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Abstract: This paper presents a systematic structure and a control strategy for the electric vehicle
charging station. The system uses a three-phase three-level neutral point clamped (NPC) rectifier to
drive multiple three-phase three-level NPC converters to provide electric energy for electric vehicles.
This topology can realize the single-phase AC mode, three-phase AC mode, and DC mode by adding
some switches to meet different charging requirements. In the case of multiple electric vehicles
charging simultaneously, a system optimization control algorithm is adopted to minimize DC-bus
current fluctuation by analyzing and reconstructing the DC-bus current in various charging modes.
This algorithm uses the genetic algorithm (ga) as the core of computing and reduces the number of
change parameter variables within a limited range. The DC-bus current fluctuation is still minimal.
The charging station system structure and the proposed system-level optimization control algorithm
can improve the DC-side current stability through model calculation and simulation verification.

Keywords: the electric vehicle charging station; three-phase three-level NPC converters;
reconstruction method; genetic algorithm; DC-bus current

1. Introduction

Growing concern about climate change intensifies the trend towards decarbonization
and interest in clean technology. As a substitute for internal combustion engine vehicles
(ICEVs), electric vehicles (EVs) powered by renewable electricity can reduce petroleum
usage and greenhouse emission [1,2]. Furthermore, new technologies on the powertrain of
EVs, e.g., a wide-band-gap-component-based motor drive that improves battery-to-wheel
efficiency, make EVs more competitive with energy-saving [3]. Besides, the convenience
of EV recharging significantly influences EV adoption and utilization. Generally, EVs are
powered by charging stations, and the charging power level is generally categorized into
two classes-the slow charging (SC) and fast charging (FC) [4–7]. Typically, the mode of
SC is the AC charging mode, including single-phase AC charging and three-phase AC
charging; the mode of FC is the DC charging mode.

With the continuous increase in FC power, many researchers are studying the ap-
plication of FC in EVs [8–11]. The main research directions of fast charging are efficient
power output, reasonable power scheduling, big data analysis of charging stations, and
so on [12–15]. However, fast charging requires high battery performance and battery
management systems, while slow charging has lower damage to the battery. Therefore,
slow charging has more advantages than fast charging in some cases, such as reducing
the load pressure of the charging station. Currently, AC charging connects the car charger
directly to the power grid, which will produce a lot of reactive power [16]. Therefore, it is
necessary to study the AC charging station for EVs. Moreover, there is no unified standard
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about EVs’ charging conditions worldwide at present [4,17]. The charging mode, charging
interface, and charging voltage of EVs from different manufacturers are different. Some
charging stations work at full load in different cities, while others work at no load, which
causes a tremendous waste of resources. Therefore, it is necessary to study the charging
station with multiple charging modes (MCMs).

In order to meet the multiple charging models (MCMs) of EVs, this paper presents
a systematic structure and control strategy to reduce voltage and current ripple for the
EVs charging station. The system structure uses the three-phase three-level neutral point
clamped (NPC) rectifier to drive multiple three-phase three-level NPC converters, as
shown in Figure 1a,b. Additionally, a control switch is added at the front stage of the filter
inductance to realize the structural switching between the three-phase converter and the
single-phase converter, as shown in Figure 1c. Moreover, multiple EVs can be charged
simultaneously by single-phase AC charging mode, three-phase AC charging mode, or DC
charging mode.
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Figure 1. System Structure of EV-MCMs charging station. 
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Figure 1. System Structure of EV-MCMs charging station.

However, different charging modes and power may affect the current fluctuation of
the common DC bus and couple to the grid side, impacting the grid. In order to reduce
the impact of the charging station system on the power grid, the DC-side current should
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be linear or constant by reducing the DC bus current fluctuation as much as possible. The
work of this paper is as follows:

1. The DC-side bus current is expressed and reconstructed in various modes by analyz-
ing the charging power and EVs’ charging mode.

2. The current sum of multiple MCMs converters is calculated by current amplitude
and current phase offset, and an optimization algorithm is used to control the phase
deviation of different EVs charging voltage to reduce the bus current fluctuation.

The rest of this article is organized as follows. The DC-bus Current Analysis of MCMs
is introduced in Section 2. An optimal control algorithm is presented in Section 3. In
Section 4, simulation results validate the DC-side bus current reconstruction and reduce
the bus current fluctuation. The main conclusion is drawn in Section 5.

2. DC-Bus Current Analysis of MCMs

Figure 1b shows the topology of a three-phase three-level NPC converter. UDC, Udc1,
and Udc2 represent the DC-link voltages; idcA, idcB, and idcC are the current flowing from
the positive bus to the three-phase bridge arm, respectively; IA, IB, and IC are the output
current of the three-phase AC side of the inverter, respectively; C1 and C2 are capacitors on
DC link. Figure 1c shows the LC filter and switch position between the MCMs converter
and EVs. L and C are filters; J1, J2, and J3 are isolating switches.

In the MCMs converter, SK is assumed to be the switching function of the k (k∈{A, B, C})
phase of the three-level inverter and is defined as [18]

Sk =


1, Sk1 and Sk2 turn on, Sk3 and Sk4 turn o f f
0, Sk2 and Sk3 turn on, Sk1 and Sk4 turn o f f
−1, Sk3 and Sk4 turn on, Sk1 and Sk2 turn o f f

(1)

If the DC side voltage of MCM is constant and the DC side neutral point potential is
balanced, the expression of the voltage uk of the AC side bridge arm neutral point relative
to the DC side neutral point O is given

uk =
1
2

UdcSk (2)

2.1. DC Charging Mode

When S2 is disconnected, the structure of the three-phase converter is changed into a
single-phase converter, which can be used as a DC converter or a single-phase AC converter,
as shown in Figure 2.
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According to the characteristics of the PWM converter, the mathematical model of the
output current in Figure 2b is as follows:

d
dt

[
iL

uout

]
=

[
0 − 1

2L
2
C − 2

CZ

][
iL

uout

]
+

[ 1
2L
0

]
uin (3)
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On DC charging mode, the output voltage (out), output current (IL), equivalent
impedance of the load (Z), and input voltage (uin) are constant, respectively. The mathe-
matical model of DC bus current Idc-bus is given

Idc−bus =
uin
Udc

iL (4)

Because the converter switching frequency is high, typically up to 5 KHz, the DC side
capacitor can filter the high-frequency current ripple. When the output power is constant
or linear, there is no need to decrease the ripple of the DC bus current through a system
optimization control algorithm in this mode.

2.2. Single-Phase AC Charging Mode

In the single-phase AC charging mode, the topological diagram and equivalent circuit
diagram are the same as the DC charging mode, as shown in Figure 2. The amplitude of the
output current is defined as Iout; the output voltage amplitudes and the phase are defined
as Uout and θ respectively; the output power factor angle is defined as ϕ;

The output voltage uout and current iL expression are defined as{
uout = Uoutsin(ωt + θ)
iL = Ioutsin(ωt + θ − φ)

(5)

Through Formulas (1) and (5), the input voltage uin is calculated as follows:
uin = 2LIoutωcos(ωt + θ − φ) + Uoutsin(ωt + θ) = Ksin(ωt + θ + γ)

K =
√
(2LIoutωcosφ)2 + (Uout + 2LIoutωsinφ)2

γ = arctan−1
(

2LIoutωcosφ
Uout+2LIoutωsinφ

)
,−π/2 < γ < π/2

(6)

According to the high-frequency mathematical model of NPC three-level PWM con-
verter, assuming that the neutral point potential of DC side is balanced, the mathematical
model of DC bus current of the inverter is as follows:

|uin = uA − uC
|iA = −iC = iL

|idc−bus = idcA + idcC
idck =

1
2 Sk(Sk + 1)ik

(7)

It can be seen that the switching function SK is contained in Equation (7). Obviously,
the DC bus current Idc-bus flowing into the converter contains high-frequency components
related to the switching frequency. Nevertheless, the bus capacitor can filter out high-
frequency components, so it is not considered.

According to input voltage uin in Formula (1), when sinusoidal pulse width modu-
lation (SPWM) strategy is adopted, the average value in switching period of Sk can be
approximately expressed as:{

Sk = msinαk
αk = ωt + θ + γ− (k− 1)180◦ (k = A, C)

(8)

Additionally, m is the modulation degree of the fundamental wave.
Through Formulas (6)–(8), the DC-bus current is calculated by

Idc−bus = msin(ωt + θ + γ)Ioutsin(ωt + θ − φ) =
mIout

2
(cos(γ− φ)− cos(2(ωt + θ) + γ + φ)) (9)

According to the Formula (9) analysis, the DC bus current comprises DC current
and second harmonic current. Moreover, the amplitude of the second harmonic current
is higher. When multiple EVs use single-phase AC charging mode simultaneously, the
harmonic amplitude will be superimposed, which will cause significant fluctuation of DC
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bus power and lead to grid-side instability. Thus, when the single-phase AC charging
mode is used to charge multiple EVs, the second harmonic amplitude can be reduced by
changing the initial angle of output voltage.

2.3. Three-Phase AC Charging Mode

When S1, S2, and S3 are connected, the EVs charging system can provide a three-phase
charging function, as shown in Figure 3. The output current amplitude is defined as Iout;
the output voltage amplitudes and phase are defined as Uout and θ respectively; the output
power factor angle is defined as ϕ.

World Electr. Veh. J. 2021, 12, x  5 of 12 
 

According to the Formula (9) analysis, the DC bus current comprises DC current and 
second harmonic current. Moreover, the amplitude of the second harmonic current is 
higher. When multiple EVs use single-phase AC charging mode simultaneously, the har-
monic amplitude will be superimposed, which will cause significant fluctuation of DC 
bus power and lead to grid-side instability. Thus, when the single-phase AC charging 
mode is used to charge multiple EVs, the second harmonic amplitude can be reduced by 
changing the initial angle of output voltage. 

2.3. Three-Phase AC Charging Mode 
When S1, S2, and S3 are connected, the EVs charging system can provide a three-

phase charging function, as shown in Figure 3. The output current amplitude is defined 
as Iout; the output voltage amplitudes and phase are defined as Uout and 𝜃 respectively; 
the output power factor angle is defined as 𝜑. 

L

L

L

C C C

S1

S2

S3
Converter

+

-

Udc
Z

Z

Z

Load

iA

iB

iC

 

uk-in

L

C
R

ik

uk
 

(a) Switch working status (b) Three-phase AC equivalent circuit 

Figure 3. Structure of three-phase AC charging mode. 

According to the characteristics of the PWM converter, the mathematical model of 
the output current in Figure 3b is as follows: 

𝑑𝑑𝑡 ൤ 𝑖௞𝑢௞൨ = ൦0 − 1𝐿1𝐶 − 1𝐶𝑍൪ ൤ 𝑖௞𝑢௞൨ + ൥1𝐿0൩ 𝑢௞ି௜௡ (10)

Due to the symmetry of the three-phase inverter, k is A, B, or C. 
The output voltage expression of three-phase AC charging mode is defined as 

⎩⎪⎨
⎪⎧𝑢஺ = 𝑈௢௨௧ 𝑠𝑖𝑛(𝜔𝑡 + 𝜃)𝑢஻ = 𝑈௢௨௧ 𝑠𝑖𝑛 ൬𝜔𝑡 + 𝜃 − 2𝜋3 ൰𝑢஼ = 𝑈௢௨௧ 𝑠𝑖𝑛 ൬𝜔𝑡 + 𝜃 + 2𝜋3 ൰ (11)

The output current expression of three-phase AC charging mode is defined as 

⎩⎪⎨
⎪⎧ 𝑖஺ = 𝐼௢௨௧ 𝑠𝑖𝑛(𝜔𝑡 + 𝜃 − 𝜙)𝑖஻ = 𝐼௢௨௧ 𝑠𝑖𝑛 ൬𝜔𝑡 + 𝜃 − 2𝜋3 − 𝜙൰𝑖஼ = 𝐼௢௨௧ 𝑠𝑖𝑛 ൬𝜔𝑡 + 𝜃 + 2𝜋3 − 𝜙൰ (12)

Through Formulas (10) and (11), the input voltage UA-in is calculated as follows: 

⎩⎪⎨
⎪⎧𝑢஺ି௜௡ = 𝐿𝐼௢௨௧𝜔 𝑐𝑜𝑠(𝜔𝑡 + 𝜃 − 𝜙) + 𝑈௢௨௧ 𝑠𝑖𝑛(𝜔𝑡 + 𝜃) = 𝐾′ 𝑠𝑖𝑛൫𝜔𝑡 + 𝜃 + 𝛾′൯𝐾′ = ඥ(𝐿𝐼௢௨௧𝜔 𝑐𝑜𝑠 𝜙)ଶ + (𝑈௢௨௧ + 𝐿𝐼௢௨௧𝜔 𝑠𝑖𝑛 𝜙)ଶ𝛾′ = 𝑎𝑟𝑐𝑡𝑎𝑛ିଵ ൬ 𝐿𝐼௢௨௧𝜔 𝑐𝑜𝑠 𝜙𝑈௢௨௧ + 𝐿𝐼௢௨௧𝜔 𝑠𝑖𝑛 𝜙൰ , −𝜋/2 < 𝛾 < 𝜋/2  (13)

Due to the symmetry of the three-phase inverter, the input voltage of phase B and C 
are calculated 

Figure 3. Structure of three-phase AC charging mode.

According to the characteristics of the PWM converter, the mathematical model of the
output current in Figure 3b is as follows:

d
dt

[
ik
uk

]
=

[
0 − 1

L
1
C − 1

CZ

][
ik
uk

]
+

[ 1
L
0

]
uk−in (10)

Due to the symmetry of the three-phase inverter, k is A, B, or C.
The output voltage expression of three-phase AC charging mode is defined as

uA = Uoutsin(ωt + θ)
uB = Uoutsin

(
ωt + θ − 2π

3
)

uC = Uoutsin
(
ωt + θ + 2π

3
) (11)

The output current expression of three-phase AC charging mode is defined as
iA = Ioutsin(ωt + θ − φ)
iB = Ioutsin

(
ωt + θ − 2π

3 − φ
)

iC = Ioutsin
(
ωt + θ + 2π

3 − φ
) (12)

Through Formulas (10) and (11), the input voltage UA−in is calculated as follows:
uA−in = LIoutωcos(ωt + θ − φ) + Uoutsin(ωt + θ) = K′sin(ωt + θ + γ′)

K′ =
√
(LIoutωcosφ)2 + (Uout + LIoutωsinφ)2

γ′ = arctan−1
(

LIoutωcosφ
Uout+LIoutωsinφ

)
,−π/2 < γ < π/2

(13)

Due to the symmetry of the three-phase inverter, the input voltage of phase B and C
are calculated{ ∣∣uB− in = LIoutωcos(ωt + θ − φ) + Uoutsin(ωt + θ) = K′sin

((
ωt + θ − 2π

3
)
+ γ′

)∣∣uC− in = LIoutωcos(ωt + θ − φ) + Uoutsin(ωt + θ) = K′sin
((

ωt + θ + 2π
3
)
+ γ′

) (14)
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According to the high-frequency mathematical model of NPC three-level PWM con-
verter, assuming that the neutral point potential of DC side is balanced, the mathematical
model of DC bus current of the inverter is as follows [6]:{

idc−bus = idcA + idcB + idcC
idck =

1
2 Sk(Sk + 1)ik

(15)

It can be seen that the switching function SK is contained in Equation (15). Obviously,
the DC bus current Idc-bus flowing into the converter contains high-frequency components
related to the switching frequency. Nevertheless, the high-frequency components can be
filtered out by the bus capacitor, so it is not considered.

According to input voltage on-k in Formulas (13) and (14), when sinusoidal pulse width
modulation (SPWM) strategy is adopted, the switching function SK can be approximately
expressed as [19]: {

Sk = msinαk
αk = ωt + θ + γ′ − (k− 1) 2π

3 (k = A, B, C)
(16)

Additionally, m is the modulation degree of the fundamental wave.
Through Formulas (6)–(8), the DC-bus current is calculated

Idc−bus =
3

∑
k=1

1
2

Sk(Sk + 1)ik =
3
4

mIoutcos
(
γ′ + φ

)
− 3

8
m2 Ioutsin

(
3(ωt + θ) + 2γ′ − φ

)
(17)

According to the Formula (17) analysis, the DC bus current comprises DC current
and third harmonic current. Moreover, the third harmonic current amplitude is higher.
Other modulation strategies can reduce the third harmonic amplitude, such as the zero
sequence component compensation method, SVPWM method, etc. [19,20]. However, when
multiple EVs use three-phase AC charging mode simultaneously, the harmonic amplitude
will be superimposed, which will cause significant fluctuation of DC bus power and lead to
grid-side instability. Similarly, when the three-phase AC charging mode is used to charge
multiple EVs, the third harmonic amplitude can be reduced by changing the initial angle
of output voltage.

3. Optimal Control Algorithm

According to the above analysis, the DC bus current under DC charging mode is the
superposition of constant and switching frequency fluctuation, which will not affect the
bias current. The low-frequency current component under single-phase AC charging mode
and three-phase AC charging mode will significantly influence DC-bus voltage.

The low-frequency current component of DC bus current can be described as follows.

∆Idc−bus =
a

∑
i=0

Misin(2ωt + δi) +
b

∑
j=0

Mjsin
(
3ωt + δj

)
(18)

where a is the number of EVs in single-phase charging mode; b is the number of EVs in
three-phase charging mode. According to the Formulas (6) and (13), the parameters in the
Formula (19) are as follows. 

∣∣∣Mi =
mi Iout−i

2

|δi = 2θi + γ + φi∣∣∣∣Mj =
3mj

2 Iout−j
8∣∣δj = 3θj + 2γ′ + φj

(19)

When I = 0, me and Iout-I am also 0. Additionally, when j = 0, mg and Iout-j are also 0.
According to (19), the total fluctuation of bus current can be regarded as the superposition

of the third harmonic and the second harmonic. So, the complexity of calculation can be
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reduced by isolating the three-phase charging mode from the single-phase charging mode. By
changing the initial phase angle of different output voltages, the total second or third harmonic
amplitude can be reduced. Taking the second harmonic as an example, this paper analyses the
second harmonic model of bus current.

When there is a branch by single-phase charging mode, the sum of DC-bus current
Idc-sum is calculated as:

∣∣∣∣Idc−sum =
a
∑

i=0
Misin(2ωt + δi) =

√
X2 + Y2sin(2ωt + σ)∣∣∣∣X =

a
∑

i=0
Micos(δi)∣∣∣∣Y =

a
∑

i=0
Misin(δi)∣∣∣∣∣∣σ = arctan−1

 a
∑

i=0
Misin(δi)

∑a
i=0 Micos(δi)

 − π
2 < σ < π

2

(20)

Since the charging power or charging current of the same EV is constant, in order to minimize
the current fluctuation of the DC-bus, the optimization constraint equation is as follows:

min f (δ1, δ2 · · · δa) =

(
a
∑

i=0
Micos(δi)

)2
+

(
a
∑

i=0
Misin(δi)

)2

s.t.
{

δ0, δ1 = 0
0 ≤ δi ≤ 2π, i = 1, 2, 3 · · ·

(21)

Since the number of charging EVs may increase or decrease one by one in the charging
process. This algorithm uses the genetic algorithm (ga) [21,22] as the core of computing and
reduces the number of change parameter variables within a limited range. The DC-bus current
fluctuation is still minimal. An optimization control algorithm is derived in Algorithm 1.

Algorithm 1 An Optimization Control Algorithm Implementation

/*ga is the Genetic Algorithm that has been Used to Solve Optimization Problems.
input:[M1, M2, · · ·Mn]: matrix of n amplitudes; Mn+1: amplitude of n+1;
k: change the number of parameter variables;
output: [δ1, δ2, · · · δn]: initial phase matrix of n phases;
δn+1: phase of n+1;
fmin: bus current fluctuation amplitudes;
M = sort([M1, M2, · · ·Mn]); /*Sort by initial amplitude;
[δ, fmin] = ga( f (δ1, δ2, · · · δn), n); /*Calculate the minimum amplitude and the corresponding phase;

σn = arctan−1
(

∑n
i=1 mncos(δn)

−∑n
i=1 mnsin(δn)

)
; /* Calculate the second harmonic phase of bus current;

When Mn+1 is added; /*A new EV with single-phase AC charging mode;
for z from 0 to k

if
(

∑n−1
i=0 Mn−1 ≤ Mn

)∣∣∣∣∣∣(∑n−1
i=0 Mn−1 ≥ Mn&&Mn+1 ≤ 2Mn

)
then

[δ, fmin] = ga( f (σn−1, δn, δn+1), 3);
k = 1;
break;

end
if ∑n−1

i=0 Mn−1 ≥ Mn&&2Mn ≤ Mn+1 then
[δ, fmin] = ga( f (σn−z, δn−z+1, · · · , δz, δz+1), z + 2);
k=z;
if fmin → 0 then

break;
end

end
end
return matrix δ, numeric fmin, coefficient k
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According to Formula (20), the initial phase θi of the output voltage can be calculated
by matrix δ.

4. Simulation and Results

Through literature review, the charging power is generally around 100 KW, the single-
phase output voltage is 220 V(RMS), the three-phase output voltage is 380 V(RMS), and the
DC charging voltage is generally around 600 V [3]. However, the output voltage of different
standards or manufacturers will be different. The simulation circuit parameters can be
adjusted according to the actual engineering parameters. Table 1 shows the simulation
parameters of the MCMs converter.

Table 1. Simulation parameters of the MCMs converter.

Simulation Parameters Numerical Values

DC bus voltage (Vdc) 800 V
output DC voltage 600 V

RMS of output single-phase voltage (Vout) 220 V
RMS of output three-phase voltage (VA/VB/VC) 220 V

Output current (Iout) <100 A
neutral clamp capacitor (C1, C2) 500 uF

the filter inductance (L) 2 mH
the filter capacitance (C) 50 uF

the working frequency of IGBT 5 kHz

4.1. DC-Bus Current Error Analysis

In order to analyze the accuracy of DC-bus current reconstruction, the relative error
between the DC-bus current reconstruction value and the DC bus current is defined as

η =

∣∣∣∣ idc−bus−re − idc−bus
idc−bus

∣∣∣∣× 100% (22)

where idc-bus-re is the current by the model; idc-bus is the current by simulation
In DC bus current, high-frequency harmonics are generated by the high-frequency

action of switching devices, and the high-frequency harmonics can be filtered through the
DC side capacitor. According to Figure 4, the DC-bus current is constant in DC charging
mode. In single-phase AC charging mode, the DC-bus current has second harmonics.
Additionally, in the three-phase AC charging mode, the DC-bus current has third harmonics.
By comparing theoretical calculation and simulation, the error of average current is less
than 1% in one cycle, which verifies the correctness of DC-bus current Analysis of MCMs.
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4.2. Verification of Optimal Control Algorithm
4.2.1. Single-Phase Charging Mode

Since the output power factor of the converter is greater than 95% or higher, this
paper takes the unit power factor as an example. It is assumed that there are five sets of
converters working in single-phase AC charging mode. Hence, the power factor angle ϕ is
set to 0; the output voltage amplitudes Uout is 311 V; the output current amplitudes matrix
Iout are [100, 90, 80, 70, 60] A.

By calculation, the DC bus current amplitudes matrix Idc-bus are [41.8, 37.2, 32.6, 28.2, 24] A.
The total current amplitude without the algorithm is 163.8 A by theoretical calculation.
The total current amplitude is 162 A by simulation. By comparing theoretical calcu-
lation and simulation, the error of the average current is less than 2%, as shown in
Figure 5a. According to the algorithm’s calculation results, the DC-bus current phase
δ and output voltage phase θ are calculated as [0, 4.3689, 3.0258, 2.2538, 6.1375] and
[−0.1189, 2.0467, 1.3567, 0.9526, 2.8768], respectively. Additionally, DC-bus current fluc-
tuation amplitudes fmin is lower, as shown in region 1 of Figure 5b.
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At this time, another different group of MCMs is put into operation. When the output
current amplitude (Iout−6) is 75 A (random), the DC bus current amplitude is 30.46 A.
Only one of the parameters and the phase of group 5 voltage need to be changed through
algorithm analysis. The DC-bus current phase δ5 and δ6 are calculated as 0.6001 and 4.9396
by the algorithm, respectively. Additionally, the output voltage phase θ5 and θ6 are 0.1083
and 2.3227, respectively. Comparing DC bus current fluctuation is shown in region 2 of
Figure 5b, which shows that the proposed algorithm can effectively reduce the bus current
fluctuation. The changing process of voltage and current of group 5 is shown in Figure 5c,
which shows that the output voltage and current of group 5 are not affected much after
group 6 is put into operation.

4.2.2. Three-Phase Charging Mode

Since the output power factor of the converter is greater than 95% or higher, this
paper takes the unit power factor as an example. It is assumed that there are five sets of
converters working in three-phase AC charging mode. Hence, the power factor angle ϕ is
set to 0; the output voltage amplitudes UA, UB and UC is 311 V, and the phase difference is
120◦ in turn; the output current amplitudes matrix Iout are [60, 50, 40, 30, 20 ] A.

By calculation, the DC bus current amplitudes matrix Idc-bus is [46.4, 38.67, 30.93, 23.2, 15.5] A.
The total current amplitude without the algorithm is 155.7 A by theoretical calculation. The
total current amplitude is 157 A by simulation. The average current error is less than 2% by
comparing theoretical calculation and simulation, as shown in Figure 6a. According to the
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calculation results of the algorithm, DC-bus current phase δ and output voltage θ are calculated
as [0, 2.3629, 4.1835, 5.0910, 1.5205] and [0.0745, 0.8498, 1.4445, 1.7348, 0.5326], respectively.
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At this time, another different group of MCMs is put into operation. When the output
current amplitude Iout−6 is 45 A (random), the DC bus current amplitude is 34.81 A. Only
one of the parameters and the phase of group 5 voltage need to be changed through
algorithm analysis. The DC-bus current phase δ5 and δ6 are 2.2896 and 0.3343 by the
algorithm, respectively. Additionally, the output voltage phase θ5 and θ6 are 0.7890 and
0.1552, respectively. Comparing DC bus current fluctuation is shown in Figure 6b, which
shows that the proposed algorithm can effectively reduce the bus current fluctuation.

5. Conclusions

This paper presents a system architecture and its control structure to achieve three
charging modes for the charging station of EVs.

1. According to the high-frequency mathematical model of NPC three-level PWM con-
verter, the method of current reconstruction of DC-bus is established in different
charging mode. By comparing theoretical calculation and simulation, the average
current error is less than 2% in one cycle.

2. An optimization algorithm is proposed to reduce the second harmonics current of DC-
bus current in single-phase charging mode and reduce the third harmonics current of
DC-bus current in three-phase charging mode. When multiple vehicles are charged
simultaneously, the harmonic content is reduced by superimposing multiple second
and third harmonics so that the bus current is DC by theoretical calculation and
simulation.

Because the system is relatively large, many converters are needed, so the experiment
is more complicated. We hope that experiments in the future can verify the algorithm.
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