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Abstract: Multi-access edge computing (MEC) enhances service quality for users and reduces com-
putational overhead by migrating workloads and application data to the network edge. However,
current solutions for task offloading and cache replacement in edge scenarios are constrained by
factors such as communication bandwidth, wireless network coverage, and limited storage capacity
of edge devices, making it challenging to achieve high cache reuse and lower system energy consump-
tion. To address these issues, a framework leveraging cooperative edge servers deployed in wireless
access networks across different geographical regions is designed. Specifically, we propose the
Distributed Edge Service Caching and Offloading (DESCO) network architecture and design a decen-
tralized resource-sharing algorithm based on consistent hashing, named Cache Chord. Subsequently,
based on DESCO and aiming to minimize overall user energy consumption while maintaining user
latency constraints, we introduce the real-time computation offloading (RCO) problem and transform
RCO into a multi-player static game, prove the existence of Nash equilibrium solutions, and solve
it using a multi-dimensional particle swarm optimization algorithm. Finally, simulation results
demonstrate that the proposed solution reduces the average energy consumption by over 27% in the
DESCO network compared to existing algorithms.

Keywords: multi-access edge computing; computation offloading; consistent hashing; P2P overlay
network; multi-dimensional discrete PSO

1. Introduction

In recent years, with the rapid proliferation of wireless IoT applications such as
connected vehicles, VR/AR, smart cities, and personalized streaming videos, there has
been a surge in computation-sensitive and real-time services in mobile networks [1].
These services typically require completion within a short time frame (20–125 ms) [2].
Figure 1 illustrates the workflow of real-time services. Generally, three steps are involved:
generation, processing, and transmission [3]. Firstly, mobile users (MUs) such as connected
vehicles, AR/VR devices, mobile phones, or drones would continuously generate sensor
or user data (infrared, radar, video streams, health, and so on) when requesting specific
real-time services. Subsequently, MUs can process these tasks locally or transmit them to
server units located in the cloud or edge to obtain computing services. The computing
operations will be carried out with the assistance of application data (executable programs).
The computing results return to the MUs at the end of the time frame. For example, vehi-
cles requiring autonomous driving services would detect environment data from fusion
monitoring devices (in-vehicle cameras, millimeter-wave or ultrasonic radar, etc.) while
driving. After preprocessing, these raw data are sent to computing units deployed with
corresponding target detection algorithms (or processed directly by locally embedded
computing units) to perceive road conditions and provide optimal driving decisions.
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This necessitates an efficient, cost-effective service model that minimizes user energy
consumption while ensuring service quality. Traditional cloud computing architectures, as
a centralized solution, encounter challenges such as severe wide-area network latency and
fluctuating service quality when handling these new types of services.
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Figure 1. The computation and processing workflow of online real-time services.

Multi-access edge computing (MEC) [4] emerges as a computing paradigm capable
of addressing these issues. It leverages the distributed computing power and commu-
nication resources at the network edge, particularly at the edge of the mobile wireless
access network (RAN), by deploying communication entities such as road side units
(RSUs), smart gateways, and small cell base stations to construct a network topology. It
deploys corresponding computing and storage units at wireless access points (WAPs) to
provide personalized services to MUs. MUs can directly access computing services from
edge servers located at WAPs, avoiding traffic bottlenecks in the core and backhaul net-
work during routing, thus partially alleviating the cache and computational burdens on
data centers.

Additionally, MEC offers performance-optimizing technologies such as computation
offloading (CO) [5] and edge caching (EC) [6]. Computation offloading, as a service
optimization paradigm, allows MUs to delegate complex interactive computing tasks to
edge nodes and receive computation results via the wireless downlinks between WAPs and
MUs, thereby greatly alleviating the problem of high computational energy consumption
in terminal devices with limited computational resources during service usage. Edge
caching allows users to cache application data at communication nodes, enabling different
MUs requesting the same service to directly upload locally generated real-time data for
computation, avoiding the redundant transmission of the same application data and thus
alleviating high latency and heavy load in the fronthaul network.

As an evolution of traditional mobile base stations, the MEC architecture allows for
the scheduling and management of parallel communication resources at the network edge
layer. This provides a new solution for designing cache data-sharing strategies among MEC
nodes using backhaul networks, further optimizing system performance. It also offers
cloud service providers more flexible computation offloading solutions by changing the
execution and storage locations of data to optimize system performance.

Although the MEC network paradigm can overcome some of the drawbacks of cloud
computing and meet the service constraints of real-time applications, there are still many
challenges. Specifically, from the perspective of data sharing, in the current edge computing
domain, the most well-known approach is based on blockchain [7] for distributed data
storage and synchronized data sharing. However, this approach faces serious performance
issues for high-throughput applications due to the low performance of blockchain networks,
high costs associated with storing block data, and scalability challenges posed by large-scale
data synchronization. These issues present difficulties in scheduling real-time applications.

To address these issues, our work focuses on leveraging performance optimization
methods in MEC networks to provide real-time services for MUs. The main contributions
of this study can be summarized as follows:
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• The thesis proposes a Distributed Edge Service Caching and Offloading (DESCO) ar-
chitecture based on edge servers’ collaboration to provide real-time services for mobile
users. Within DESCO, the optimization problem of minimizing the long-term average
energy consumption of users while satisfying latency constraints is established, for
which cache sharing, replacement, and computation offloading methods are leveraged
to further optimize user costs.

• A decentralized consistent hashing-based cache-sharing mechanism named “Cache
Chord” is designed. This mechanism leverages the communication backhaul links
at the edge layer and expands the DESCO framework by allowing edge servers to
self-organize into a circular logical topology, facilitating application data sharing.
Additionally, a cache IP list mechanism is devised to link application resource key-
values in the overlay network with actual data in the real network.

• The real-time computation offloading (RCO) problem is transformed into a multi-
player static game among MUs within the wireless network coverage of each server
in order to reduce the current time slot energy consumption. A multi-dimensional
discrete particle swarm optimization algorithm is applied to solve this problem after
proving the existence of the Nash equilibrium (NE) solution for the game. Furthermore,
the exploration coefficients and iteration rules of the algorithm are designed to meet
environment constraints.

• Finally, simulation experiments are conducted to evaluate the performance of the pro-
posed framework and algorithms. Results demonstrate that the proposed offloading
method effectively reduces overall energy consumption at the user layer and obtains
better converges compared to baseline algorithms.

The remainder of the paper is organized as follows: Section 2 introduces the related
work of computation offloading and cache-sharing technology. Section 3 describes the
system model of DESCO, and further introduces the cache-sharing mechanism. In Section 4,
we transfer the RCO problem into a static game and proof the existence of NE solutions,
then design the MDPSO algorithm. Section 5 presents simulation experiments to explore
the superiority of the MDPSO algorithm and Cache Chord. Finally, the conclusion is given
in Section 6.

2. Related Works

With the development of real-time applications, resource requests generated by ter-
minal devices tend to be independent and the service requests from MUs exhibit more
dynamic characteristics. Specifically, as noted in [8,9], within MU groups, the popularity of
services follows a Zipf distribution, implying that a single server-based service requires
maintaining a large cache database to improve hit rates, leading to significantly increase
system redundancy. Simultaneously, computation offloading services impose considerable
pressure on the transmission bandwidth of the wireless uplink from end to edge, while
the computational capabilities of terminal MU devices are limited and consume a consid-
erable amount of energy [10]. Therefore, coordinating energy consumption and service
efficiency to maximize the system’s offloading benefits is a worthy issue to explore. Given
the current state of limited infrastructure capacity and the limited computational capabili-
ties of user devices in edge networks, the effective use of network resources to improve
resource utilization and system performance has become an urgent challenge for network
service providers.

To address this situation, researchers primarily employ two methods: firstly, by
designing fine-grained and efficient computation offloading algorithms, and secondly,
by considering the heterogeneity of edge devices and their geographical distribution
characteristics, leveraging collaborative services between edges to enable on-demand
resource mobility and fully utilize existing computing devices to ensure service quality.
The following two subsections will provide detailed explanations of these approaches.



Future Internet 2024, 16, 136 4 of 24

2.1. Computation Offloading Strategy

The real-time computation offloading (RCO) can enhance the QoE of interactive
gaming [11]. In this scenario, MEC servers would process real-time action data offloaded
by players (MUs) and render them into corresponding in-game scenes. The rendered
data are then compressed via a video encoder and transmitted back to users through
video-streaming. The RCO strategy allows servers to wisely offload service requests from
multiple users, maximizing overall user satisfaction. RCO can also be applied in energy-
constrained drones [12] and wearable devices [13] to reduce the computational overhead
of local devices. Complex neural networks or machine learning computations can drain
battery life for these devices. Additionally, requests from similar types of devices often
exhibit popularity (e.g., health monitoring, object detection, and path planning algorithms).
The RCO algorithm can select a strategy that maximizes offloading benefits based on the
application categories stored on the server and the user cluster’s requests, thereby reducing
the computational energy consumption of MUs and extending device battery life.

Multiple mobile users can achieve resource-sharing and collaborative computing,
while nearby MUs may request similar tasks [14]. Based on this scenario, a fine-grained col-
laborative computing offloading and caching strategy is proposed to minimize the overall
execution latency of MUs within the network [15]. Additionally, the concept of a call graph
is utilized to model the offloading and caching relationships among MUs. It is noteworthy
that [16] considers software-fetching and multicasting in network modeling, mathemati-
cally characterizing the processes of data uploading, task execution, and computation result
downloading to minimize cache and weighted deadline as optimization objectives. They
employ a joint algorithm combining ADMM and a penalty convex–concave procedure to
obtain the optimal offloading strategy.

The ADMM algorithm is also applied in [17] to obtain distributed offloading decisions.
In this work, the authors propose a computation offloading scheme where computational
tasks generated by ground users can be computed locally, on Low Earth Orbit (LEO) satel-
lites, or on cloud servers. The authors also consider the limited computational capabilities
and coverage time of each LEO satellite. They subsequently investigate the optimization
problem of minimizing the total energy consumption of ground users, which is discrete
and non-convex, and convert it into a linear programming problem.

In Time-Division Multiple Access (TDMA)-based MEC systems, a partial offloading
strategy based on an iterative heuristic algorithm is proposed [18] to minimize the total
energy consumption of MUs while ensuring the task delay constraints. This strategy jointly
optimizes task offloading rates, channel allocation, and MEC computing resource allocation.
The authors decompose the problem into a series of offloading subproblems and design a
two-stage algorithm to iteratively solve the offloading task set until achieving the minimum
energy consumption.

When addressing performance optimization problems with computation offloading
algorithms, it is observed that the discussion on the economies of scale brought by multi-
server clusters is insufficient. Most articles only conduct research based on single-server
scenarios, while in reality, MEC servers are often densely deployed in scenarios such as
streets, malls, and schools to provide services to users. This cluster effect can be applied to
the design of distributed network models and data-sharing algorithms. Wired backhaul
links between edges can transmit large amounts of real-time data, which are also beneficial
for the on-demand allocation of cached content related to real-time tasks.

2.2. Data-Sharing Mechanism

The authors of [19,20] focus on algorithm design to explore the cache-sharing strategy
in distributed edge environments. To address the problem of MUs’ difficulty in discovering
required IoT resources due to device heterogeneity, a Fog Computing-based resource
discovery solution named FDS-RD is proposed [19]. FDS-RD employs a Distributed Hash
Table (DHT) to map resources to a structured peer-to-peer (P2P) network, facilitating
resource discovery in large-scale IoT environments.
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VCNS [20] is a content-sharing network, tailored for the vehicular ad hoc network
(VANET) scenario. It presents an edge caching scheme based on cross-entropy and dynami-
cally adjusts caching based on content popularity within the request scope. Additionally,
it designs a collaborative content delivery mechanism for RSUs to further reduce system
latency overhead. Meanwhile, the authors of [21,22] focus on network logical topology
design, exploring both structured and unstructured network topologies. The emphasis is
on managing resource nodes to organize decentralized sharing networks, providing cached
content to users to optimize system overheads.

Considering cooperative caching among edge servers, ref. [21] proposes a distributed
edge data indexing system called EDIndex. In this system, any server maintains a hierar-
chical counting bloom filter (HCBF) tree index structure, which indexes the data stored
in nearby edge servers, enabling fast querying at the edge. SA-Chord [22] is a pure edge
computing-based adaptive distributed overlay network architecture. Based on the chord
protocol, it designs a two-layer circular routing overlay composed of peer nodes and super
nodes. Peer nodes only participate in content reception and transmission without routing,
while super node clusters are responsible for maintaining routing tables for message-
forwarding, achieving decentralized content-sharing based on the dual-layer structure.

From the above works, it can be observed that decentralized application caching
and retrieval based on distributed hash can efficiently achieve data sharing, effectively
reducing various overheads of the system, considering the limited storage capacity of
geographically distributed edge service nodes. Therefore, this paper will explore the
optimal task scheduling strategy based on a heuristic algorithm. Additionally, it will
leverage the edge backhaul links’ path in existing multi-server–multi-user MEC networks
to construct a structured data-sharing mechanism based on DHT.

3. System Descriptions and Assumptions
3.1. DESCO Network Model

We designed an Edge Service Caching and Offloading (DESCO) architecture based
on the multi-server–multi-user end–edge two-layer network paradigm [22], as illustrated
in Figure 2. In the DESCO network, the end layer consists of MU clusters, distributed
across the coverage areas of various wireless networks, organized by different edge servers,
and each of them is connected to the nearest server to obtain computing and offloading
services. In the edge layer, MEC servers are deployed within wireless access points (WAPs)
and equipped with computing and storage units. MEC servers communicate with each
other through wired backhaul links and are self-organized at the application layer into a
decentralized ring network called Cache Chord. The maintenance of this network structure
relies solely on the consistent hashing protocol followed by server nodes, with detailed
design discussed in Section 3.3.

Three computing modes exist in the DESCO network: local computing, pure offload-
ing, and cache-based offloading. Local computing means MUs processing real-time tasks
by themselves; pure offloading signifies that the MEC server’s local cache pool does not
store the application programs required to execute user requests, so MUs need to offload
real-time data and application data to the server. Cache-based offloading indicates that
the server stores the application data for the task, and all users requesting the service only
need to offload real-time data to the server, reducing some of the transmission energy
consumption. This will be elaborated further in Section 3.4.

Table 1 summarizes the main parameters included in this study. The total number of
MEC servers joining the DESCO network edge layer is denoted by the set ∆ = {1, 2, 3, ..., D}.
Each distributed MEC server node uses its IP address as a unique identifier, represented
by the set NID = {nip1, nip2, ..., nipD}. The set KID ={kid1, kid2, ..., kidK} signifies unique
resource identifiers for applications, utilized for identifying and indexing services within
the Cache Chord network. Here, the subscript K indicates the total number of tasks that
any user n at different geographical locations might request at any moment.
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Figure 2. DESCO network architecture.

Table 1. Notation summary.

Notation Definition

T,τ Set of time sequence; time frame length

θk, ωk, ϕk
Real-time data volume of k; application data size of k; necessary FLOPs of task
k

∆, D MEC server set; number of MEC server
Nd, N User request under server d; request of user n
od,n MUs’ local compute power
K, NID, KID Service feature set; MEC server IP address set; application identifier set
Ut

Nd
, µt

n User request under server d; request of user n
b Wireless subchannel bandwidth of server d
ld,t
n Minimum efficient uplink transmission rate of user k in range d

ψn Transmit power of user n
Vd,t RCO decision of server d in slot t
υd,t

n RCO policy of user n
Pd,t Application cache replacement operation of d
ρd,t

k Operation of task k in server d at time t
Υn,d,k,t Energy consumption of user n in range d

In the DESCO system, every entity operates in the time series T = {1, 2, ..., T}. This
value serves as the fundamental unit for both the system’s offloading and caching decisions
and the variations in user task requests. The duration of any arbitrary time slot t ∈ T
is set as a constant value, denoted by τ, representing the latency constraint of real-time
applications. This means that at time t, when an MU generates a service request and
produces corresponding real-time data, the computation result must be returned before the
end of time t.

Let K = {⟨θ1, ω1, ϕ1⟩, ⟨θ2, ω2, ϕ2⟩, ..., ⟨θK, ωK, ϕK⟩} be the set of task features, where a
task k ∈ {1, 2, .., K} can be represented by a tuple ⟨θk, ωk, ϕk⟩. In this tuple, θk represents
the real-time data generated by the user request task (such as sensor data generated in
real-time by IoT devices, video data, etc.), ωk represents the size of the application data of
the task, and ϕk represents the necessary floating-point operations (FLOPs) required for
task completion [23]. Let ∆ = {1, 2, ..., N} represent the set of users governed by the server.
Furthermore, the set Ut

Nd
= {µt

1, µt
2, ..., µt

N} denotes the task requests of each user within
the server d’s range at time t. At the beginning of each time slot, MUs can either execute a
new computation task different from µt−1

n , maintain the request from the previous time
slot, or not request any service. Additionally, any user’s request satisfies µt

n ∈ {K ∪ {0}}.
The set Pd,t = {pd,t

1 , pd,t
2 , ..., pd,t

K } is utilized to denote the application data retained in
the cache pool of the MEC server node d ∈ ∆ at time t. The element in the set satisfies
pd,t

k ∈ {0, 1}; 0 and 1, respectively, represent the absence or presence of application data k
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in the cache pool of server node d. Meanwhile, the set Pd,t = {ρd,t
1 , ρd,t

2 , ..., ρd,t
K } represents

the cache replacement strategy. Each ρd,t
k can assume one of three values: −1, 0, or 1,

corresponding to the deletion, maintenance, or addition operation. Based on this, the cache
replacement operation for application k on server d should adhere to

pd,t
k = pd,t−1

k + ρd,t−1
k , ∀pd,t

k ≥ 0. (1)

The inequality ∀pd,t
k ≥ 0 represents the MEC server unable to delete data that do not

exist in their cache pool. Further, considering the cache pool capacity S of server d, the
system’s cache status and replacement decisions at any given moment must subject to

K

∑
k=1

ωk(pd,t
k + ρd,t

k ) ≤ S, ∀t ∈ T, ∀d ∈ ∆. (2)

This ensures the integrity and efficiency of data management in the DESCO system.

3.2. Communication Model

MEC servers are homogeneous devices with the same computing, communication,
and storage capabilities [24,25]. The available bandwidth of server d is bHz, with F or-
thogonal wireless subchannels. The bandwidth of subchannels f ∈ F is b = B/F, where
∀ f ∈ {1, 2, ..., F}. Each user can only occupy one channel to communicate with the server.
The set Vd,t = {υd,t

1 , υd,t
2 , ..., υd,t

N } represents a server’s wireless channels’ allocation strategy
while providing RCO service, and elements subjects to ∀υd,t

n ∈ {0, 1, 2, ..., F}, where 0
signifies that the user processes computational data on their local device. However, users
will generate transmission energy consumption, which is determined by two variables: the
volume of transmitted data and the uplink transmission rate. The uplink transmission rate
is influenced by the number of users occupying the channel Q ∈ [0, N], user’s channel gain
ζn, and the transmission power ψn. According to the Shannon–Hartley theorem, the mini-
mum effective uplink transmission rate for mobile user n managed by server d in time slot
t is [26]

ld,t
n = blog2(1 +

ζnψn

∑
m∈{Q−n},υd,t

m =υd,t
n

ζmψm + σ2 ), (3)

where σ2 represents the second central moment of Gaussian white noise. It is observed that
the effective transmission power of user n decreases as the number of users Q occupying
the same channel increases. Too many users occupying the same channel will increase noise
interference ∑m∈{Q−n},υd,t

m =υd,t
n

ζmψm + σ2, resulting in a decrease in energy consumption
benefits for task offloading, reducing the energy efficiency of task offloading and increas-
ing task latency. Therefore, the impact of channel allocation must be considered in task
offloading strategies to optimize performance.

3.3. Cache Chord Mechanism

In this section, we present a decentralized real-time resource access mechanism by
orchestrating the network resources of MEC server clusters in the edge layer, utilizing a
DHT-based consistent hashing ring network topology. Our discussion focuses on three key
aspects: mapping, indexing, and updating for the Cache Chord.

3.3.1. Identifier Mapping

The initial step involves performing a consistent hashing operation on the NID of
server nodes, and KID of application resource identifiers to construct a ring topology. The
Hash algorithm maps these identifier data into a space of size 2m, creating a unique m-bit
string. The data in this space are arranged in ascending order, proceeding clockwise, to form
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a virtual circular “ring”. This ring is numerically labeled with integers within the range of
[0, 2m − 1], assigning numbers to both the server and application data, which follows

X = Hash⟨NID⟩ mod m, (4)

Y = Hash⟨KID⟩ mod m, (5)

where Hash⟨⟩ is the mapping function. Both random variables X and Y are defined as
positive integers within interval [0, 2m − 1]. The position of server node within the ring is
denoted by NodX, while the location of application node is represented by KeyY.

In the ring network, resource KeyY is updated by the first server node NodX encoun-
tered in the clockwise direction. NodX maintains a cache IP list for resource localization.
Specifically, the list comprises a dataset formed by tuple ⟨KeyY, ServerIPY⟩, the first ele-
ment of this tuple represents the position Y of the application data within the ring, the IP
address of each physical device that stores application data Y at time t is reperensted by

ServerIPt
Y = {nid1, nid2, ..., nidS} ∪ {0}, ∀nids ∈ NID, (6)

where {0} signifies that the application data do not exist in edge layer. Utilizing this table,
any user requesting service k for application data ωk can determine the resource’s position
in the ring network by processing its resource identifier kidk through Formula (5), and
index which machine stored the application data through ServerIPt

Y. It should be clarified
that the positions and adjacent relationships of nodes within the Cache Chord merely
represent a logical topology at the overlay network level, rather than actual storage locations.
Additionally, the cache IP list on the server stores only indices of certain application data,
not the application data themselves within the cache pool.

3.3.2. IP Indexing

In the ring topology, each server node NodX identifies the first server node encoun-
tered in the clockwise direction as its successor node, and the first server node encountered
in the counterclockwise direction as its predecessor node. ∀NodX maintains the IP ad-
dresses of its successor and predecessor nodes, facilitating rapid access to the resources
and cache IP lists of adjacent nodes.

Based on this structure, any server node d can determine the application’s relative
position based on the hash value of the corresponding identifier kidk. By sequentially
querying other server nodes in the order of the ring, the corresponding resource can be
found in the respective successor node. However, the complexity of this query algorithm is
not optimal. Assuming there are D servers in the ring, the query complexity is O(D), and
in the worst case, all nodes need to be traversed to find the target element.

To accelerate search processes, Cache Chord introduces the finger table mechanism [27].
Specifically, each server node NodX maintains a table consisting of successor nodes,
each with a length of m. This list includes the IP addresses corresponding to these
nodes. The sequence of nodes in this table is subject to Nod{(X + 2i−1) mod 2m}, where
i ∈ {1, 2, ..., m}. However, if the i-th server node does not exist in the ring, the node closest
to the i-th position is saved as the i-th entry in the finger table, denoted as FingerTable(i).
When NodX seeks to retrieve a resource node KeyY, it initially searches for the IP address
of the resource among its stored successor and predecessor nodes. If the corresponding
identifier Y for the task is not found, the server searches the finger table to locate the server
node with a hash value greater than Y and that is closest to it. If the node with the highest
number in the finger table is still less than Y, the process jumps to Nod(X + 2m−1), which
is FingerTablemax(i), and repeats the aforementioned steps until Y is found, as detailed in
Algorithm 1.

The integration of the finger table and cache IP list mechanisms enables a binary
search-like method in Cache Chords, effectively converging the time complexity of resource
searches to O(log D), where D is the total number of server nodes. Comparing the complex-
ity of the finger table-based Algorithm 1 with the previously mentioned exhaustive search,
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according to L’Hôpital’s rule, we can obtain lim
D→∞

D−1 log D = 0. This implies that such

a nonlinear search method can locate the corresponding resources with fewer execution
cycles. Figure 3 shows a simulation of a Cache Chord of size 27, demonstrating the process
of server node nidd mapping to the Cache Chord and searching for application Key78.

Algorithm 1 Application Key Routing

1: Initialize NodX.successor, NodX.CacheIPlist, NodX.FingerTable, length of finger ta-
ble m

2: repeat
3: Search in NodX.CacheIPlist and NodX.successor
4: if NodX.FingerTable(i) > KeyY and maximum i then
5: ship application search request to NodX.FingerTable(i)
6: else if KeyY > NodX.FingerTable(m) then
7: ship request to NodX.FingerTable(m)
8: let NodX.FingerTable(m) be new NodX
9: end if

10: until find NodX which stored KeyY in its finger table
11: return KeyY IP address to original server node NodX

WAP with MEC Server d

Hash mod 7dnid

Routing Table of Nod6

N+20 =N12 IP of N12

N+21 =N12 IP of N12

N+22 =N12 IP of N12

N+23 =N23 IP of N23

N+24 =N23 IP of N23

N+25 =N41 IP of N41

N+26=N71 IP of N71

Cache IP List

Key2

IP address 2-1

IP address 2-2

IP address 2-3

Key4 None

Key5 IP address 5-1

Nod6

Nod12

Nod23

Nod41

Nod56

predecessor

72 1

Nod95

Nod71

Key78

Figure 3. Cache Chord mechanism.

3.3.3. Identifier Mapping

At the end of time slot t, each server node in the edge layer executes strategy æd,t to
update the cache IP list. Specifically, if server d stores or deletes an application task in the
local cache pool, i.e., ρd,t

k = −1 or 1, it requires executing Algorithm 2 to update the cache
IP list. This ensures consistency between the data index in the overlay network and the
storage status of data in the actual environment.

Algorithm 2 Cache IP List Update

1: Initialize NID, KID, NodX.CacheIPlist, NodX.FingerTable, cache replacement deci-
sion æd,t of NodX

2: for each server d in cluster ∆ do
3: for each task k in server d do
4: if ρd,t

k ̸= 0 then
5: search Task k through execute Algorithm 1 and get IP address of target server

node NodT
6: if ρd,t

k = 1 then
7: add NodX IP address into corresponding ServerIPt

Y of NodT.CacheIPlist
8: end if
9: end if

10: end for
11: end for
12: return KeyY IP address to original server node NodX
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3.4. DESCO Task Processing Model

Algorithm 3 outlines the workflow of the mechanism. Initially, the server gathers
individual user requests and searches its local cache pool R for corresponding application
data ωk. If the data are not already stored, the server then executes Algorithm 1 to locate
the server node managing that application within the Cache Chord network by retrieving
the cache IP list. If ServerIPt

Y ̸= 0, the IP of the node storing the application is returned to
server d. Subsequently, the server derives the RCO strategy Vd,t based on the local cache
status and Cache Chord information. In the final phase, Algorithm 2 updates the resource
index within the Cache Chord network. The output is the user layer energy consumption
at that moment, which comprises computational and communication energy costs.

Algorithm 3 DESCO Network Overall Mechanism

1: Initialize MEC server cluster ∆, Cache Chord C, MEC server local cache buffer R
2: for each server d in cluster ∆ do
3: server d gathering user request set Ut

Nd

4: for each user request µt
n do

5: search corresponding application data ωk in cache buffer R
6: if pd,t

k = 0 then
7: play Algorithm 1 in Cache Chord C to search application data of task k
8: server d compute offloading strategy Vd,t based on application caching state and

Cache Chord by playing RCO decision
9: end if

10: for each offloading vector υd,t
n do

11: if υd,t
n ̸= 0 and ServerIPk ∨ pd,t

k = 0 then
12: user transmit task data ωk and task data θk to server d, execute task on MEC

server
13: else if υd,t

n ̸= 0 and ServerIPk ∨ pd,t
k = 0 then

14: user transmit task data θk to server d, execute task on MEC server
15: else
16: local compute
17: end if
18: user n generated energy consumption Υn,d,k,t
19: end for
20: end for
21: update application state in Cache Chord through Algorithm 2
22: end for
23: return user layer energy consumption ∑

d∈∆
∑

n∈Nd ,k∈Ut
Nd

Υn,d,k,t

3.4.1. Local Computing Mode

We derive the pure computational cost o2
d,nϕkς based on the mobile device computa-

tional model [14], where the parameter od,n represents the performance of the mobile user’s
computing unit, measured in floating-point operations per second (FLOPS). This metric
can be adjusted through power control technology DVFS [28]. Additionally, the coefficient
ς correlates with the power consumption and is inherently linked to the hardware archi-
tecture of the mobile device. Considering the time constraint τ of task µt

n, we ascertain
that when od,n = ϕk/τ, the MUs can execute services with minimal power consumption
without breaching the user’s latency constraints, represented by

ς
ϕk

3

τ2 . (7)

Meanwhile, we can conclude that the latency of local computation is equal to the
maximum value of the time slot, τ.
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3.4.2. Pure Offloading Mode

Communication cost is determined by the transmitted data volume, channel coherence
parameters, and the user’s transmission power. Notably, when both the local cache pool of
server and the Cache Chord lack the application data ωk for task k, i.e., ServerIPt

k ∨ pd,t
k = 0, the

user should upload both the application data ωk and the real-time computational data θk to the
edge. Consequently, it can be inferred that the current energy consumption of the n is

ψn
ωk + θk

ld,t
n

, (8)

where ψn represents the transmission power of a user. Furthermore, we can infer that the
latency of pure offloading is

TP
n,k,d,t =

ϕk
ηd

+
ωk + θk

ld,t
n

, (9)

where the rightmost term represents the transmission delay for user n when sending data
of task k, and the middle term represents the computation delay for server d.

3.4.3. Cache-Based Offloading Mode

When user n requests a service that is stored locally in the cache pool of d, or when
the service k is located in another server through executing Algorithm 1 (denoted as
ServerIPt

k ∨ pd,t
k = 1), MUs only need to transmit θk to server. The corresponding transmis-

sion cost is then quantified as

ψn
θk

ld,t
n

; (10)

similarly, the latency in cache-based offloading can be expressed as

TC
n,k,d,t = sgn(1 − pd,t

k )TR
d,k,t +

ϕk
ηd

+
θk

ld,t
n

, (11)

where signum function sgn(x) be subjected to

sgn(x) =
{

1,
0,

x > 0
x = 0.

(12)

In Equation (12), sgn(1 − pd,t
k )TR

d,k,t denotes the latency of executing the routing algo-
rithm to acquire application data ωk in the Cache Chord. In this state, users do not need to
further transmit data ωk for task k, thereby reducing some of the time overhead. To sim-
plify the model, consistent with other studies [3,29,30], we assume that the computational
capacity of MEC servers is much greater than that of MUs, i.e., ηd ≫ od,n. Therefore, the
latency caused by MEC servers performing computations can be eliminated.

During the process of MEC servers utilizing the Cache Chord to execute indexing al-
gorithms, the data volume transmitted between MEC nodes is very small, containing only
information such as the IP address of the resources and the hash value of the destination server
node address. Additionally, as MEC nodes are geographically adjacent and communicate
through ideal wired backhaul links, without any transmission bottlenecks, the propagation delay
of MEC servers transmitting application data to each other can be neglected. Therefore, in our
modeling, we assume that the delay of MEC servers retrieving and transmitting correspond-
ing application data ωk in the Cache Chord can be ignored. This can be represented by the
following inequality:

ϕk
ηd

+ TR
d,k,t ≪

ϕk
od,n

≤ τ (13)
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3.4.4. User Layer Energy Consumption

Let E = {εt
1, εt

2, ..., εt
K}, ∀εt

k ∈ {0, 1} represent whether the edge layer holds application
data ωk, when the application data exist, the formula ServerIPt

k ∨ pd,t
k = 1, εt

k = 1 can be
derived; otherwise, ServerIPt

k ∨ pd,t
k = 0, and εt

k = 0. Based on these, it can be concluded
that at any slot t, the service request µt

n ∈ {0, 1, 2, ..., K} of local user n on server d satisfies
the following energy consumption formula:

Υn,d,k,t = sgn(µt
n){(1 − sgn(υd,t

n ))ς
ϕk

3

τ2

+ sgn(υd,t
n )((1 − εt

k)ψn
ωk + θk

ld,t
n

+ εt
kψn

θk

ld,t
n

)},
(14)

3.5. Problem Formulation

Based on the above modeling, the optimization objective can be transformed as follows.
Under the assistance of the Cache Chord mechanism, take the RCO action Vd,t in order
to minimize the long-term average energy consumption of the user layer in the DESCO
model, which can be formulated as the following problem:

P: min
Vt

( lim
T→∞

1
TD

T

∑
t=1

D

∑
d=1

∑n∈Nd ,k∈Ut
Nd

Υn,d,k,t) (15)

s.t. nids ∈ NID, ∀s ∈ S, (16)

pd,t
k = pd,t−1

k + ρd,t−1
k , ∀pd,t

k ≥ 0, ∀t = T, ∀d ∈ ∆, (17)

∑k∈[1,K] ωk(pd,t
k + ρd,t

k ) ≤ S, ∀t ∈ T, ∀d ∈ ∆, ∀k ∈ K, (18)

ρd,t
k ∈ {1, 0,−1},∀k ∈ Ut

Nd
, ∀t ∈ T, ∀d ∈ ∆, (19)

υd,t
n ∈ {0, 1, 2, ..., F},∀n ∈ Nd, ∀t ∈ T, ∀d ∈ ∆. (20)

sgn(υd,t
n )

(
sgn(εt

k)T
C
n,k,d,t + sgn(1 − εt

k)T
P
n,k,d,t

)
≤ τ. (21)

Set Vt = { V1,t, V2,t, ..., VD,t} represents the entire server cluster of RCO decisions.
(16) mandates that the storage location for any application data must reside within the
servers at the edge layer. (17) specifies that the application cache status pd,t

k of MEC server at
time t is determined by its cache status at (t − 1) and the application replacement decisions
ρd,t−1

k based on that status. (18) asserts that for any MEC server d, the current tasks and
those newly added at the next moment, based on the application replacement decision,
must not exceed the server’s own cache pool capacity S. (19) illustrates the cache replace-
ment policy of pool Pd,t: addition, deletion, or retention. (20) represents the offloading
decision for server d towards user n at time t, where {1, 2, ..., F} denotes data offloading
through the server’s subchannel, and 0 indicates local computation of the task. The next
section will detail how to decouple the complex problem P and address it through a joint
algorithmic approach. (21) represents the latency constraint of real-time computing tasks.

4. Distributed Real-Time Computation Offloading Algorithm Based on MDPSO
4.1. Modeling the RCO Problem Based on Multi-Player Static Game

The coherent noise of a channel increases as the number of users occupying the channel
rises. Consequently, users require more energy to transmit real-time sensor data, as indicated
by Formula (3). Consequently, the offloading benefits of MUs selecting that channel decrease.
Based on the above analysis, it can be observed that there exists an evident competitive
relationship among MUs in the process of offloading data (selecting offloading channels).
Moreover, user requests in any time slot occur concurrently rather than sequentially, which
introduces the RCO problem into the realm of multi-player static game theory. In this chapter,
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discussions will be conducted on this game problem, and the NE solution will be sought
based on the multi-dimensional particle swarm method in heuristic algorithms.

In the computation offloading problem, as the popularity of tasks does not change
due to users being in different coverage areas of MEC, the requests µt

n of any MUs in the
terminal layer follow the same probability distribution. Additionally, the RCO decision of
any MEC server only affects the data upload efficiency and latency of local users. Therefore,
the scope of the computation offloading problem can be atomized, with each server making
decisions assisted by the cache ring. This can be represented by each server minimizing its
real-time energy consumption function qd,t(Vd,t). Thus, the optimization problem becomes

P1: min
Vd,t

qd,t(V
d,t) = ∑n∈Nd ,k∈Ut

Nd
Υn,d,k,t

s.t. (17), (20), (21)
(22)

where Vd,t represents an N-dimensional discrete random variable, and each dimension cor-
responds to the RCO strategy υd,t

n of user n. The effectiveness of a decision is quantified by
the difference between the user’s computational energy consumption and communication
energy consumption. The offloading benefit for user n ∈ Nd is defined as

Γn(υ
d,t
n ) = sgn(υd,t

n )(ς
ϕk

3

τ2 − ψn
θk + (1 − εt

k)ωk

b log(1 + ζnψn
∑

m∈{Q−n},υd,t
m =υd,t

n

ζmψm+σ2 )
), (23)

where Γn(υ
d,t
n ) > 0 represents that implementing the offloading strategy υd,t

n can conserve
energy for MUs in comparison to local computations. It is evident that the total offloading
benefit ∑n∈Nd

Γn(υ
d,t
n ) for the local user cluster of server d is inversely proportional to the

real-time energy consumption function qd,t(Vd,t), which implies that

qd,t(V
d,t) ∝ 1

/
∑n∈Nd

Γn(υ
d,t
n ). (24)

In further analysis, we deduce that for user ∀n ∈ Nd, the selection of channel f ∈ F for
transmission introduces coherent noise ∑m∈{Q−n},υd,t

m =υd,t
n

ζmψm + σ2 impacting both the

individual benefit Γn(υ
d,t
n ) and the overall energy consumption qd,t(Vd,t).

This suggests that the RCO strategy υd,t
n of user n, in conjunction with other users’

RCO strategies Vd,t
n− = Vd,t − {υd,t

n }, formed a multi-player static game problem [31].
Consequently, this game can be characterized as

G =
〈

Nd, { Pn,t} , Γn(υ
d,t
n )

〉
, (25)

where Nd represents the set of players, { Pn,t} symbolizes the pure strategy set of player
n, and Γn(υ

d,t
n ) denotes the offloading payoff compared to local computing. However, it

is known that not all finite-strategy static games have pure-strategy Nash equilibrium.
Therefore, we will analyze the existence of Nash equilibrium solutions for the given N-
player static game problem G.

Firstly, the number of players participating in this finite-strategy static game G is denoted
as N. Let the n-th player’s pure channel strategy available at time t be represented as

Pn,t = {An
1 , An

2 , ..., An
F},n ∈ Nd. (26)

The strategy space composed of pure strategies for Nd players is

Pt = P1,t × P2,t × ... × PN,t. (27)

Any strategy combination in strategy space A is
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pt =
(

A1
j1,t, A2

j2,t, ..., AN
jN ,t

)
, An

jn ,t ∈ Pn,t, n = 1, 2, ..., N. (28)

Denote

P̃n−1
t = P1,t, P2,t, ..., Pn−1,t(1 < n ≤ N), P̃n−1

t = Φ(n = 1), (29)

P̄n+1
t = Pn+1,t, Pn+2,t, ..., PN,t(1 ≤ n < N), P̄n+1

t = Φ(n = N). (30)

Apparently

Pt =


P1,t × P̄n+1

t , n = 1
P̃n−1

t × Pn,t, n = N
P̃n−1

t × Pn,t × P̄n+1
t , 1 < n < N.

(31)

Without loss of generality, when 1 < n < N, the following exists:

∀pn−1
t ∈ P̃n−1

t , pn−1
t =

(
A1

j1,t, A2
j2,t, ..., An−1

jn−1,t

)
, Ak

jk ,t ∈ Pk,t, k = 1, 2, ..., n − 1,

∀pn−1
t ∈ P̄n+1

t , pn+1
t =

(
A1

jn+1,t, A2
jn+2,t, ..., AN

jN ,t

)
, Ak

jk ,t ∈ Pk,t, k = n + 1, n + 2, ..., N.
(32)

According to the utility function Γn(υ
d,t
n ) of the n-th player, if there exists the following:

p∗t =
(

pn−1∗
t , An∗

jn ,t, pn+1∗
t

)
, (33)

let

Γn(p∗t ) = Γn

(
pn−1∗

t , An∗
jn ,t, pn+1∗

t

)
⩾ Γn

(
pn−1∗

t , An
k,t, pn+1∗

t

)
, ∀An

k,t ∈ Pn,t. (34)

Then, p∗t is referred to as a pure-strategy Nash equilibrium of the finite-strategy static
game G. Building upon the above, we can continue the derivation; let

Ti,t(pn−1
t , pn+1

t ) =

{
(pn−1

t , An
jk ,t, pn+1

t )| max
An

k∈Pn,t
Ui(pn−1

t , An
k,t, pn+1

t )

}
, i = 1, 2, · · · , N

Ti,t = ∪
(pn−1

t ,pn+1
t )∈P̃n−1

t ×P̄n+1
t

Ti(pn−1
t , pn+1

t ) =

{(pn−1
t , An

jk ,t, pn+1
t )| max

An
k∈Pn,t

Ui(pn−1
t , An

k , pn+1
t )},

∀(pn−1
t , pn+1

t ) ∈ P̃n−1
t × P̄n+1

t | i = 1, 2, · · · , N.

(35)

If the game G has a Nash equilibrium, then

pt =
(

pn−1
t , An

jn ,t, pn+1
t

)
=

(
A1

j1,t, A2
j2,t, ..., AN

jN ,t

)
. (36)

According to the definition of pure NE, we have

Γi(pn−1
t , An

jn ,t, pn+1
t ) ⩾ Γi(pn−1

t , An
k,t, pn+1

t ), ∀An
k,t ∈ Pn,t. (37)

Therefore, there exists:

(pn−1
t , An

jn ,t, pn+1
t ) ∈ Tn

(
pn−1

t , pn+1
t

)
⊂ Tn, n = 1, 2, ..., N. (38)

Thereby

(pn−1
t , An

jn ,t, pn+1
t ) ∈

N
∩

i=1
Ti,t. (39)
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So, we have
N
∩

i=1
Ti,t ̸= Φ. (40)

If the above equation holds, then we may assume the following:

pt =
(

pn−1
t , An

jn ,t, pn+1
t

)
=

(
A1

j1,t, A2
j2,t, ..., AN

jN ,t

)
∈ Ti,t, i = 1, 2, ..., N. (41)

From the definition of Ti,t, we can infer that

Γn

(
A1

j1,t, A2
j2,t, ..., AN

jN ,t

)
= max

An
k∈Pn,t

Γn

(
pn−1

t , An
k,t, pn+1

t

)
≥ Γn

(
pn−1

t , An
k,t, pn+1

t

)
, ∀An

k,t ∈ Pn,t.
(42)

According to the definition of pure-strategy Nash equilibrium, a pure-strategy Nash
equilibrium of a finite-strategy static game is

(
A1

j1,t, A2
j2,t, ..., AN

jN ,t

)
. Based on the above

derivation, it can be concluded that the sufficient and necessary condition for the existence

of a pure-strategy Nash equilibrium solution is
N
∩

n=1
Tn,t ̸= Φ.

Clearly, there exists a set of solution vectors for the game G, such that

Γn(Vd,t
n−, υd,t∗

n ) ≥ Γn(Vd,t
n−, υd,t

n ), υd,t
n ∈ {0, 1, 2, ..., F}. (43)

Therefore, the Nash equilibrium solution for the game problem G exists.

4.2. Solving RCO Using Multi-Dimensional Discrete Particle Swarm Optimization Algorithm

To resolve this game problem, we employed a multi-dimensional discrete particle
swarm algorithm [32] to search for NE point Ṽd,t. The modeling process begins by ini-
tializing a set of multi-dimensional random particles, represented by the set J l,i

Nd
=

{Jl,i
1 , Jl,i

2 , ..., Jl,i
N }, ∀i ∈ I, ∀l ∈ L. Here, i denotes the iteration rounds of the particles, L

represents the population size, and the particle dimension corresponds to the total number
of users Nd participating in the RCO game.

Each particle symbolizes a feasible solution set for the game, with the solution vector’s
domain in any dimension n following ∀Jl,i

n ∈ {0, 1, 2, ..., F}. It is important to note that
for users without service requests at slot t, the corresponding dimensional value remains
consistently zero, as indicated by the expression µt

n = 0 → Jl,i
n ≡ 0.

These particles are initially distributed randomly within the solution space and
are assessed for estimated energy consumption qd,t(J l,i

Nd
) based on the fitness function

qd,t(), which reflects the quality of the particle’s current position. The solution vector
with the best fitness in the global historical iterations for population L is designated as
J globe

Nd
= {Jglobe

1 , Jglobe
2 , ..., Jglobe

N }, while the local historical optimal fitness solution vector

for particle ∀l ∈ L is named by J local
Nd

= {Jlocal
1 , Jlocal

2 , ..., Jlocal
N }. In the i-th iteration, particles

determine their displacement vector Z l,i
Nd

= {Zl,i
1 , Zl,i

2 , ..., Zl,i
N} for the subsequent iteration

by considering the global optimal solution in the (i − 1)-th iteration, local optimal solution,
and the particle’s current position, where positive integer ∀Zl,i

n ∈ [0, F]. The formula for
updating the displacement vector in the n-th dimension for the i-th iteration is as follows:

Zl,i
n = Zl,i−1

n +
⌊

H1(x1)× (Jlocal
n − Jl,i−1

n )
⌋
+

⌊
H2(x2)× (Jglobe

n − Jl,i−1
n )

⌋
(44)

In cases where the user request is null, the particle displacement vector should be
zero. To increase the randomness of particle movement, we set two exploration coefficients,
H1(x1) and H2(x2). Both of them follow uniform distribution. The random variables x1
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and x2 have value ranges of [h1min, h1max] and [h2min, h2max], respectively, and satisfy the
following equation:

H1(x1) =

{
1

(h1max−h1min)
,

0,
x1 ∈ [h1min, h1max]

elsewhere,

H2(x2) =

{
1

(h2max−h2min)
,

0,
x2 ∈ [h2min, h2max]

elsewhere.

(45)

Nevertheless, the exploration coefficient results in the weighted displacement vector
fail to comply with the domain definition of the action space, specifically concerning
decimal values. To mitigate the impact of the decimal component in our calculations, we
employed the floor function ⌊∗⌋ to handle the increments. This approach guarantees that
the displacement vector adheres to the constraints imposed by the offloading space. The
iterative formula to determine the particle’s position is delineated as follows:

J l,i
Nd

= J l,i−1
Nd

+Z l,i
Nd

. (46)

After i iterations, the algorithm arrives at the final global optimal solution vector
J f inal

Nd
, which minimizes the real-time energy consumption function qmin

d,t (J f inal
Nd

). This

solution vector also represents the NE point Ṽd,t of the game problem G. The specific
process of the RCO decision is detailed in Algorithm 4.

Algorithm 4 Discrete Multi-dimensional PSO-based RCO Algorithm

1: Initialize: MEC server d, Cache Chord C, MEC server local cache buffer R, user request
set Ut

Nd
, communication channel F, game G, particle population quantity L, particle

iteration i, fitness function qd,t(), particle displacement vector Z l,i
Nd

, particle J l,i
Nd

2: for each iteration i do
3: for each particle J l,i

Nd
do

4: for each dimension n do
5: calculate displacement vector Z l,i

Nd
through function (44)

6: update particle position J l,i
Nd

through function (46)
7: end for
8: calculate fitness qd,t(J l,i

Nd
)

9: end for
10: if qd,t(J l,i

Nd
) > qd,t(J local

Nd
) then

11: J local
Nd

= J l,i
Nd

12: end if
13: if qd,t(J l,i

Nd
) > qd,t(J local

Nd
) and ∀qd,t(J

ξ,i
Nd

) < qd,t(J l,i
Nd

), ∀ξ ∈ L then

14: J globe
Nd

= J l,i
Nd

15: end if
16: end for
17: J f inal

Nd
= J globe

Nd

18: return Global Optimal Solution J f inal
Nd

to server d

5. Performance Evaluation

Simulation experiments were developed on the Python platform for the DESCO
network environment. The MDPSO algorithm was deployed based on this distributed
environment. The service coverage area of distributed MEC nodes is a regular hexagonal
region with a diagonal length of 200 m. The values of system time slots, system operating
cycle, server’s wireless transmission bandwidth, server’s and MUs’ computing power,
user’s channel gain ζn, and the local computing energy consumption coefficient ς are all
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constants and remain unchanged in the subsequent comparative experiments. The specific
values are shown in Table 2.

Table 2. Simulation setting.

Parameter Value

Number of MEC servers ∆ 3
Subchannel bandwidth b 3

ς 5 × 10−27

σ2 2 × 10−13

ψn 0.5 W
F 10
D 2000

od,n 1 GHz
θmax, ωmax, ϕmax 5

[h1min, h1max] and [h2min, h2max] [0, 3]
Particle number L 500
Particle iteration i 100

During the initialization phase, DESCO randomly generates the data for all services
in the set K. The values are sampled from the intervals θk ∈ [1, θmax], ωk ∈ [1, ωmax], and
ϕk ∈ [1, ϕmax], where the maximum values ϕmax, ωmax, θmax are all set to 5. The service
cache capacity S of MEC server d is fixed at 2GB, and the cache replacement policy is set to
random caching by default. In the subsequent experiments, we will investigate the average
energy consumption of users under different numbers of MEC servers. The environment
configuration is the same as [3,31,33]. The state transition probabilities of user requests
follow a Zipf distribution parameterized by ⟨R, L, ϑ⟩, where

Pr{µt+1
n = b|µt

n = a} =


R, a ̸= 0,b = 0
1−R

L , a ̸= 0, b = (a + l) mod (K + 1), l ∈ [1, K]
1−R

bϑ ∑i∈[1,K] (
1
i )

ϑ , a = 0, b ̸= 0,
(47)

whereby ϑ represents the Zipf distribution parameter. L denotes the number of adjacent
services that may be requested in the next stage. R signifies the probability that user n will
not request any service in the subsequent phase. We will adjust parameters L and R to
evaluate the performance of the algorithm under varying transition probabilities.

(1) The Greedy–Random algorithm: combines Greedy RCO with random cache re-
placement strategy. In the initialization phase, MEC servers randomly generate the RCO
strategies for the user. Then, based on this initial strategy, the algorithm traverses each
user’s offloading decision in the set Nd. At each step, it searches for the channel occupancy
strategy that minimizes the energy consumption for that user. Meanwhile, the MEC server
adopts a random cache replacement strategy for local cache space. This strategy randomly
replaces the stored application data with the application data offloaded by users in the
current time slot after the cache space becomes saturated, satisfying Equation (18) during
this process.

(2) Random cache replacement with multi-dimensional discrete particle swarm of-
floading (MDPSO-Random): The MDPSO strategy is utilized to solve RCO strategy. By
assigning initial momentum to random multi-dimensional particles, the RCO strategy
explores the optimal strategy in the solution space based on the fitness function. It is worth
noting that this algorithm is deployed only in DESCO networks with a single MEC server.

(3) The MDPSO-Random algorithm with Cache Chord (MDPSO-Random with CC)
builds upon the MDPSO-Random algorithm: This mechanism allows MUs to access the
application cache resources across the entire edge layer.
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The effectiveness of the MDPSO algorithm and Cache Chord is verified from three
aspects: convergence of the MDPSO algorithm, energy consumption performance, and
cache hit rate.

Firstly, the convergence analysis of the proposed algorithm is conducted. Figure 4
illustrates the instantaneous energy consumption obtained after iterations for both the
MDPSO algorithm and the Greedy algorithm in the single-server scenario. The experiment
is conducted with different MU counts (Nd = 15, 25, 35, 45) and a local MEC cache capacity
of 2 GB. The horizontal axis represents the number of iterations for particles or algorithms,
while the vertical axis represents the energy consumption of the MEC server. In the
experiment, the dimension L of particles is set to 500, and the number of iterations i is 100.

The blue line represents the convergence curve of the MDPSO, while the orange
line represents the Greedy algorithm. The green horizontal line, which remains constant
throughout iterations, represents the energy consumption of local computation. Comparing
the two algorithms, it is observed that both MDPSO and Greedy strategies converge
within the first 40 rounds and can reduce user-level energy consumption by 18.75% to
41.17% compared to local computation. Moreover, MDPSO exhibits better convergence
compared to the Greedy strategy, with an average reduction of 19.7% in user-level energy
consumption per round. This indicates that the MDPSO algorithm can explore the solution
space more comprehensively, avoiding local optima, and performs well when dealing with
discrete vectors.
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Figure 4. User layer real-time energy cost under different algorithms and different numbers of MUs:
(a) MU number = 15. (b) MU number = 25. (c) MU number = 35. (d) MU number = 45.

Figure 5 illustrates the average task completion time of user layer per time slot with a
task latency constraint of τ = 20 ms. The red line represents the MDPSO algorithm with
collaboration among five nodes, while the green line represents the Greedy offloading
strategy with the same number of collaborating nodes. Since MUs can adopt DVFS to
adjust the computational power of local devices and ensure timely task completion, the
task completion time in each round remains stable at a maximum latency constraint of
20 ms. After running for 1000 time slots, the proposed algorithm outperforms others, with
an average latency of 7.4 ms, while the Greedy strategy exhibits an average latency of
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11.4 ms, both showing a decrease compared to the local computing. This implies that the
proposed algorithm can converge to the optimal offloading strategy, thereby applying the
cache-based offloading mode as much as possible, to reduce data transmission overhead
for MUs.
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Figure 5. The comparison of average user layer latency per time slot. Models include MDPSO
(server = 5), Greedy (server = 5), and local computing.

Figure 6 compares the energy consumption of local computation, Greedy-Random,
MDPSO-Random, and MDPSO-Random with Cache Chord (CC)-assisted algorithms under
different numbers of MUs and task richness conditions, using the default Zipf service
request distribution function. In Figure 6a, the number of users covered by each MEC server
is fixed at 5. Through the experiments, it is observed that, relative to local computation, the
other three algorithms effectively reduce energy consumption overhead. In Figure 6a, the
curve for local energy consumption remains relatively constant. This is because the energy
consumption of local computation is only dependent on the number of tasks and FLOPs
of tasks. The increase in the number of user types only poses challenges for cache-based
algorithms. Moreover, through horizontal comparison, it is noted that the algorithm based
on the cooperation of 5 distributed MEC servers with cache exhibits the best performance.
This is attributed to the CC data-sharing mechanism, which allows users at any location to
access resources across the entire MEC edge layer. This implies that the cache space linearly
increases with the addition of servers in the CC network, thereby eliminating the need for
users to transmit θk and resulting in a higher transmission of energy consumption.
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Figure 6. User layer overall energy cost comparison. (a) Task number comparison. (b) User number
comparison.
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Figure 7 compares the average energy consumption of a cluster of users under the
collaboration of different numbers of MEC servers. As the number of MEC servers increases,
the energy consumption in all cases shows a decrease and converges to the same value
in all cases, because as the total number of server D increases, the cache pool storage is
richer, which allows more requests to be converted from pure offloading to cache-based
offloading until all MUs do not need to upload application data ωk. It can also be noticed
that the slopes of the three energy consumption curves decrease gradually as the total
number of tasks increases. The energy consumption curve decreases most rapidly when the
total number of tasks is small (Nd = 100) and converges at around 20 servers; the energy
consumption curve of Nd = 100 converges at D = 45 because when the total number of
tasks is larger, the servers also need to collaborate on a larger scale to make sure that the
corresponding application data are stored.
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Figure 7. The comparison of average energy consumption under different numbers of MEC servers,
where task number = 100, 200, 300.

Figure 8 illustrates the average energy consumption of MUs per time slot under
different Zipf parameters and various task attributes for MDPSO. As depicted in Figure 8a,
it can be observed that with the increase in the maximum value of application data ωmax,
the average energy consumption of the Greedy algorithm and the MDPSO assisted by CC
continues to rise. This is due to the increase in ωmax, which increases the transmission
overhead of tasks, thereby reducing the offloading benefits. The proposed algorithm can
effectively reduce the average energy consumption by 10.9% to 25.17% compared to the
Greedy offloading strategy. Additionally, under the same parameter conditions (L = 3),
MDPSO based on multi-server collaboration can reduce the average energy consumption
by 7.89% to 4.7% compared to the single-node mode.

Observing Figure 8b, we can conclude that with the growth of θmax, the average energy
consumption of all algorithms increases. Moreover, comparing the Greedy algorithm with
the MDPSO algorithm based on multi-node collaboration, under the same Zipf R condition,
MDPSO can reduce the average energy consumption by 2.1% to 16.8% compared to Greedy.
Furthermore, with the increase in parameter R, the energy consumption also decreases.
This is because parameter R is positively correlated with the probability that the MUs’
next stage service request is empty. A larger R means more MUs with empty requests
at any time. Sparse service requests undoubtedly lead to reduced transmission energy
consumption for MUs.
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Figure 8. Average energy consumption under different Zipf parameters: (a) Zipf L; (b) Zipf R.

Figure 9a,b, respectively, explore the impact of the number of servers in the CC
mechanism on the cache hit ratio from the perspectives of user count and service types. The
cache hit ratio represents the ratio of the total number of accesses to the edge layer by users
Cs to the number of services successfully requested Ch, expressed as the following formula:

Cache hit ratio =
Ch
Cs

(48)

By vertically comparing Figure 9, it is evident that under the same conditions, as the
number of MEC servers increases, the cache space grows linearly, leading to a significant
improvement in the cache hit ratio Cr. Compared to a single server, when the number of
servers is increased to 10, the cache hit ratio Cr increases by 33.3% to 42.7%. Moreover,
when the number of users Nd is 20 and the number of services K < 80, the cache hit ratio
achieved by the cooperation of 10 servers is consistently above 91%. This improvement
is attributed to the Cache Chord mechanism overcoming the bottleneck imposed by the
storage space limitation.

However, as the number of task types increases, the cache hit ratio decreases. This
decline is due to the sparser distribution of user service requests as the task types increase.
For individual MEC servers, the proportion of service data stored in the limited space of
the local cache pool becomes relatively smaller compared to the overall request volume,
leading to a decrease in Cr. Comparing the four models, it can be concluded that the
Cache Chord mechanism effectively assists in computation offloading. Moreover, with the
increase in node scale, higher benefits can be achieved.
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Figure 9. Cache hit rate under different server numbers in Cache Chord. (a) User quantity. (b) Task quantity.
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6. Conclusions

This paper investigates how to provide higher-quality services to MUs while reducing
user layer energy consumption in MEC networks. The DESCO network architecture is
proposed to address this issue. In the DESCO network, a cache-sharing mechanism, Cache
Chord, is conducted based on a geo-distributed edge server collaboration. Cache Chord
utilizes consistent hashing to map servers and real-time applications into a circular logical
topology. We also improved the IP routing algorithm to reduce computational complexity
and designed an index update mechanism to ensure information synchronization among
edge nodes. Furthermore, in addressing the bottleneck of channel allocation caused by
concurrent requests from current users, the problem is formulated as a multi-player static
game. After proving the existence of the Nash equilibrium point, the MDPSO algorithm is
proposed to simulate user requests as particles, exploring the global optimal node in the
solution space to provide users with the lowest energy consumption offloading strategy.
Finally, the algorithm is compared with baseline algorithms, and the performance of the
Cache Chord structure is tested at different scales.

Through simulation experiments, we have found that computation offloading assisted
by the Cache Chord mechanism can significantly reduce user energy consumption overhead.
It is foreseeable that with the increasing scale of added server nodes, energy consumption
will be further reduced. However, this paper overlooks the fact that with the increase in
server nodes, the transmission delay of the corresponding backhaul links will also increase,
posing new challenges for performance optimization. Therefore, the next step will be
to explore how larger node scales will affect service quality and consider deploying the
protocol in a real network environment to test its performance.
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RCO Real-Time Computation Offloading
NE Nash Equilibrium
CC Cache Chord
MUs Mobile Users
DHT Distributed Hash Table
P2P Peer to Peer
DVFS Dynamic Voltage and Frequency Scaling
FLOPs Floating-Point of Operations
FLOPS Floating-Point Operations Per Second
MDPSO Multi-Dimensional Discrete Particle Swarm Optimization



Future Internet 2024, 16, 136 23 of 24

References
1. Chen, X.; Cai, Y.; Li, L.; Zhao, M.; Champagne, B.; Hanzo, L. Energy-efficient resource allocation for latency-sensitive mobile edge

computing. IEEE Trans. Veh. Technol. 2019, 69, 2246–2262. [CrossRef]
2. Lai, Z.; Liu, W.; Wu, Q.; Li, H.; Xu, J.; Wu, J. SpaceRTC: Unleashing the low-latency potential of mega-constellations for real-time

communications. In Proceedings of the IEEE INFOCOM 2022—IEEE Conference on Computer Communications, Virtual Event,
2–5 May 2022 ; IEEE: Piscataway, NJ, USA, 2022; pp. 1339–1348.

3. Spinelli, F.; Mancuso, V. Toward enabled industrial verticals in 5G: A survey on MEC-based approaches to provisioning and
flexibility. IEEE Commun. Surv. Tutor. 2020, 23, 596–630. [CrossRef]

4. Porambage, P.; Okwuibe, J.; Liyanage, M.; Ylianttila, M.; Taleb, T. Survey on multi-access edge computing for internet of things
realization. IEEE Commun. Surv. Tutor. 2018, 20, 2961–2991. [CrossRef]

5. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor.
2017, 19, 1628–1656. [CrossRef]

6. Yao, J.; Han, T.; Ansari, N. On mobile edge caching. IEEE Commun. Surv. Tutor. 2019, 21, 2525–2553. [CrossRef]
7. Kang, J.; Yu, R.; Huang, X.; Wu, M.; Maharjan, S.; Xie, S.; Zhang, Y. Blockchain for secure and efficient data sharing in vehicular

edge computing and networks. IEEE Internet Things J. 2018, 6, 4660–4670. [CrossRef]
8. Li, Q.; Zhang, Y.; Pandharipande, A.; Ge, X.; Zhang, J. D2D-assisted caching on truncated Zipf distribution. IEEE Access 2019,

7, 13411–13421. [CrossRef]
9. Lou, J.; Luo, H.; Tang, Z.; Jia, W.; Zhao, W. Efficient container assignment and layer sequencing in edge computing. IEEE Trans.

Serv. Comput. 2022, 16, 1118–1131. [CrossRef]
10. Shi, Y.; Yang, K.; Jiang, T.; Zhang, J.; Letaief, K.B. Communication-efficient edge AI: Algorithms and systems. IEEE Commun. Surv.

Tutor. 2020, 22, 2167–2191. [CrossRef]
11. Zhang, L.; Fu, D.; Liu, J.; Ngai, E.C.H.; Zhu, W. On energy-efficient offloading in mobile cloud for real-time video applications.

IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 170–181. [CrossRef]
12. Zhan, C.; Hu, H.; Sui, X.; Liu, Z.; Niyato, D. Completion time and energy optimization in the UAV-enabled mobile-edge

computing system. IEEE Internet Things J. 2020, 7, 7808–7822. [CrossRef]
13. Yadav, R.; Zhang, W.; Elgendy, I.A.; Dong, G.; Shafiq, M.; Laghari, A.A.; Prakash, S. Smart healthcare: RL-based task offloading

scheme for edge-enable sensor networks. IEEE Sens. J. 2021, 21, 24910–24918. [CrossRef]
14. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE

Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]
15. Yu, S.; Langar, R.; Fu, X.; Wang, L.; Han, Z. Computation offloading with data caching enhancement for mobile edge computing.

IEEE Trans. Veh. Technol. 2018, 67, 11098–11112. [CrossRef]
16. Wen, W.; Cui, Y.; Quek, T.Q.; Zheng, F.C.; Jin, S. Joint optimal software caching, computation offloading and communications

resource allocation for mobile edge computing. IEEE Trans. Veh. Technol. 2020, 69, 7879–7894. [CrossRef]
17. Tang, Q.; Fei, Z.; Li, B.; Han, Z. Computation offloading in LEO satellite networks with hybrid cloud and edge computing. IEEE

Internet Things J. 2021, 8, 9164–9176. [CrossRef]
18. Mei, J.; Tong, Z.; Li, K.; Zhang, L.; Li, K. Energy-Efficient Heuristic Computation Offloading With Delay Constraints in Mobile

Edge Computing. IEEE Trans. Serv. Comput. 2023, 16, 4404–4417. [CrossRef]
19. Zorgati, H.; Djemaa, R.B.; Amous, I. Efficient IoT resource discovery approach based on P2P networks and Fog Computing.

Internet Things 2023, 24, 100954. [CrossRef]
20. Wang, C.; Chen, C.; Pei, Q.; Lv, N.; Song, H. Popularity incentive caching for vehicular named data networking. IEEE Trans. Intell.

Transp. Syst. 2020, 23, 3640–3653. [CrossRef]
21. He, Q.; Tan, S.; Chen, F.; Xu, X.; Qi, L.; Hei, X.; Jin, H.; Yang, Y. Edindex: Enabling fast data queries in edge storage systems. In

Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Taipei,
Taiwan, 23–27 July 2023; pp. 675–685.

22. D’Angelo, M.; Caporuscio, M. Sa-chord: A self-adaptive p2p overlay network. In Proceedings of the 2018 IEEE 3rd International
Workshops on Foundations and Applications of Self* Systems (FAS* W), Trento, Italy, 3–7 September 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 118–123.

23. Yu, F.; Cui, L.; Wang, P.; Han, C.; Huang, R.; Huang, X. Easiedge: A novel global deep neural networks pruning method for
efficient edge computing. IEEE Internet Things J. 2020, 8, 1259–1271. [CrossRef]

24. Ning, H.; Li, Y.; Shi, F.; Yang, L.T. Heterogeneous edge computing open platforms and tools for internet of things. Future Gener.
Comput. Syst. 2020, 106, 67–76. [CrossRef]

25. Jin, Y.; Cai, J.; Xu, J.; Huan, Y.; Yan, Y.; Huang, B.; Guo, Y.; Zheng, L.; Zou, Z. Self-aware distributed deep learning framework for
heterogeneous IoT edge devices. Future Gener. Comput. Syst. 2021, 125, 908–920. [CrossRef]

26. Ji, T.; Luo, C.; Yu, L.; Wang, Q.; Chen, S.; Thapa, A.; Li, P. Energy-efficient computation offloading in mobile edge computing
systems with uncertainties. IEEE Trans. Wirel. Commun. 2022, 21, 5717–5729. [CrossRef]

27. Stoica, I.; Morris, R.; Liben-Nowell, D.; Karger, D.R.; Kaashoek, M.F.; Dabek, F.; Balakrishnan, H. Chord: A scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Trans. Netw. 2003, 11, 17–32. [CrossRef]

28. Panda, S.K.; Lin, M.; Zhou, T. Energy-efficient computation offloading with DVFS using deep reinforcement learning for
time-critical IoT applications in edge computing. IEEE Internet Things J. 2022, 10, 6611–6621. [CrossRef]

http://doi.org/10.1109/TVT.2019.2962542
http://dx.doi.org/10.1109/COMST.2020.3037674
http://dx.doi.org/10.1109/COMST.2018.2849509
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2019.2908280
http://dx.doi.org/10.1109/JIOT.2018.2875542
http://dx.doi.org/10.1109/ACCESS.2019.2894837
http://dx.doi.org/10.1109/TSC.2022.3159728
http://dx.doi.org/10.1109/COMST.2020.3007787
http://dx.doi.org/10.1109/TCSVT.2016.2539690
http://dx.doi.org/10.1109/JIOT.2020.2993260
http://dx.doi.org/10.1109/JSEN.2021.3096245
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/TVT.2018.2869144
http://dx.doi.org/10.1109/TVT.2020.2993359
http://dx.doi.org/10.1109/JIOT.2021.3056569
http://dx.doi.org/10.1109/TSC.2023.3324604
http://dx.doi.org/10.1016/j.iot.2023.100954
http://dx.doi.org/10.1109/TITS.2020.3038924
http://dx.doi.org/10.1109/JIOT.2020.3034925
http://dx.doi.org/10.1016/j.future.2019.12.036
http://dx.doi.org/10.1016/j.future.2021.07.010
http://dx.doi.org/10.1109/TWC.2022.3142685
http://dx.doi.org/10.1109/TNET.2002.808407
http://dx.doi.org/10.1109/JIOT.2022.3153399


Future Internet 2024, 16, 136 24 of 24

29. Khan, M.A.; Yeh, L.; Zeitouni, K.; Borcea, C. MobiStore: A system for efficient mobile P2P data sharing. Peer-to-Peer Netw. Appl.
2017, 10, 910–924. [CrossRef]

30. Ye, Y.; Hu, R.Q.; Lu, G.; Shi, L. Enhance Latency-Constrained Computation in MEC Networks Using Uplink NOMA. IEEE Trans.
Commun. 2020, 68, 2409–2425. [CrossRef]

31. Shinde, S.S.; Bozorgchenani, A.; Tarchi, D.; Ni, Q. On the design of federated learning in latency and energy constrained
computation offloading operations in vehicular edge computing systems. IEEE Trans. Veh. Technol. 2021, 71, 2041–2057.
[CrossRef]

32. Kiranyaz, S.; Pulkkinen, J.; Gabbouj, M. Multi-dimensional particle swarm optimization in dynamic environments. Expert Syst.
Appl. 2011, 38, 2212–2223. [CrossRef]

33. Zhang, P.; Su, Y.; Li, B.; Liu, L.; Wang, C.; Zhang, W.; Tan, L. Deep Reinforcement Learning Based Computation Offloading in
UAV-Assisted Edge Computing. Drones 2023, 7, 213. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12083-016-0450-7
http://dx.doi.org/10.1109/TCOMM.2020.2969666
http://dx.doi.org/10.1109/TVT.2021.3135332
http://dx.doi.org/10.1016/j.eswa.2010.08.009
http://dx.doi.org/10.3390/drones7030213

	Introduction
	Related Works
	Computation Offloading Strategy
	Data-Sharing Mechanism

	System Descriptions and Assumptions
	DESCO Network Model
	Communication Model
	Cache Chord Mechanism 
	Identifier Mapping
	IP Indexing
	Identifier Mapping

	DESCO Task Processing Model 
	Local Computing Mode
	Pure Offloading Mode
	Cache-Based Offloading Mode
	User Layer Energy Consumption

	Problem Formulation

	Distributed Real-Time Computation Offloading Algorithm Based on MDPSO
	Modeling the RCO Problem Based on Multi-Player Static Game
	Solving RCO Using Multi-Dimensional Discrete Particle Swarm Optimization Algorithm

	Performance Evaluation
	Conclusions
	References

