
Citation: Rahman, M.M.; Gupta, D.;

Bhatt, S.; Shokouhmand, S.; Faezipour,

M. A Comprehensive Review of

Machine Learning Approaches for

Anomaly Detection in Smart Homes:

Experimental Analysis and Future

Directions. Future Internet 2024, 16,

139. https://doi.org/10.3390/

fi16040139

Academic Editors: Cheng-Chi Lee

and Dinh-Thuan Do

Received: 21 March 2024

Revised: 16 April 2024

Accepted: 18 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Review

A Comprehensive Review of Machine Learning Approaches for
Anomaly Detection in Smart Homes: Experimental Analysis and
Future Directions
Md Motiur Rahman 1 , Deepti Gupta 2 , Smriti Bhatt 3,* , Shiva Shokouhmand 1 and Miad Faezipour 1,*

1 School of Engineering Technology, Electrical and Computer Engineering Technology, Purdue University,
West Lafayette, IN 47907, USA; rahma112@purdue.edu (M.M.R.); sshokouh@purdue.edu (S.S.)

2 Subhani Department of Computer Information Systems, Texas A&M University-Central Texas,
Killeen, TX 76549, USA; d.gupta@tamuct.edu

3 Department of Computer & Information Technology, Purdue University, West Lafayette, IN 47907, USA
* Correspondence: bhatt32@purdue.edu (S.B.); mfaezipo@purdue.edu (M.F.); Tel.: +1-765-494-2562 (S.B.);

+1-765-494-7079 (M.F.)

Abstract: Detecting anomalies in human activities is increasingly crucial today, particularly in nuclear
family settings, where there may not be constant monitoring of individuals’ health, especially the
elderly, during critical periods. Early anomaly detection can prevent from attack scenarios and life-
threatening situations. This task becomes notably more complex when multiple ambient sensors are
deployed in homes with multiple residents, as opposed to single-resident environments. Additionally,
the availability of datasets containing anomalies representing the full spectrum of abnormalities is
limited. In our experimental study, we employed eight widely used machine learning and two deep
learning classifiers to identify anomalies in human activities. We meticulously generated anomalies,
considering all conceivable scenarios. Our findings reveal that the Gated Recurrent Unit (GRU)
excels in accurately classifying normal and anomalous activities, while the naïve Bayes classifier
demonstrates relatively poor performance among the ten classifiers considered. We conducted
various experiments to assess the impact of different training–test splitting ratios, along with a
five-fold cross-validation technique, on the performance. Notably, the GRU model consistently
outperformed all other classifiers under both conditions. Furthermore, we offer insights into the
computational costs associated with these classifiers, encompassing training and prediction phases.
Extensive ablation experiments conducted in this study underscore that all these classifiers can
effectively be deployed for anomaly detection in two-resident homes.

Keywords: anomaly detection; smart home; machine learning algorithms; deep learning

1. Introduction and Motivation

The growing number of Internet of Things (IoT) devices has transformed smart homes
from a luxury into a necessity. These homes have an integrated ecosystem that enables
users to efficiently monitor and control multiple gadgets and systems remotely. In addition
to convenience, they also address critical concerns related to security and safety. Smart
security systems provide real-time monitoring, alarms, and surveillance, increasing the
safety of properties and their occupants. Furthermore, smart equipment can instantly
identify anomalies and respond to crises, such as the health issues of the residents, reducing
potential hazards. In today’s globalized society, smart homes are essential for streamlining
daily living, enhancing security, and ensuring the safety and well-being of individuals.
Currently, turning homes into smart homes provides such opportunities by utilizing the
Internet of Things (IoT) and placing multiple sensors to monitor home activities. The data
recorded from these sensors in a smart home assist in monitoring the pattern of human
activities, as well as detecting any deviations from the regular pattern [1,2]. Anomalies in

Future Internet 2024, 16, 139. https://doi.org/10.3390/fi16040139 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16040139
https://doi.org/10.3390/fi16040139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-7472-4085
https://orcid.org/0000-0001-7844-9092
https://orcid.org/0000-0001-5376-4491
https://orcid.org/0009-0006-2277-0438
https://orcid.org/0000-0003-2684-0887
https://doi.org/10.3390/fi16040139
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16040139?type=check_update&version=2

Future Internet 2024, 16, 139 2 of 20

human activities refer to the unusual execution of activities, such as deviating from the
regular pattern or taking an abnormal duration for each activity. These anomalies should
be detected to monitor the health of residents, especially elderly people, who require more
surveillance and prompt response during critical times [1,3].

The detection of anomalies in human activities from the recorded data can provide
important indications regarding the health of residents and aid in the timely preven-
tion of health complications. Detecting anomalies in human activities has various ap-
plications, such as guiding dementia patients if they miss essential activities like taking
meals or medicines and monitoring the health of those staying alone, especially elderly
people [4,5]. Many researchers have proposed various methodologies, including the identi-
fication of body positions and actions, as well as the recognition of visual activities, to be
significant in the context of anomaly detection [6–8]. Nonetheless, these approaches exhibit
certain limitations. For example, in visual activity recognition, the privacy of the resident is
compromised, while in body position and action identification, some devices should be
attached to the resident for recording his/her body position and actions, such as standing,
sitting, and walking, which is not always convenient [9–11]. In addition, most research on
detecting anomalies in human activity considers a single resident. However, this approach
is impractical when multiple residents live together in a house, where the activities of one
resident are directly influenced by the activities of others [12–14].

Artificial intelligence has opened the door to more efficient identification of unusual
human activities within smart homes. Leveraging machine learning classifiers such as
decision trees, naïve Bayes, gradient boosting, random forest, k-nearest neighbors, and
Support Vector Machines simplifies the process of recognizing anomalies [7,15–20]. The
classifiers work by analyzing sensor data, which enables accurate classification of a resi-
dent’s normal and abnormal activities. This approach has proven to be highly effective
in ensuring the safety and security of smart home residents [21]. Later, while deep learn-
ing has been effective in classification tasks, researchers have applied neural network
(NN)-based techniques such as Convolutional Neural Networks (CNNs) and recurrent
neural networks (RNNs) for detecting anomalies in human activities [22–25]. However,
multi-activity datasets are often converted into binary class datasets, which can result in
imbalanced datasets as only a few abnormal behaviors are generated, and do not represent
all possible anomaly situations [26–28]. In many studies, only normal activities are used
for training and a threshold value is computed by estimating the loss to classify data as
normal or anomaly [29,30]. An input is considered an anomaly when the summed loss
is greater than the threshold value [22]. Although these techniques classify normal and
abnormal activities well for single residents, they have not reported their performance
on multi-resident datasets. Furthermore, we have encountered a challenge in our search
to identify a comprehensive resource that can assist us in assessing the performance and
computational complexity of various classifiers for the task of detecting anomalies related
to multiple residents in a human-centric context.

In this review study, we conducted thorough experiments over all the popular machine
learning classifiers such as decision tree (DT), naïve Bayes (NB), gradient boosting (GB),
Light Gradient Boosting (LGB), random forest (RF), k-nearest neighbors (KNN), Support
Vector Machine (SVM), Linear Regression (LR), and two RNN-based models utilizing Long
Short-term Memory (LSTM), and the Gated Recurrent Unit (GRU) for detecting anomalies
in two-resident human activities. The key contributions of this study are as follows:

• We generated 50,000 abnormal activities by considering all potential anomalies that
could occur in a two-resident home, significantly enhancing the reliability of our
research findings.

• Our research includes a comprehensive guide that examines how varying the training–test
splitting ratios and implementing k-fold cross-validation impact the performance of
these classifiers.

• In our study, we also present a detailed analysis of the computational complexity
of these classifiers, spanning from the training phase to making predictions. This

Future Internet 2024, 16, 139 3 of 20

analysis effectively illustrates the trade-off between performance and computational
costs associated with these algorithms.

• Our research entails a rigorous comparative analysis of these classifiers using the
activity recognition using ambient sensing (ARAS) multi-resident smart home dataset.
Additionally, we offer valuable insights and recommendations for future researchers
in this field, aiming to guide and inform their work on similar topics or within the
same domain.

Our research offers valuable insights to fellow researchers by pinpointing the optimal
machine learning algorithm within the smart home domain. Additionally, it contributes to
the ongoing progress in crafting more efficient and effective anomaly detection methods
for two-resident scenarios. These findings carry substantial potential for a wide range of
applications across domains such as healthcare, security, and smart home technologies.

The rest of the paper is structured as follows: Section 2 covers the literature review.
Section 3 explains different machine learning and deep learning classifiers used in this study
and their detailed implementation. Section 4 presents the obtained results and comparative
analysis among the classifiers, and Section 5 summarizes the proposed study along with
future directions.

2. Background and Related Work

This study aims to detect anomalies in human behavior in two-resident homes using
machine and deep learning techniques. Traditional vision-aided methods pose privacy
concerns and require extensive computation due to processing large video data. Researchers
have proposed methods utilizing sensor data to make anomaly detection more efficient
while ensuring resident privacy.

2.1. Machine Learning-Based Human Activity Anomaly Detection

Identifying human activities is very important to automate the monitoring of the health
of elderly people. A significant number of research works and studies have been conducted
to identify and classify human activities by analyzing the motion from video captured
through closed-circuit television (CCTV) or other types of camera systems. Machine learning
and deep learning models were widely used in many works to identify anomalies in
activities [31,32] along with classification [33–35]. Since placing surveillance cameras to
observe the residents presents data privacy issues/concerns, sensor-based observation
has become popular. Adrien et al. proposed a method for identifying human activities
using the Hidden Markov Model (HMM) and a wearable motion suit with a sensor-
attached glove [5]. Lawal, I. A. et al. conducted a similar study by placing sensors on seven
body parts and using the Convolutional Neural Network (CNN) model over the collected
frequency images [24]. While machine learning and deep learning classifiers work well
over sensor data, placing sensors on residents for a long time is inconvenient. Researchers
suggest deploying sensors throughout the home to detect human activity and anomalies
in order to create a smart home. Fahad et al. utilized SVM, one-vs-one (OSVM), and
K-means classifiers to identify human activities and anomalies in the ARAS and the Center
for Advanced Studies in Adaptive Systems (CASAS) smart home datasets [36]. Similarly,
Gupta et al. established a sensor-based test bed to collect data and used HMM to detect
anomalies in user behavior [15]. All these discussed works assumed a single resident at
home, but it is more realistic to consider multiple residents as the activities of one resident
are directly affected by the others. Several studies were conducted later to detect anomalies
in user behavior by considering multiple residents. In their research, Liang et al. employed
the power of machine learning to identify and differentiate between multiple residents’
activities accurately while also flagging any unusual activities [9]. Howedi et al. utilized
an innovative technique based on entropy to detect anomalies in the presence of visitors,
ensuring maximum safety and security for residents [6]. Jakkula et al. introduced a novel
algorithm that leverages temporal pattern discovery to identify any irregularities in user
activities [37].

Future Internet 2024, 16, 139 4 of 20

2.2. Machine Learning-Based Anomaly Detection in Other Domains

In addition to human activity anomaly detection, machine learning models have been
applied for anomaly detection in other domains such as cyber security, the IoT, finance,
manufacturing, and so on. Jadidi Z. et al. proposed an artificial neural network (ANN)-
based model for identifying adversarial attacks in IoT and industrial IoT networks [38].
They reported the effectiveness of the CNN model in detecting adversarial attacks. Another
study for detecting anomalies in cyber security was carried out by Vávra J. et al., where
they applied four different machine learning (ML) and deep learning (DL) models for
protecting industrial control systems [39]. They optimized the hyper-parameters to propose
an adaptive anomaly detection system. To identify anomalies in an IoT network, a study
was conducted using different machine learning models, and random forest was found
to be more effective [40]. Several ML models have been applied to identify anomalies
and fraud in finance. Alexander B. et al. conducted a studies in which they applied
seven supervised and two unsupervised models over the general ledger data to identify
transaction inconsistencies [41]. Along with the supervised ML models, the unsupervised
models have also been used in several studies for anomaly detection. Schlegl T. et al.
proposed an interpretable deep learning model for classifying anomalies and normal
torque sequences in a manufacturing system [42].

As summarized in Table 1, most of the listed studies focused on using threshold-based
anomaly-detection methods. This approach entails determining an appropriate threshold
value, which is achieved through a trial-and-error process. The datasets utilized in these
studies primarily exhibited normal activities, with the models trained on these data and
tested with user-generated anomalies. However, the issue with this approach is that the
created anomalies may only partially represent some possible anomalies. Additionally,
the studies needed to comprehensively analyze the impact of different training–test split-
ting ratios and k-fold cross-validation on performance. To address these limitations, we
conducted a study that utilized popular machine learning classifiers and two recurrent
neural network (RNN) techniques on the ARAS dataset to identify anomalies in human
activities. Furthermore, we conducted a comparative evaluation of these methods under
different settings. To ensure the validity of our results, we generated 50,000 anomalies by
considering all possible scenarios.

Table 1. List of related works with their objectives, contributions, and limitations in human activity
anomaly detections.

Paper Objectives Contributions Limitations

Adrien et al. [5]
Recognizing the activity
based on the wearable sen-
sors’ data.

Proposed probabilistic model
based on HMM for single
activity detection.

The dataset contains one ac-
tivity and the manual extrac-
tion and selection of features.

Lawal, I. A. et al. [24]
Activity recognition based
on the motion signals (ac-
celerometer and gyroscope).

Converted the signals into fre-
quency images and applied
CNN models for recogniz-
ing activities.

The model cannot differenti-
ate closely related activities.

Fahad et al. [36]
Identifying anomalies based
on the number of activities
performed each day.

Identified anomalies by con-
sidering missing or excess
subevents and an unusual
duration of an activity using
the H20 autoencoder.

Works well for single resi-
dents while not tested for
multiple residents; ground
truths were generated, but
not validated.

Gupta et al. [15]

Classifying human behavior
anomalies by utilizing the
Internet of Medical Things
and smart homes.

Applied the HMM model for
identifying anomalies where
data were collected from the
authors’ set test bed.

HMM works well when
the hidden states are few
and requires effective
feature engineering for
better performance.

Future Internet 2024, 16, 139 5 of 20

Table 1. Cont.

Paper Objectives Contributions Limitations

Liang et al. [9]
Activity recognition of multi-
ple residents using historical
activity features.

Different machine learning
models like random forest
(RF), decision tree (DT), Sup-
port Vector Machine (SVM),
and k-nearest neighbor
(KNN) and neural network
models such as Multilayer
Perceptron (MLP) and Long
Short-term Memory (LSTM)
were used to classify human
activities.

The considered features are
not enough to classify all
activities, including anoma-
lies, accurately.

Howedi et al. [6]
Detecting anomalies in hu-
man activity in the presence
of visitors.

Applied entropy-based mod-
els to classify the samples
and identify anomalies.

Finding the optimal thresh-
old for classification is diffi-
cult and significantly impacts
the performance.

Jakkula et al. [37]
Enhancing the human
activities’ anomaly
detection accuracy.

Used temporal features in
conjunction with the machine
learning model to detect the
anomalies in human activ-
ities. Generated synthetic
data to increase the size of
the dataset.

The quality of the synthetic
data was not validated, and
finding the temporal pat-
tern, including the interval,
is challenging.

3. Analysis and Comparison of Machine Learning-Based Anomaly Detection

This section discusses the applied machine learning and deep learning models, the
experiment in detail, and the dataset used. The entire workflow of this study is shown
in Figure 1. This study starts with collecting the data and cleaning the data to remove
null and inconsistent values. Then, we perform scaling over the inputs to remove the bias
of a specific activity on the outcome. We further split the data into training and test sets
randomly and, finally, trained and tested the machine learning (ML) and deep learning (DL)
models. The details of each ML and DL model are described in the following subsection.

Figure 1. Workflow of our experiments.

3.1. Machine Learning Models

Eight machine learning classifiers were applied to detect human activity anomalies in
this study.

3.1.1. Decision Tree (DT)

Decision trees (DTs) are a popular machine learning tool that can be used for both
classification and regression. When trained on a dataset, they will gain the ability of
classifying new unseen data. A decision tree consists of three types of nodes, namely the
root, inner, and leaf nodes. The tree is created using a number of edges that connect these
nodes and helps to carry out classification and regression. Among the many DT algorithms,
we used the classification and regression trees (CART) method to identify anomalies. This
method recursively splits the dataset into subsets by making binary decisions based on the

Future Internet 2024, 16, 139 6 of 20

input features at each stage until it reaches a stopping point or a predetermined depth. The
algorithm selects the feature at the tree’s root node that optimally divides the dataset into
subsets while maximizing a certain criterion. The Gini index, a measure of inequality that
may be used to measure any unbalanced distribution between 0 and 1, divides the nodes
and creates a decision tree. We determined the feature’s Gini Gain by calculating the Gini
index across all of the values of a feature within the data collection [43,44], as shown in
Equation (1).

gini(T) = 1 −
n

∑
j=1

p2
j (1)

where pj indicates the likelihood that a dataset sample will belong to a certain class and n
indicates the total number of classes in the dataset. The Gini Split Info calculates the Gini
index across all feature values, and the Gini index of the ith feature is computed using the
following equation (Equation (2)).

GINIsplit(T) = ∑
Ni
N

gini(Ti) (2)

3.1.2. Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a widely used machine learning classifier that
divides various classes of data points by locating the best hyperplane in a feature space.
The main goal of SVM is to locate the hyperplane that optimizes the distance between the
classes while minimizing classification errors [45]. The margin, also known as the distance
between the hyperplane and the closest data point of each class (support vector), is a crucial
parameter in the SVM algorithm. The SVM algorithm looks for the hyperplane with the
maximum margin (as illustrated in Equation (3)), as it effectively separates the data and
increases the model’s ability to generalize to unseen data. In the SVM classifier, a specific
weight or coefficient is given to each feature in the dataset, and it then learns to build a deci-
sion boundary by optimizing these weights. The best hyperplane is discovered by resolving
a mathematical optimization problem that aims to minimize a cost function while ensur-
ing that all data points are accurately classified, and the margin is maximized. Suppose
the hyperplane is defined by w and b is a set of points in which H = {x | wT .x + b = 0};
the hyperplane is shown by γ. The maximum margin would be:

arg max
w,b

γ(w, b) such that ∀i yi(wT .xi + b) ≥ 0 (3)

where yi is the class label associated with the i-th data point xi.
This method makes SVMs efficient for both linearly separable data, where a straight

line serves as the hyperplane, and non-linearly separable data, where SVMs can translate
the data into a higher-dimensional space using a kernel function, allowing them to identify
a more complex decision boundary.

3.1.3. Naïve Bayes (NB) Classifier

The naïve Bayes classifier is a machine learning algorithm that uses probability to
classify data. It is based on Bayes’ theorem and assumes that features are independent
(naïve) [46]. The algorithm first estimates the prior probabilities of each class using train-
ing data and then calculates the conditional probabilities of each feature given to each
class. To make predictions, it combines the prior probabilities with the likelihood of the
observed features for each class and selects the class with the highest posterior probability.
Naïve Bayes is efficient with high-dimensional data, but may not capture complex relation-
ships between features. The NB classifier uses the following Bayes theorem presented in
Equation (4):

P(C|x) = P(x|C)× P(C)
P(x)

(4)

Future Internet 2024, 16, 139 7 of 20

where P(C|x) is the probability of a data point belonging to class C given its features x,
P(x|C) is the probability of features x given class C, P(C) is the prior probability, and P(x)
is the marginal probability.

3.1.4. Gradient Boosting (GB) Classifier

The gradient boosting (GB) classifier is an effective ensemble machine learning ap-
proach for classification applications. It works by gradually integrating numerous weak
learners (usually decision trees) so that each new learner corrects the errors committed by
the preceding ones. During training, GB makes an initial prediction (typically the target
variable’s mean) and then fits a weak learner to the residuals of past predictions, changing
the model’s weights to reduce residual errors [47]. This procedure is continued recursively,
with each new learner focusing on the remaining faults as the model’s overall accuracy
improves. The formula for GB, which incorporates a weak learner into the ensemble at
each iteration, can be expressed as Equation (5):

ŷ(t)i = ŷ(t−1)
i + ft(xi) (5)

where t is the iteration number and ŷ(t)i is the predicted score for the i-th training example
at iteration t. The weak learner, which was added at iteration t, is shown by ft.

This iterative process allows Extreme Gradient Boosting (XGBoost) to gradually im-
prove its predictions by incorporating the knowledge of multiple weak learners, eventually
leading to a strong ensemble model. Gradient boosting is a popular choice in many machine
learning applications due to its high predicted accuracy, robustness against overfitting, and
ability to capture complicated correlations in data.

3.1.5. Light Gradient Boosting Machine (LGBM) Classifier

The Light Gradient Boosting Machine (LGBM) classifier is a fast, efficient, and high-
performing gradient boosting system for machine learning and statistical modeling. Be-
cause of its histogram-based learning method, the LGBM is well-suited for training on
huge datasets because it can more quickly calculate gradients by grouping data points into
histogram bins [48]. Using a structure very similar to classic gradient boosting, it gradually
adds decision trees to enhance prediction precision. The LGBM is a popular option for many
machine learning tasks, including classification, regression, and ranking, as it has many
features including regularization, early stopping, and the handling of missing variables.

3.1.6. Random Forest (RF) Classifier

The random forest (RF) classifier is an ensemble machine learning technique that
builds numerous decision trees during training and then pools their predictions to boost
accuracy and mitigate overfitting. These decision trees are generated using a method called
bagging (Bootstrap Aggregating). A bootstrap sample is generated by randomly drawing
samples from the training data and replacing them with new ones for each tree in the forest.
Random forest can be represented as the aggregation of the predicted output (ŷi) from
individual decision trees:

ŷi =
1
N

N

∑
k=1

fk(xi) (6)

In Equation (6), fk(xi) is the prediction of the k-th decision tree for the i-th sample and N
represents the number of decision trees in the forest.

To further increase the randomization and variety of the trees, we evaluated a random
subset of features for splitting at each decision tree node. The risk of overfitting is miti-
gated, and tree decorrelation is improved by combining bootstrapped samples and feature
randomization. Each tree in the forest makes its own classification or regression during
prediction, and the final output is decided by majority vote (classification) or the average
(regression) [49]. Due to its effectiveness in many machine learning applications, random

Future Internet 2024, 16, 139 8 of 20

forest is frequently employed as an ensemble technique to improve predicted accuracy,
resilience, and generalization.

3.1.7. k-Nearest Neighbors (KNN) Classifier

The k-nearest neighbors (KNN) classifier is a non-parametric and instance-based
machine learning technique used for classification and regression. It is based on the idea of
similarities between features. In KNN, each data point is assigned a category based on the
classification of its k-nearest neighbors, where the user selects k as a hyper-parameter. The
predicted class for a new data point can be determined by the majority class among the
k-nearest neighbors, as expressed in Equation (7):

ŷ = argmaxc

k

∑
i=1

I(yi = c) (7)

where c shows each class label and the predicted class is represented by ŷ. Therefore, yi
denotes the class label of the i-th nearest neighbor. In this formula, I(·) is the indicator
function, which returns 1 if the condition inside is true and 0 otherwise.

In the study, we conducted a comparative analysis and determined that using five
neighbors (the optimal value of k) is appropriate. The algorithm determines the distance of
a new data point from the rest of the dataset, usually using the Euclidean distance metric,
to decide its classification. It picks the most frequent label among the k-nearest data points
for classification tasks, and for regression tasks, it takes the mean of the selected points.
The algorithm’s performance is highly dependent on the value of k; smaller values make it
vulnerable to local noise, while larger values can lead to over-smoothing of the decision
border [50]. KNN is computationally efficient during training, but its prediction method
can be time-consuming, particularly when working with large datasets, due to the need to
calculate distances to all data points.

3.1.8. Logistic Regression (LR) Classifier

Logistic Regression (LR) is a popular technique in supervised machine learning,
primarily used for binary classification tasks. It can be adapted to handle multi-class
classification as well. Unlike a true regression technique, logistic regression employs the
logistic (sigmoid) function to represent the likelihood of a binary outcome, such as 0 or
1, as a function of one or more predictor variables. The logistic function converts a linear
combination of predictor variables into a probability score between 0 and 1, making it a
useful tool for classification [51]. The logistic regression model estimates each predictor’s
impact on the log odds of the binary outcome, and the coefficients are optimized during
the training process to improve the model’s performance. Logistic regression employs a
threshold, typically 0.5, to categorize data points. Values above the threshold are assigned
to one class, while those below the threshold are assigned to the other class.

3.2. Deep Learning Techniques

Since we are working with the temporal (time-dependent) dataset for anomaly detec-
tion, we also looked into deep learning techniques (neural networks with deep structures)
and applied two recurrent neural network (RNN) techniques named Long Short-term
Memory (LSTM) and the Gated Recurrent Unit (GRU) model, which are described below.

3.2.1. Long Short-Term Memory (LSTM) Model

Long Short-term Memory (LSTM) is a type of recurrent neural network architecture
that has been designed to solve the vanishing gradient problem. It can effectively capture
long-range dependencies in sequential data. LSTMs are composed of memory cells and a
network of gates that regulate the flow of information. Each LSTM cell maintains a hidden
state, which can capture and store information over extended sequences. It also has a cell
state, which selectively retains or forgets information. The gates in an LSTM, namely the

Future Internet 2024, 16, 139 9 of 20

forget gate, input gate, and output gate, control the flow of data through mathematical
operations such as elementwise multiplication and addition [52]. Figure 2 presents the base
structure of LSTM. The constituting gates enable LSTMs to learn and remember patterns in
sequential data, making them particularly well suited for tasks such as natural language
processing (NLP), speech recognition, and time series prediction.

Figure 2. The base architecture of the GRU is shown on the left side of the figure, and the LSTM is
shown on the right side of the figure. In this figure, the input data at time step t are denoted as xt, the
hidden states are shown with h, and the cell states are indicated by C.

LSTMs can capture complex temporal relationships and have been instrumental
in achieving state-of-the-art results in a wide range of sequence modeling tasks. The
architecture (and layers) of our used LSTM model is shown in Figure 3.

Figure 3. Architecture of LSTM and GRU models.

3.2.2. Gated Recurrent Unit (GRU) Model

The Gated Recurrent Unit (GRU) is another type of recurrent neural network (RNN)
architecture designed to process sequential data. It addresses the issue of vanishing gradi-
ents commonly found in traditional RNNs. The GRU cell comprises several components,
including a reset gate and an update gate. These components work together to regulate the
flow of information within the cell. The reset gate determines which information from the
prior hidden state should be reset or forgotten, while the update gate controls the extent
the new input should impact the updating process of the hidden state. By combining
these gates, GRU cells can selectively update their hidden states, allowing them to capture
long-term dependencies in sequential data [48]. Figure 2 presents the base structure of the
GRU. In comparison to other RNN versions like the LSTM, the GRU’s design is simpler
due to its ability to update the hidden state quickly without the use of a dedicated memory
unit (Long Short-term Memory). Since the GRU is so effective at modeling long-term

Future Internet 2024, 16, 139 10 of 20

dependencies, it is frequently used for tasks like NLP, speech recognition, and time series
analysis. The architecture of our used GRU model is shown in Figure 3.

For anomaly detection, we employed models based on both the LSTM and GRU,
which share the same underlying architecture. We employed a straightforward design
consisting of two LSTM/GRU layers, each comprising a pair of LSTM/GRUs units.

3.3. Dataset

Within the scope of our research, we made use of a real-world dataset known as
activity recognition using ambient sensing (ARAS https://www.cmpe.boun.edu.tr/aras/,
accessed on 19 April 2024). The dataset consists of data recorded by twenty binary sensors
strategically positioned in various locations across a two-resident residence. Each second,
data were captured from two homes, called House A and House B, with two people each
for thirty days. The creator labels the data that are recorded at each second based on the
activity of both people in the house. On the basis of the readings obtained from the sensors,
a total of 27 activities were assigned to both of the occupants. Because the activity of one
resident is affected by the activity of the other resident and both cannot activate the same
sensor at the same time, we took into account the sensor readings in addition to the activity
of one resident to determine whether other resident’s activities were abnormal.

Abnormal activity is defined as any event that triggers an unrelated sensor. For
instance, if someone is outside the home, but a sensor inside the home is activated, it is
considered abnormal. The various types of activities and sensor placements are detailed
in Table 2. In each house, a total of 2,592,000 normal activities for both residents were
recorded. Since the dataset does not contain any anomalies, we created 50,000 anomalies
https://github.com/Rahman-Motiur/Anomaly-Detection-in-Smart-Home, accessed on
19 April 2024, by considering all possible combinations of sensor values that may lead
to anomalies.

Table 2. Dataset description. This table includes the placement of sensors (20 different locations in
the home) and the list of activities that were evaluated.

Activity Sensor Placements

Other Wardrobe
Going Out Convertible Couch (Used as Bed for Resident 2)

Preparing Breakfast TV Receiver
Having Breakfast Couch
Preparing Lunch Couch

Having Lunch Chair
Preparing Dinner Chair

Having Dinner Fridge
Washing Dishes Kitchen Drawer
Having Snack Wardrobe

Sleeping Bathroom Cabinet
Watching TV House Door

Studying Bathroom Door
Having Shower Shower Cabinet Door

Toileting Hall
Napping Kitchen

Using Internet Tap
Reading Book Water Closet

Laundry Kitchen
Shaving Bed

Brushing Teeth
Talking on the Phone

Listening to Music
Cleaning

Having Conversation
Having Guest

Changing Clothes

https://www.cmpe.boun.edu.tr/aras/
https://github.com/Rahman-Motiur/Anomaly-Detection-in-Smart-Home

Future Internet 2024, 16, 139 11 of 20

3.4. Experiments

In our study, we conducted thorough experiments to report on the performance of
machine learning and deep learning classifiers in anomaly detection under different circum-
stances. All the models’ hyper-parameters are presented in Table 3. For the experiments,
we split the dataset into training and test sets using different ratios, such as 80:20, 70:30,
and 60:40, and used 5-fold cross-validation to determine the comparative performance of
the models. As the number of anomalies is smaller than the normal activities, we used
stratified splitting to maintain the balance between the classes in both the training and
testing sets. We also used stratified splitting in the k-fold cross-validation to ensure class
balance in each fold. We implemented early stopping by monitoring the training loss in
order to prevent overfitting of the models.

Table 3. Model hyper-parameters.

Models Hyper-Parameters

Decision Tree Criterion: Gini
Random Forest Default Parameters

Gaussian Naïve Bayes No Hyper-parameters
LGBM Classifier Default Parameters

Support Vector Machine Kernel: RBF, γ = 0.001, C = 100
Logistic Regression Default Parameters

k-Nearest Neighbors Number of Neighbors: 5
Gradient Boosting Classifier Default Parameters

LSTM Sequence Length: 1,
Hidden Dimension: 64,
Number of Layers: 2,

Optimizer: Adam,
Loss Function: Cross-Entropy Loss,

Batch Size: 32,
Epoch: 100

GRU Input Size: 22,
Hidden Size: 64,

Number of Layers: 2,
Optimizer: Adam,

Loss Function: Cross-Entropy Loss,
Batch Size: 32,

Epoch: 100

3.5. Computing Platform

Our experiments were conducted on a cluster server consisting of 4 nodes, each with
an NVIDIA A30 Tensor Core GPU, 64 cores, 512 GB of memory, and one A30 GPU (24 GB)
per node. We used PyTorch 1.13.1 and CUDA tools 11.2 to implement the models and
conduct the experiments.

3.6. Evaluation

The performance of the applied classifiers over the ARAS dataset was measured by
utilizing several metrics including the accuracy, precision, recall, F-1 score, macro average
F-1, and weighted average F-1, presented in Equations (8)–(13). The value ranges of these
metrics are between between 0 and 1, with 1 indicating the best performance. As the dataset
is slightly imbalanced, we used the macro average F-1 and weighted average F-1 to ensure
reliable performance comparison. The description of each metric and its formula is as follows:
Accuracy: For the accuracy, we measured the proportion of correctly classified predictions
among the total number of predictions.

Accuracy =
TP + TN

TP + FN + TN + FP
(8)

Future Internet 2024, 16, 139 12 of 20

where TP refers to the number of true positives, TN refers to the number of true nega-
tives, FP represents the number of false positives, and FN denotes the number of false
negatives. These measures refer to the actual number of instances a classifier model has
correctly (referring to true) or incorrectly (falsely) predicted in the positive or negative
class (where positive and negative in this context refer to being or not being in a defined
class, respectively).
Precision: Precision measures the proportion of instances that are correctly classified as
positive (TP) among all positive predictions made.

Precision =
TP

TP + FP
(9)

Recall: This score measures the proportion of true positive predictions among all actual
positive instances, whether they are correctly classified as positive or incorrectly classified
as negative (FN). Recall is, thus, calculated as the number of true positive predictions
divided by the sum of true positive and false negative predictions.

Recall =
TP

TP + FN
(10)

F-1 score: The F-1 score is the harmonic mean of the precision and recall.

F-1 =
2 × Precision × Recall

Precision + Recall
(11)

Macro average F-1: This score calculates the F-1 score for each class independently and then
takes the unweighted average of these scores. Unweighted average means that this score
will treat all the classes equally regardless of the number of instances they have.

Macro Average F-1 =
∑N

i=1 F-1 Scorei

N
(12)

Weighted average F-1: This score calculates the F-1 score for each class independently and
then takes the weighted average of these scores, weighted by the number of true instances
for each class. In this score, the classes with more instances will receive a higher weight in
the calculation.

Weighted Average F-1 =
N

∑
i=1

wi × F-1 Scorei (13)

In the above measures, TP, TN, FN, FP, N, and w denote the number of true positives, the
number of true negatives, the number of false negatives, the number of false positives, the
number of classes, and the weight assigned to each class, respectively.

4. Results and Discussion

Our study aims to perform in-depth experiments on ten machine learning and deep
learning models to detect anomalies in two-resident home activity. We applied these models
to data from two houses separately to see how different the training–test splitting ratios
and k-fold cross-validations affected their performance. We also conducted comparative
experiments to report the computational cost of these classifiers in processing time series
anomaly detection.

4.1. Performance on House A

In House A, two residents live together, and the activities of one resident are classified
based on the active presence of the other. Table 4 displays the performance of ten classi-
fiers on the ARAS dataset using five-fold cross-validation. The results indicate that the
Gated Recurrent Unit (GRU) model performed the best, followed by the random forest
model, while the Gaussian naïve Bayes model delivered the lowest performance when

Future Internet 2024, 16, 139 13 of 20

evaluated using the metrics. The performance of other classifiers listed in Table 4 is also not
poor, comparatively.

Table 4. Comparative performance of the ten applied machine learning and deep learning classifiers
on the House A data from the ARAS multi-resident dataset with 5-fold cross-validation. In the table,
an asterisk (*) indicates the overall best performance, (**) indicates the second-best performance, and
(+) indicates the worst performance.

Models Accuracy Precision Recall F-1 Score Macro Average F-1 Weighted Average F-1

Decision Tree 1.0 0.99 0.97 0.98 0.99 1.0
Gaussian Naïve Bayes + 0.96 0.33 0.96 0.49 0.73 0.97

Random Forest ** 1.0 0.99 0.98 0.99 0.99 1.0
LGBM 1.0 0.99 0.96 0.98 0.99 1.0

Support Vector Machine 1.0 0.99 0.96 0.98 0.97 0.99
Logistic Regression 1.0 0.94 0.90 0.92 0.96 1.0

k-Nearest Neighbors 0.99 0.98 0.84 0.90 0.89 0.98
Gradient Boosting Machine 1.0 0.98 0.87 0.92 0.96 1.0

LSTM Technique 1.0 0.99 0.97 0.98 0.98 1.0
GRU Technique * 1.0 0.99 0.99 0.99 0.99 1.0

We evaluated the performance of various models using the House A data in different
splitting ratios (80:20, 70:30, and 60:40) for training and testing. The results of the applied
models are shown in Figure 4. The figure indicates that, for the most part, the performance of
the same classifiers did not vary significantly across different splitting ratios. Figure 4c–e show
that the Gaussian naïve Bayes (GNB) and KNN classifiers performed differently in terms of
the recall, macro F-1, and weighted F-1 scores for different splitting ratios. The performance
of the other classifiers remained consistent across different splitting ratios in regard to most of
the metrics, suggesting that splitting ratios do not significantly impact performance. However,
there was a significant difference in performance among the classifiers.

(a) (b)

Figure 4. Cont.

Future Internet 2024, 16, 139 14 of 20

(c) (d)

(e) (f)

Figure 4. The figures presented here demonstrate the relative performance of various models on the
House A data from the ARAS dataset. The sub-figures (a–f) display the accuracy, precision, recall,
F-1, macro F-1, and weighted F-1 scores, respectively, obtained by applying ten machine learning
and deep learning models at different splitting ratios for the training and testing sets. These ratios
include 80:20, 70:30, and 60:40 for training and testing.

4.2. Performance on House B

In addition, we conducted comparative experiments on the House B data from the
ARAS multi-resident activity dataset. The models were evaluated using five-fold cross-
validation, and their performance is presented in Table 5. As shown in the table, the Gated
Recurrent Unit (GRU) achieved the highest performance on House B, followed by the
decision tree (DT), while the Gaussian naïve Bayes (GNB) had the lowest performance.
These results are similar to those observed for House A.

To gather more empirical information, we analyzed the impacts of different training–test
splitting ratios on the House B data from the ARAS dataset. Our experiments yielded
comparative results, which we present in Figure 5. Similar to our findings for House A, we
observed that the GNB and KNN classifiers exhibited varying levels of performance in terms
of the recall, macro F-1, and weighted F-1 scores for different splitting ratios. On the other
hand, the remaining classifiers displayed more consistent performance across different metrics.

Future Internet 2024, 16, 139 15 of 20

Table 5. This report presents a comparison of the performance of ten machine learning and deep
learning classifiers applied to the House B data from the ARAS multi-resident dataset. The performance
evaluation was conducted using 5-fold cross-validation. In the table, an asterisk (*) indicates the overall
best performance, (**) indicates the second-best performance, and (+) indicates the worst performance.

Models Accuracy Precision Recall F-1 Score Macro Average F-1 Weighted Average F-1

Decision Tree ** 1.0 0.98 0.98 0.98 0.99 1.0
Gaussian Naïve Bayes + 0.95 0.35 0.94 0.49 0.74 0.96

Random Forest 0.99 0.99 0.96 0.98 0.98 1.0
LGBM 1.0 0.97 0.96 0.98 0.98 1.0

Support Vector Machine 1.0 0.99 0.95 0.97 0.95 0.99
Logistic Regression 1.0 0.93 0.92 0.91 0.97 1.0

k-Nearest Neighbors 0.99 0.97 0.85 0.90 0.89 0.98
Gradient Boosting Machine 1.0 0.97 0.86 0.93 0.95 1.0

LSTM 1.0 0.98 0.97 0.98 0.98 1.0
GRU Technique * 1.0 0.99 0.99 0.99 0.99 1.0

(a) (b)

(c) (d)

Figure 5. Cont.

Future Internet 2024, 16, 139 16 of 20

(e) (f)

Figure 5. The figures presented here demonstrate the relative performance of various models on the
House B data from the ARAS dataset. The sub-figures (a–f) display the accuracy, precision, recall, F-1,
macro F-1, and weighted F-1 scores, respectively, obtained by applying ten machine learning and
deep learning models at different splitting ratios for training and testing sets. These ratios include
80:20, 70:30, and 60:40 for training and testing.

4.3. Computational Cost Analysis

As part of our study, we examined the computational cost of each classifier on the
ARAS multi-resident activity dataset. We conducted training and testing to determine
the amount of time each classifier required to complete both tasks. Figure 6 displays
the time taken by each classifier to finish training and testing. The chart indicates that
the LSTM took the longest time, followed by the GRU, to accomplish the training and
validation necessary to achieve the same level of performance as the other classifiers. In
contrast, the GNB classifier required the least amount of time to complete the training and
testing process.

Figure 6. Comparative analysis of the run time of different classifiers from training to testing. The
run time is computed in seconds.

The above discussion shows that the GRU-based model identified anomalies more
precisely than the other classifiers, although it had the second-highest computational cost.
The reason behind this is that the human activity data are temporal, and one activity is
dependent on the other activities that happened in the past. So, the information from past

Future Internet 2024, 16, 139 17 of 20

activities is needed to decide the present activities. The working approach of the GRU
model is consistent with the requirement of accessing the information from the past during
training and testing. That is why the GRU-based model outperformed the other models in
terms of the overall accuracy to identify anomalies in human activities.

5. Conclusions and Future Directions

In our study, we utilized various machine learning and deep learning models to
identify anomalies in human activities. Since the ARAS multi-resident activity dataset
only includes normal activities, we generated 50,000 anomalies by considering all possible
unusual sensor combinations. We took into account that the activities of one resident
directly influence the activities of the other resident and, therefore, used one resident’s
activity as the input when identifying anomalies in the other resident’s activities. To
evaluate the performance of the applied classifiers, we examined the effects of five-fold
cross-validations and different splitting ratios. Our findings revealed that the Gated
Recurrent Unit (GRU) provided the highest performance results, followed by the decision
tree (DT), while Gaussian naïve Bayes (GNB) yielded the lowest performance results. We
also discovered that the splitting ratios of 80:20, 70:30, and 60:40 did not significantly impact
performance, except for the k-nearest neighbor (KNN) and GNB classifiers. Additionally,
we investigated the computational costs of all applied classifiers from training to prediction.
Our findings showed that the Long Short-term Memory (LSTM)-based model took the
longest time, followed by the GRU, while the GNB classifier took the least. The study
provides a comprehensive guide for researchers, including performance and computational
costs, to compare machine learning and deep learning classifiers for anomaly detection in
human activities.

Our findings can provide valuable insights for future researchers in anomaly detection
of human activities. Our analysis revealed performance differences among classifiers,
indicating that future studies should focus on optimizing models or exploring alternative
architectures to address our limitations. For certain uses, the decision tree (DT) and Gaus-
sian naïve Bayes (GNB) classifiers can be made better, or new models can be devised that
perform better than the Gated Recurrent Unit (GRU). Our paper also investigates how data
splitting ratios affect classifiers such as k-nearest neighbor (KNN) and GNB, which could
lead to optimal data-partitioning algorithms. Researchers can optimize model training
and prediction based on the computational costs of classifiers. Additionally, exploring
ways to reduce the time complexity of the LSTM and GRU models could be beneficial.
Further studies can examine the trade-offs between model performance and computational
efficiency to help practitioners select the most suitable model for their requirements. Our
future objectives include improving anomaly-generation methods, refining existing clas-
sifiers, exploring alternative architectures, and optimizing computational costs. These
efforts will contribute to developing robust and efficient anomaly-detection systems for
human activities.

Author Contributions: Conceptualization, M.M.R., D.G. and S.B.; methodology, M.M.R., D.G. and
S.B.; software, M.M.R., D.G. and S.S.; validation, S.B. and M.F.; formal analysis, S.B. and M.F.;
investigation, M.M.R., D.G. and S.B.; resources, D.G., S.B. and M.F.; data curation, M.M.R. and S.S.;
writing—original draft preparation, M.M.R. and D.G.; writing—review and editing, S.B. and M.F.;
visualization, D.G., S.B., S.S. and M.F.; supervision, S.B. and M.F.; project administration, S.B. and
M.F. All authors have read and agreed to the final version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: This research investigated activity recognition using the ambient
sensing (ARAS) dataset, which is available at: https://www.cmpe.boun.edu.tr/aras/, accessed on
1 March 2024. Moreover, the anomalies we created are available at: https://github.com/Rahman-
Motiur/Anomaly-Detection-in-Smart-Home, accessed on 1 March 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.cmpe.boun.edu.tr/aras/
https://github.com/Rahman-Motiur/Anomaly-Detection-in-Smart-Home
https://github.com/Rahman-Motiur/Anomaly-Detection-in-Smart-Home

Future Internet 2024, 16, 139 18 of 20

References
1. Bakar, U.A.B.U.A.; Ghayvat, H.; Hasanm, S.F.; Mukhopadhyay, S.C. Activity and Anomaly Detection in Smart Home: A Survey;

Springer International Publishing: Cham, Switzerland, 2016; Volume 16, pp. 191–220. [CrossRef]
2. Ramapatruni, S.; Narayanan, S.N.; Mittal, S.; Joshi, A.; Joshi, K. Anomaly Detection Models for Smart Home Security. In

Proceedings of the 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference
on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS),
Washington, DC, USA, 27–29 May 2019 ; pp. 19–24. [CrossRef]

3. Rahim, A.; Zhong, Y.; Ahmad, T.; Ahmad, S.; Pławiak, P.; Hammad, M. Enhancing Smart Home Security: Anomaly Detection and
Face Recognition in Smart Home IoT Devices Using Logit-Boosted CNN Models. Sensors 2023, 23, 6979. [CrossRef] [PubMed]

4. Alghayadh, F.; Debnath, D. A Hybrid Intrusion Detection System for Smart Home Security Based on Machine Learning and User
Behavior. Adv. Internet Things 2021, 11, 10–25. [CrossRef]

5. Malaisé, A.; Maurice, P.; Colas, F.; Charpillet, F.; Ivaldi, S. Activity Recognition with Multiple Wearable Sensors for Industrial
Applications. In Proceedings of the ACHI 2018—Eleventh International Conference on Advances in Computer-Human
Interactions, Rome, Italy, 25–29 March 2018.

6. Howedi, A.; Lotfi, A.; Pourabdollah, A. An Entropy-Based Approach for Anomaly Detection in Activities of Daily Living in the
Presence of a Visitor. Entropy 2020, 22, 845. [CrossRef] [PubMed]

7. Alemdar, H.; Ertan, H.; Incel, O.D.; Ersoy, C. ARAS human activity datasets in multiple homes with multiple residents. In
Proceedings of the 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops,
Venice, Italy, 5–8 May 2013; pp. 232–235.

8. Han, S.; Wu, Q.; Yang, Y. Machine learning for Internet of things anomaly detection under low-quality data. Int. J. Distrib. Sens.
Netw. 2022, 18, 15501329221133765. [CrossRef]

9. Liang, J.M.; Chung, P.L.; Ye, Y.J.; Mishra, S. Applying Machine Learning Technologies Based on Historical Activity Features for
Multi-Resident Activity Recognition. Sensors 2021, 21, 2520. [CrossRef]

10. Jakkula, V.; Cook, D.J. Anomaly detection using temporal data mining in a smart home environment. Methods Inf. Med. 2008,
47, 70–75. [CrossRef]

11. Zamani, S.; Talebi, H.; Stevens, G. Time Series Anomaly Detection in Smart Homes: A Deep Learning Approach. arXiv 2023,
arXiv:2302.14781. https://doi.org/10.48550/arXiv.2302.14781.

12. Priyadarshini, I.; Alkhayyat, A.; Gehlot, A.; Kumar, R. Time series analysis and anomaly detection for trustworthy smart homes.
Comput. Electr. Eng. 2022, 102, 108193. [CrossRef]

13. Hsu, K.C.; Chiang, Y.T.; Lin, G.Y.; Lu, C.H.; Hsu, J.Y.J.; Fu, L.C. Strategies for Inference Mechanism of Conditional Random
Fields for Multiple-Resident Activity Recognition in a Smart Home. In Trends in Applied Intelligent Systems; García-Pedrajas, N.,
Herrera, F., Fyfe, C., Benítez, J.M., Ali, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 417–426. [CrossRef]

14. Tran, S.N.; Ngo, T.S.; Zhang, Q.; Karunanithi, M. Mixed-dependency models for multi-resident activity recognition in smart
homes. Multimed. Tools Appl. 2020, 79, 23445–23460. [CrossRef]

15. Gupta, D.; Gupta, M.; Bhatt, S.; Tosun, A.S. Detecting Anomalous User Behavior in Remote Patient Monitoring. In Proceedings
of the 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA,
10–12 August 2021; pp. 33–40. [CrossRef]

16. Jiang, C.; Fu, C.; Zhao, Z.; Du, X. Effective Anomaly Detection in Smart Home by Integrating Event Time Intervals. Procedia
Comput. Sci. 2022, 210, 53–60. [CrossRef]

17. Hao, J.; Bouzouane, A.; Gaboury, S. Recognizing multi-resident activities in non-intrusive sensor-based smart homes by formal
concept analysis. Neurocomputing 2018, 318, 75–89. [CrossRef]

18. Panja, S.; Yadav, K.; Nag, A. Anomaly Detection at the IoT Edge in IoT-Based Smart Home Environment Using Deep Learning. In
Proceedings of the International Conference on Advanced Computing Applications, Singapore, 4–5 March 2022; Mandal, J.K.,
Buyya, R., De, D., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2022; pp. 119–125. [CrossRef]

19. Gupta, D.; Kayode, O.; Bhatt, S.; Gupta, M.; Tosun, A.S. Hierarchical Federated Learning based Anomaly Detection using
Digital Twins for Smart Healthcare. In Proceedings of the 2021 IEEE 7th International Conference on Collaboration and Internet
Computing (CIC), Atlanta, GA, USA, 13–15 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 16–25. [CrossRef]

20. Gupta, D.; Moni, S.S.; Tosun, A.S. Integration of Digital Twin and Federated Learning for Securing Vehicular Internet of Things.
In Proceedings of the 2023 International Conference on Research in Adaptive and Convergent Systems, Gdansk, Poland, 6–10
August 2023; pp. 1–8.

21. Aversano, L.; Bernardi, M.L.; Cimitile, M.; Pecori, R.; Veltri, L. Effective Anomaly Detection Using Deep Learning in IoT Systems.
Wirel. Commun. Mob. Comput. 2021, 2021, e9054336. [CrossRef]

22. Abusitta, A.; de Carvalho, G.H.S.; Wahab, O.A.; Halabi, T.; Fung, B.C.M.; Mamoori, S.A. Deep learning-enabled anomaly
detection for IoT systems. Internet Things 2023, 21, 100656. [CrossRef]

23. Li, G.; Jung, J.J. Deep learning for anomaly detection in multivariate time series: Approaches, applications, and challenges. Inf.
Fusion 2023, 91, 93–102. [CrossRef]

24. Lawal, I.A.; Bano, S. Deep Human Activity Recognition With Localisation of Wearable Sensors. IEEE Access 2020, 8, 155060–155070.
[CrossRef]

http://doi.org/10.1007/978-3-319-21671-3_9
http://dx.doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00015
http://dx.doi.org/10.3390/s23156979
http://www.ncbi.nlm.nih.gov/pubmed/37571762
http://dx.doi.org/10.4236/ait.2021.111002
http://dx.doi.org/10.3390/e22080845
http://www.ncbi.nlm.nih.gov/pubmed/33286616
http://dx.doi.org/10.1177/15501329221133765
http://dx.doi.org/10.3390/s21072520
http://dx.doi.org/10.3414/ME9103
https://doi.org/10.48550/arXiv.2302.14781
http://dx.doi.org/10.1016/j.compeleceng.2022.108193
http://dx.doi.org/10.1007/978-3-642-13022-9_42
http://dx.doi.org/10.1007/s11042-020-09093-0
http://dx.doi.org/10.1109/IRI51335.2021.00011
http://dx.doi.org/10.1016/j.procs.2022.10.119
http://dx.doi.org/10.1016/j.neucom.2018.08.033
http://dx.doi.org/10.1007/978-981-16-5207-3_11
http://dx.doi.org/10.1109/CIC52973.2021.00013
http://dx.doi.org/10.1155/2021/9054336
http://dx.doi.org/10.1016/j.iot.2022.100656
http://dx.doi.org/10.1016/j.inffus.2022.10.008
http://dx.doi.org/10.1109/ACCESS.2020.3017681

Future Internet 2024, 16, 139 19 of 20

25. Ahmad, Z.; Shahid Khan, A.; Nisar, K.; Haider, I.; Hassan, R.; Haque, M.R.; Tarmizi, S.; Rodrigues, J.J.P.C. Anomaly Detection
Using Deep Neural Network for IoT Architecture. Appl. Sci. 2021, 11, 7050. [CrossRef]

26. Lara, A.; Mayor, V.; Estepa, R.; Estepa, A.; Díaz-Verdejo, J.E. Smart home anomaly-based IDS: Architecture proposal and case
study. Internet Things 2023, 22, 100773. [CrossRef]

27. S, M.; M, R. MUD enabled deep learning framework for anomaly detection in IoT integrated smart building. e-Prime—Adv. Electr.
Eng. Electron. Energy 2023, 5, 100186. [CrossRef]

28. Sohail, S.; Fan, Z.; Gu, X.; Sabrina, F. Multi-tiered Artificial Neural Networks model for intrusion detection in smart homes. Intell.
Syst. Appl. 2022, 16, 200152. [CrossRef]

29. Araya, J.I.I.; Rifà-Pous, H. Anomaly-based cyberattacks detection for smart homes: A systematic literature review. Internet Things
2023, 22, 100792. [CrossRef]

30. Du, W.; Li, A.; Zhou, P.; Niu, B.; Wu, D. PrivacyEye: A Privacy-Preserving and Computationally Efficient Deep Learning-Based
Mobile Video Analytics System. IEEE Trans. Mob. Comput. 2022, 21, 3263–3279. [CrossRef]

31. Wang, L.; Huynh, D.Q.; Mansour, M.R. Loss switching fusion with similarity search for video classification. In Proceedings of the
2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; IEEE: Piscataway, JN,
USA, 2019; pp. 974–978.

32. Zhang, X.; Yang, S.; Zhang, J.; Zhang, W. Video anomaly detection and localization using motion-field shape description and
homogeneity testing. Pattern Recognit. 2020, 105, 107394. [CrossRef]

33. Yang, Y.; Angelini, F.; Naqvi, S.M. Pose-driven human activity anomaly detection in a CCTV-like environment. IET Image Process.
2023, 17, 674–686. [CrossRef]

34. Ali, A.; Samara, W.; Alhaddad, D.; Ware, A.; Saraereh, O.A. Human activity and motion pattern recognition within indoor
environment using convolutional neural networks clustering and naive bayes classification algorithms. Sensors 2022, 22, 1016.
[CrossRef] [PubMed]

35. Kumar, M.; Patel, A.K.; Biswas, M.; Shitharth, S. Attention-based bidirectional-long short-term memory for abnormal human
activity detection. Sci. Rep. 2023, 13, 14442. [CrossRef] [PubMed]

36. Fahad, L.G.; Tahir, S.F. Activity recognition and anomaly detection in smart homes. Neurocomputing 2021, 423, 362–372. [CrossRef]
37. Jakkula, V.R.; Crandall, A.S.; Cook, D.J. Enhancing Anomaly Detection Using Temporal Pattern Discovery. In Advanced Intelligent

Environments; Kameas, A.D., Callagan, V., Hagras, H., Weber, M., Minker, W., Eds.; Springer: Boston, MA, USA, 2009; pp. 175–194.
[CrossRef]

38. Jadidi, Z.; Pal, S.; K, N.N.; Selvakkumar, A.; Chang, C.C.; Beheshti, M.; Jolfaei, A. Security of Machine Learning-Based Anomaly
Detection in Cyber Physical Systems. arXiv 2022, arXiv:2206.05678. [CrossRef]

39. Vávra, J.; Hromada, M.; Lukáš, L.; Dworzecki, J. Adaptive anomaly detection system based on machine learning algorithms in an
industrial control environment. Int. J. Crit. Infrastruct. Prot. 2021, 34, 100446. [CrossRef]

40. Stoian, N. Machine Learning for Anomaly Detection in IoT Networks: Malware Analysis on the IoT-23 Data Set. Bachelor’s
Thesis, University of Twente, Enschede, The Netherlands, 2020.

41. Bakumenko, A.; Elragal, A. Detecting Anomalies in Financial Data Using Machine Learning Algorithms. Systems 2022, 10, 130.
[CrossRef]

42. Schlegl, T.; Schlegl, S.; West, N.; Deuse, J. Scalable anomaly detection in manufacturing systems using an interpretable deep
learning approach. Procedia CIRP 2021, 104, 1547–1552. [CrossRef]

43. Dash, S. Decision Trees Explained—Entropy, Information Gain, Gini Index, CCP Pruning. Towards Data Sci. 2022. Available
online: https://towardsdatascience.com/decision-trees-explained-entropy-information-gain-gini-index-ccp-pruning-4d780
70db36c (accessed on 1 March 2024).

44. Li, M. Application of CART decision tree combined with PCA algorithm in intrusion detection. In Proceedings of the 2017 8th
IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 24–26 November 2017;
pp. 38–41. [CrossRef]

45. Lawrence Berkeley National Laboratory; United States Department of Energy Office of Science; United States Department of
Energy Office of Scientific and Technical Information. A One-Class Support Vector Machine Calibration Method for Time Series Change
Point Detection; United States Department of Energy Office of Science: Washington, DC, USA, 2019.

46. Pramila, P.V.; Gayathri, M. Analysis of Accuracy in Anomaly Detection of Intrusion Detection System Using Naïve Bayes
Algorithm Compared Over Gaussian Model. ECS Trans. 2022, 107, 13977–13991. [CrossRef]

47. Anjum, A.; Agbaje, P.; Hounsinou, S.; Olufowobi, H. In-Vehicle Network Anomaly Detection Using Extreme Gradient Boosting
Machine. In Proceedings of the 2022 11th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro,
7–10 June 2022; IEEE: Piscataway, NJ, USA, 2022. [CrossRef]

48. Sarıkaya, A.; Günel Kılıç, B.; Demirci, M. GRU-GBM: A combined intrusion detection model using LightGBM and gated recurrent
unit. Expert Syst. 2022, 39, e13067. [CrossRef]

49. Marteau, P.F. Random Partitioning Forest for Point-Wise and Collective Anomaly Detection-Application to Network Intrusion
Detection. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2157–2172. [CrossRef]

50. Saleh, A.I.; Talaat, F.M.; Labib, L.M. A hybrid intrusion detection system (HIDS) based on prioritized k-nearest neighbors and
optimized SVM classifiers. Artif. Intell. Rev. 2019, 51, 403–443. [CrossRef]

http://dx.doi.org/10.3390/app11157050
http://dx.doi.org/10.1016/j.iot.2023.100773
http://dx.doi.org/10.1016/j.prime.2023.100186
http://dx.doi.org/10.1016/j.iswa.2022.200152
http://dx.doi.org/10.1016/j.iot.2023.100792
http://dx.doi.org/10.1109/TMC.2021.3050458
http://dx.doi.org/10.1016/j.patcog.2020.107394
http://dx.doi.org/10.1049/ipr2.12664
http://dx.doi.org/10.3390/s22031016
http://www.ncbi.nlm.nih.gov/pubmed/35161763
http://dx.doi.org/10.1038/s41598-023-41231-0
http://www.ncbi.nlm.nih.gov/pubmed/37660111
http://dx.doi.org/10.1016/j.neucom.2020.10.102
http://dx.doi.org/10.1007/978-0-387-76485-6_8
https://doi.org/10.48550/arXiv.2206.05678
http://dx.doi.org/10.1016/j.ijcip.2021.100446
http://dx.doi.org/10.3390/systems10050130
http://dx.doi.org/10.1016/j.procir.2021.11.261
https://towardsdatascience.com/decision-trees-explained-entropy-information-gain-gini-index-ccp-pruning-4d78070db36c
https://towardsdatascience.com/decision-trees-explained-entropy-information-gain-gini-index-ccp-pruning-4d78070db36c
http://dx.doi.org/10.1109/ICSESS.2017.8342859
http://dx.doi.org/10.1149/10701.13977ecst
http://dx.doi.org/10.1109/MECO55406.2022.9797224
http://dx.doi.org/10.1111/exsy.13067
http://dx.doi.org/10.1109/TIFS.2021.3050605
http://dx.doi.org/10.1007/s10462-017-9567-1

Future Internet 2024, 16, 139 20 of 20

51. Palmieri, F. Network anomaly detection based on logistic regression of nonlinear chaotic invariants. J. Netw. Comput. Appl. 2019,
148, 102460. [CrossRef]

52. Poh, S.C.; Tan, Y.F.; Guo, X.; Cheong, S.N.; Ooi, C.P.; Tan, W.H. LSTM and HMM Comparison for Home Activity Anomaly
Detection. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC), Chengdu, China, 15–17 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1564–1568. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jnca.2019.102460
http://dx.doi.org/10.1109/ITNEC.2019.8729168

	Introduction and Motivation
	Background and Related Work
	Machine Learning-Based Human Activity Anomaly Detection
	Machine Learning-Based Anomaly Detection in Other Domains

	Analysis and Comparison of Machine Learning-Based Anomaly Detection
	Machine Learning Models
	Decision Tree (DT)
	Support Vector Machine (SVM)
	Naïve Bayes (NB) Classifier
	Gradient Boosting (GB) Classifier
	Light Gradient Boosting Machine (LGBM) Classifier
	Random Forest (RF) Classifier
	k-Nearest Neighbors (KNN) Classifier
	Logistic Regression (LR) Classifier

	Deep Learning Techniques
	Long Short-Term Memory (LSTM) Model
	Gated Recurrent Unit (GRU) Model

	Dataset
	Experiments
	Computing Platform
	Evaluation

	Results and Discussion
	Performance on House A
	Performance on House B
	Computational Cost Analysis

	Conclusions and Future Directions
	References

