
Future Internet 2012, 4, 1026-1036; doi:10.3390/fi4041026

future internet
ISSN 1999-5903

www.mdpi.com/journal/futureinternet
Article

Traceability in Model-Based Testing

Mathew George 1,2,*, Klaus-Peter Fischer-Hellmann 1,3, Martin Knahl 4, Udo Bleimann 1
and Shirley Atkinson 2

1 Aida Institute of Applied Informatics Darmstadt, University of Applied Sciences Darmstadt,
Haardtring 100, 64295 Darmstadt, Germany; E-Mail: udo.bleimann@h-da.de

2 Center for Security, Communications, and Network Research, University of Plymouth, Plymouth,
PL4 8AA, UK; E-Mail: shirley.atkinson@plymouth.ac.uk

3 Digamma Communications Consulting GmbH, Karlstr. 25, 64367 Mühltal, Germany;
E-Mail: k.p.fischer-hellmann@digamma.de

4 Furtwangen University of Applied Sciences, Gerwigstraße 1, 78120 Furtwangen, Germany;
E-Mail: knahl@hs-furtwangen.de

* Author to whom correspondence should be addressed; E-Mail: george.mathew@hotmail.com;
Tel.: +49-176-6307-0769.

Received: 8 October 2012; in revised form: 27 October 2012 / Accepted: 19 November 2012 /
Published: 26 November 2012

Abstract: The growing complexities of software and the demand for shorter time to
market are two important challenges that face today’s IT industry. These challenges
demand the increase of both productivity and quality of software. Model-based testing is a
promising technique for meeting these challenges. Traceability modeling is a key issue and
challenge in model-based testing. Relationships between the different models will help to
navigate from one model to another, and trace back to the respective requirements and the
design model when the test fails. In this paper, we present an approach for bridging the
gaps between the different models in model-based testing. We propose relation definition
markup language (RDML) for defining the relationships between models.

Keywords: model-based testing (MBT); requirements; design model; test model; traceability

OPEN ACCESS

Future Internet 2012, 4 1027

1. Introduction

Testing is an essential activity in software engineering. In the simplest terms, it amounts to
observing the execution of a software system to validate whether it behaves as intended and to identify
potential malfunctions [1]. Software testing constitutes about 40% to 60% of the development costs [2].
A major part of the testing effort is for specifying and running the tests, and these are usually
performed manually. Model-based testing is a promising technology to reduce the testing effort and
increase the test efficiency.

Automation of software development and software testing on the basis of executable models and
simulation promises significant reductions in fault-removal cost and development time. Utting et al. [3]
define model-based testing as a variant of testing that relies on explicit behavior models that encode
the intended behavior of a system, and possibly the behavior of its environment. According to
Bertolino [1], the major goal of model-based testing (MBT) is automatic generation of test artifacts
from models. MBT offers considerable promise in reducing the cost of test generation, increasing the
effectiveness of the tests, and shortening the testing effort [4].

The software life cycle starts with requirements capturing by the business analyst; these
requirements are used by the design analyst for designing the software architecture, and later both of
these are used for developing test models. Requirements specification, design models and test models
can be considered the integral parts of model-based testing. Defining relationships between models could
provide effective verification and analysis of the consistencies and dependencies between models. Study
has to be focused to bridge the gap by defining strong relationships between these models.

In this paper, we present an approach for defining relationships between the major constituents of
model-based testing. We discuss how these models can be defined and how to define the relationships
between these models, thus filling the gap between different phases of the software life cycle. This
paper is organized into an overview of the need for traceability between requirements model, design
model, and test model, related work, and the new approach.

2. The Need for Traceability in Model-Based Testing

The Institute of Electrical and Electronics Engineers (IEEE) defines traceability as the degree to which
relationships can be established between two or more products of the development process, especially
products having a predecessor–successor or master-subordinate relationship to one another [5]. Typically,
traceability relations denote satisfiability, dependency, evolution, and rationalization relations between
software artifacts [6]. Gotel and Finkelstein in [7] define traceability as the ability to describe and
follow the life of a requirement in both a forwards and backwards direction. Murray et al. refer to
traceability as the ability to identify requirements at different levels of abstraction and to show that
they have been implemented and tested [8].

The above definitions do not cover all aspects of traceability, and most of them focus on
requirements traceability. Since design models and test models also play a major role in model-based
testing, there is a need for defining the design model and test model relationship as well. The automation
of bidirectional traceability between requirements and test cases is a key aspect of MBT [9].
Bidirectional traceability is the ability to trace links between two parts of the software development

Future Internet 2012, 4 1028

process with respect to each other [9]. Dalal et al. [4] suggest that defects of a model can be minimized
by ensuring the traceability from requirements to the part of models.

Traceability is widely used in the software development life cycle and is an active research area in
software engineering [10]. Since tests are derived from models, the correctness of model and the
consistency of requirements are important. Therefore, there is a need to understand the following:

• What are the requirements?
• How to derive system design from the requirements model?
• How to derive tests from system design and the requirements model?
• How are they related?
• What is the impact on other models, when any of the models is changed?

Traceability between these models will help to understand the above questions. Traceability in
model-based testing helps to:

• Trace back to the respective requirements and design models when a test fails.
• Identify the problems in the design model and the inconsistencies in the requirements

elicitation and tests.
• Fills the gap between business analyst, system designer, and test developer.
• Specify the evolution of design model from requirements.
• Show the evolution of test models from requirements and design model.

3. Related Work

Traceability is a popular and an active research topic in software engineering [10]. Researchers
have proposed different ways for traceability, including information retrieval based on the similarity
between texts present in different software artifacts [11]. Another approach is using the hypertext
technology. Here, traceability is achieved by maintaining hypertext links between different software
artifacts [12]. Annotations with identifier tags are another traceability technique. During the modeling
phase, models are annotated with requirement identifier tags [13].

Traceability is also used in model-based testing tools. In MATERA [14], the requirements can be
linked to different parts of the UML-based (Unified Modeling Language) system specification, for
instance, to models or to model elements, to ensure requirements traceability throughout the process.
In MATERA, models are annotated with OCL. Bouquet et al. [13] propose an approach based on
annotating the model with requirements for traceability. The Leirios tool (Smarttesting) [15] is then
used for generating tests and test cases, and a traceability matrix is obtained after the test is executed.

All the above proposed approaches use requirements traceability. Since system models and test
models are also the major constituents, system model traceability and test model traceability is as
important as the requirements traceability. Our approach proposes a traceability technique that covers
requirements model, design model, and test model.

Future Internet 2012, 4 1029

4. Proposed Approach

Drawing upon the key motivation factors identified in Sections 2 and 3, in this section we describe
the proposed approaches for bridging the gap between the requirements model, design model, and the
test model. Figure 1 provides an overview of the relationship between the different models.

Figure 1. Overview of relationships.

Our approach starts from analyzing the informal requirements formulated in any natural language.
Natural language requirements will be formulated and structured into different use case scenarios
based on predefined templates. Usage scenarios will be used for creating design models. Design
models will be developed using appropriate UML diagrams. Each element in the use case scenario will
be connected to the corresponding design model items. From the use case model and design model, the
test model will be created. UML diagrams will be used for creating the test models. Executable tests
will be generated from the test model. Relationships between use case model (requirements model),
corresponding design model, test model and executable tests will be defined using our approach. The
main focus of this paper will be confined only in bridging the gap between these models by providing
efficient traceability; test generation from the test model is not in the scope of this paper. Therefore,
the approach will be completed by defining relationships between these models.

4.1. Defining Relationships between Models

Relationships between two models can be classified as “derived” and “referenced.”

4.1.1. Derived Relationship

By this relationship, the evolution of models and model elements from one phase to another is
represented. The design model is derived from the requirements model, so the evolution of the design
model and its model parts from requirements model and its model parts is defined as a derived

Future Internet 2012, 4 1030

relationship. Each part in the design model will have a derived relationship with the requirements
model. Similarly, test models derived from the requirements model and design model have a derived
relationship to the requirements model and design model. The relationship that shows the evolution of
a model or model parts from another model or a model part is referred to as a derived relationship.

4.1.2. Referenced Relationship

This relationship defines the backward relationship to the source elements. The relationship from
the design model to the requirements model is a referenced relationship.

4.2. Relation Definition Markup Language

In our approach, the relationship from one model to another is defined by exploiting XML
technologies. The relationship is formalized through a formal XML structure called RDML, whose
syntax is defined using the XML schema. RDML stands for relation definition markup language based
on an XML schema that comprises specific elements to define the relationship between models [16].
For each model, an “RDML” definition will be available that defines the relationship with other
models, the type of relationship, the relationship of each model part, etc. We propose the RDML
structure in order to express the derived and referenced relationship between the different models in a
formal manner.

Each model will have a separate RDML file (Figure 2), based on an XML schema. Each RDML file
will have an entry for the model, for instance, <Scenario>, <DesignModel>, <TestScenario>.
Relationship is represented by the element <Relationship> that will contain the <DerivedRelationship>
and <ReferencedRelationship> elements. <DerivedRelationship> element will have two subelements
referring to the derived models. For example, the requirements.RDML will contain two elements
<DesignModel> and <TestModel> within the <DerivedRelationship>. Each model part derived will be
denoted in the <DerivedRelationship>, both the source model part and the corresponding derived
model part will be grouped here. Figure 3a shows how the derived relationship is defined for each
model part to another model part.

Figure 2. RDML for each model.

Future Internet 2012, 4 1031

Similarly, the <ReferencedRelationship> element will have two subelements referring to the
derived models. For example, in the DesignModel, RDML will contain two elements
<RequirementsModel> and <TestModel> under the <ReferencedRelationship>. Figure 3b shows how
the referenced relationship is defined for each model part to another model part. A detailed view of
RDML is given in the later sections.

Figure 3. (a) requirements.RDML; (b) designmodel.RDML.

(a) (b)

Our approach starts with formulating the requirements, a scenario-based requirements elicitation. A
major advantage of scenarios is that they allow for an effective exploration of users’ problems and
goals [17]. Scenarios encourage designers to envision outcomes before attempting to specify
outcomes, thereby helping to make requirements more proactive in system development [18]. Our
scenario-based requirement elicitation comprises the following terminologies (see Table 1):

Table 1. Scenario based requirements—terminology.

Terminology Meaning
Scenario A group of predefined actions and actors for accomplishing a goal
Objective Objective or the main goal of the scenario

Actors Actors are players involved either in the scenario or in an action
Precondition Assumptions or conditions for achieving a particular goal
Postcondition State of the system after executing the scenario

Trigger A trigger is an interaction that starts the scenario. It could be either an action or a scenario
Action A set of operations performed by different actors to achieve a subgoal

Typically, a business analyst will identify different scenarios from the informal requirements
specification and is formally organized, so that the design analyst can derive the design models easily.
The main tasks during this phase are identifying the scenarios, the actors, and the activities involved in
the scenario. A formal scenario tree can be considered for organizing the scenario (see Figure 4). The
business analyst identifies different usage scenarios defined in the informal requirements and each

Future Internet 2012, 4 1032

usage scenario is further analyzed to find the different activities and actors. A scenario can contain any
number of actors and actions. Each action is further analyzed to find the actors involved in this action.
In the figure given below, scenarios are a collection of scenarios, which in turn is a collection of
different actors and actions.

Figure 4. A Tree view.

A scenario will have a unique id (scenario id) and source that points to a document where the
requirement has been specified. Actor and action will also have a unique id. Actor will contain the
necessary attributes and the action will contain the details of the action.

Our design model is derived from the structured requirements model defined above. Here, the
design analyst refines the requirements model by finding, analyzing, and defining the actors and
actions in different UML diagrams. From actors, appropriate classes are defined. Similarly, the actions
are also grouped as functions into suitable classes and are described in UML activity diagrams. The
main tasks involved in this phase are:

• Designing UML class diagrams from actors.
• Designing activity diagrams from the actions.

4.3. Defining the Relationship between Requirements Model and Design Model

Figure 3a is an example of a “requirements.RDML” file. Here the “Derived” element contains the
design model and the test model. The “DesignModel” element defines the evolution of class diagram
from actors and activity diagram from the actions in the requirements model. Similarly, the test model
contains the test scenarios derived from the requirements model.

Future Internet 2012, 4 1033

“Designmodel.RDML” contains the backward relationship to the requirements model defined in the
“Referenced” element. The derived relationship to the test model will be defined in the “Derived”
element. Figure 3b is an example of designmodel.RDML.

Defining the relationship will help to define the fine granular evolution of design models from the
requirements model. It will help to provide traceability during test generation and test execution, and
helps to find the issues and inconsistencies in the requirements model, design model, and test model.

4.4. Test Model

Our test model is derived from the structured requirements model and the design model described in
the above sections. Here, the test analyst refines the requirements model and the design model by
finding different test scenarios. Each test scenario will be associated with a scenario described in the
requirements model and the appropriate classes and activity diagrams in the design model. In this
phase, the test analyst will also identify the expected input, expected output of each test scenario,
actors and actions involved in the test scenario. How to model the test scenario using appropriate UML
diagrams is part of our ongoing research. From the test model the executable tests will be generated.

4.5. Defining the Relationship of Test Models and Executable Tests with Other Models

“Testmodel.RDML” represents the relationship of test models with the requirements model and the
design model. Derived relationships will contain the relationship between different parts of the test
model with the requirements model and the test model. Referenced relationships will contain the
backward relationship between test model and requirements model as well as design model.

TestModel.RDML file will have a main entry <TestScenario>. In the <TestScenario> element, the
relationship is represented by the element <Relationship> that will contain the <DerivedRelationship>
and <ReferencedRelationship> elements. The <DerivedRelationship> element will have two
subelements referring to the derived models. The <ReferencedRelationship> will contain the
relationship of the test model parts to the design model and requirements model. Similarly the
“Test.RDN” represents the relationship of executable tests with test model, design model and
requirements model.

5. Examples of RDML and Discussion

In this section, a “user log-in,” a functional requirement in an online library system, is represented
as an RDML expression. Here the functional requirements and the design model are represented (see
Figure 5).

Here, the functional requirement is classified into different use case scenarios. The “online login” is
taken as an example. In the functional requirements the “online login” scenario is identified, which
contains an actor “User”. This “User” has a relationship with a class “WebUser” in the design model.
An action identified in the scenario is the “VerifyUser” which has a relationship with the activities
“EnterUserInfo” and “VerifyUserInfo” in the design model. In this example, we can see that the
relationship between the two model/model parts is represented, which provides traceability. Entries in
the requirements.rdml and designmodel.rdml can be related to test functions in the test model.

Future Internet 2012, 4 1034

Figure 5. (a) requirements.RDML; (b) designmodel.RDML.

(a) (b)

6. Benefits and Novelty

Traceability approaches in model-based testing in the literature only provide requirements
traceability. None of the traceability approaches in model-based testing provides traceability between
requirements model, test model and executable tests. Our approach provides the way to manage the
link between the requirements model, design model, test model and the executable tests. Traceability
between the different model artifacts and model elements can be achieved through our approach. The
granularity of the traceability between model elements is another benefit of our approach. This
granularity will help to find the design model elements, test model elements and executable tests
associated with each requirement. Usage of RDML in test generation, and test generation from models
is another benefit of this approach. Usage of standard XML in our approach will help to understand the
concept easily. Since the models and tests are the integral parts of model-based testing, traceability
between these artifacts and elements are important for navigating from requirements to executable test.
This will help to find the coverage of requirements in test models and subsequent tests. Another benefit
of the approach is to find the impact analysis on design models, test models and tests, when a
requirement is changed. In the ongoing research we will undertake a case study for the proof of
concept and quantify the benefits of our approach. This concept is part of ongoing research on
model-based testing and the validation of this approach will be done as part of this research using
different case studies.

7. Conclusions and Future Work

This paper has proposed an approach for defining relationships between the requirements model,
design model, and test model and executable tests in a model-based testing approach. We have shown
how these models can be defined and how to define the relationship between these models, thus filling
the gap between different phases of the software life cycle. We have proposed a new formal way of
defining the relationship between models using RDML (relation definition markup language) that uses
standard XML technology. RDML helps to define the relationship between different models and parts

Future Internet 2012, 4 1035

of those models using a model-based testing approach. We have also classified and defined the
relationship between models as derived and referenced relationships. Our approach tries to bridge the
gap between the business analyst, system designer, and test analyst. Relationships between different
models will help professionals to navigate from one model to another and to trace back to the
respective requirements and the design model when system testing fails.

In our ongoing research, we will evaluate different modeling languages to define the scenarios
formally in the requirements model in conjunction with UML diagrams to define the test model from
the requirements model and design model. We will also provide traceability from each generated test
to its respective requirements model, design model, and test model using the RDML definition of each
model. A case study will be carried out to consider the efficiency and effectiveness of our approach.

References

1. Bertolino, A. Software testing research: Achievements, challenges, dreams. In Proceedings of
Future of Software Engineering (FOSE 07), Minneapolis, MN, USA, 23–25 May 2007.

2. Willcock, D. The ITEA D-MINT Project; Overview, Results and Lessons Learnt; Nokia Siemens
Networks: Espoo, Finland, 2011. Available online: http://www.model-based-testing.de/mbtuc11/
presentations/Keynote_Willcock_NSN_MBTUC2011.pdf (accessed on 19 November 2012).

3. Utting, M.; Pretchner, A.; Legeard, B. A Taxonomy of Model-Based Testing, a White Paper;
Technical Report 04/2006; Department of Computer Science, University of Waikato: Hamilton,
New Zealand, 2006.

4. Dalal, S.R.; Jain, A.; Karunanithi, N. Leaton, J.M.; Lott, C.M.; Patton, G.C.; Horowitz, B.M.
Model-based testing in practice. In Proceedings of 21st International Conference on Software
Engineering, Kaiserslautern, Germany, 16–19 June 1999.

5. IEEE Standards Software Engineering. IEEE Standard Glossary of Software Engineering
Terminology; IEEE Standard 610-1990; IEEE (The Institute of Electrical and Electronics
Engineers): New York, NY, USA, 1999.

6. Ramesh, B.; Jarke, M. Toward reference models for requirements traceability. IEEE Trans. Softw.
Eng. 2001, 27, 58–93.

7. Gotel, O.; Finkelstein, A. An analysis of the requirements traceability problem. In Proceedings of
the IEEE International Conference on Requirements Engineering (ICRE), Colorado Springs, CO,
USA, 18–24 April 1994.

8. Murray, L.M.; Griffiths, A.; Lindsay, P.A.; Strooper, P.A. Requirements traceability for
embedded software—An industry experience report. In Proceedings of the 6th IASTED
International Conference on Software Engineering and Applications, Cambridge, MA, USA, 4–6
November 2002.

9. Legeard, B. Model-based testing: A new paradigm for manual and automated functional testing.
Test. Exp. Mag. 2010, 9, 77–79.

10. Bashir, M.F.; Qadir, M.A. Traceability techniques: A critical study. In Proceedings of IEEE
Multitopic Conference (INMIC ’06), Islamabad, Pakistan, 23–24 December 2006.

Future Internet 2012, 4 1036

11. Oliveto, R. Traceability management meets information retrieval methods—Strengths and
limitations. In Proceedings of 12th European Conference on Software Maintenance and
Reengineering, Athens, Greece, 1–4 April 2008.

12. Ebner, G.; Kaindl, H. Tracing all around in reengineering. IEEE Softw. 2002, 19, 70–77.
13. Bouquet, F.; Jaffuel, E.; Legeard, B.; Peureux, F.; Utting, M. Requirements traceability in

automated test generation—Application to smart card software validation. In Proceedings of the
1st International Workshop on Advances in Model-Based Testing (A-MOST 05), New York, NY,
USA, 15–16 May 2005.

14. Abbors, F.; Backlund, A.; Truscan, D. MATERA—An integrated framework for model-based
testing. In Proceedings of 17th IEEE International Conference and Workshops on Engineering of
Computer Based Systems (ECBS), Oxford, UK, 22–26 March 2010.

15. Smarttesting Tool. Available online: http://www.smartesting.com (accessed on 19 November 2012).
16. George, M.; Fischer, K.P.; Knahl, M.H.; Bleimann, U.; Atkinson, S. RDML Definition; Internal

Report; Aida Institute of Applied Informatics Darmstadt: Darmstadt, Germany, 2011.
17. Sutcliffe, A. Scenario-based requirements engineering. In Proceedings of 11th IEEE International

Requirements Engineering Conference, Monterey Bay, CA, USA, 8–12 September 2003.
18. Carroll, J.M.; Rosson, M.B.; Chin, G.; Koenemann, J. Requirements development in scenario-based

design. IEEE Trans. Softw. Eng. 1998, 24, 1156–1170.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	1. Introduction
	2. The Need for Traceability in Model-Based Testing
	3. Related Work
	4. Proposed Approach
	4.1. Defining Relationships between Models
	4.1.1. Derived Relationship
	4.1.2. Referenced Relationship

	4.2. Relation Definition Markup Language
	4.3. Defining the Relationship between Requirements Model and Design Model
	4.4. Test Model
	4.5. Defining the Relationship of Test Models and Executable Tests with Other Models

	5. Examples of RDML and Discussion
	6. Benefits and Novelty
	7. Conclusions and Future Work

