with lower energy consumption. Initially,
each Fog node joins, with an initial residual energy level of 5 J, during the task‑offloading
process. As time increases, the number of tasks arriving from the user device will in‑
crease, and this will directly reduce the residual energy of the Fog access nodes after task‑
processing. The level of residual energy will be monitored continuously after and during
task‑processing by the respective Fog control nodes. Here, it is identified that the proposed
PTFTmethod uses less energy for task‑offloading and achieves a residual energy saving of
1.55 J compared to methods without replicas and 0.85 J compared to methods without the
fault‑tolerance method. Because the Fog access nodes select tasks based on priority and
their remaining residual energy, this will directly reflect the inefficient energy utilization
that occurs during offloading activities in Fog networks compared with other methods.
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6. Conclusions
The importance of fault‑tolerance mechanisms in a Fog environment during task‑

offloading activities was studied, and a relevant PTFT algorithm was proposed, which
includes the identification of faulty Fog nodes and priority‑based task assignment in Fog
networks. Fault‑free task assignment is necessary for the efficient and reliable utilization
of Fog access nodes in a Fog environment. Considering this, a new MCNCND algorithm
was proposed for task‑offloading, and the obtained results were validated. The obtained
results of the proposed methods show that they achieved a higher performance than ex‑
isting methods in terms of the following: (i) the active number of Fog access nodes, with
an average improvement of 41.2%, 37.82%, and 28.57% compared to the existing methods
without FT, NFT‑WOA, and DFTLA, respectively, using the minimum number of active
Fog access nodes for task‑offloading; (ii) average response time with a response time that
was shorter by 0.9 ms, 0.3 ms, and 0.1 ms than the HBI‑LB, Throttled, and Round Robin
methods, respectively; (iii) the completion rate, with a 62.5% higher performance than the
RPMFT method; (iv) acceptance ratio, with an improvement of 24%, and completion time,
which outperforms the method without FT by 16.27% and the method without replicas
by 29.84%; and (v) achieved energy savings, which are improved by 1.55 J compared to
the system without replicas and 0.85 J for the system without an FT method in terms of
residual energy.

The higher performance of the proposed resultswas only achieved because prioritized
taskswere assigned to the Fog access nodeswith themost efficient residual energy for task‑
processing. The prior availability of candidate Fog access nodes was ensured at the time
the fault occurred, using RPF to track source nodes’ information and to create a dynamic
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network with scalability. Furthermore, in the future, malicious nodes will be identified
in a dynamic Fog networking environment, and those nodes will be removed for efficient
task‑offloading. Additionally, an efficient trust‑management scheme can be proposed for
use in dynamic Fog‑IoT environments to securely offload the task.
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