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Abstract: The transmission cable and power conversion device need to be buried underground
for dynamic wireless charging of an expressway, so cable insulation deterioration caused by aging
and corrosion may occur. This paper presents an on-line insulation monitoring method based on
BP neural network for dynamic wireless charging network. The sampling signal expression of
the injection signal is derived, and the feasibility of this method is verified by experiments, which
effectively overcomes the problem of large calculation error of insulation resistance when the cable
capacitance to ground is large. The experimental results indicate that the error of the proposed
method is less than 9%, which can meet the needs of insulation monitoring.

Keywords: wireless power transfer (WPT); underground cable; insulation monitoring; neural net-
work; signal injection

1. Introduction

The dynamic wireless charging road can continuously supply the electric energy for
driving electric vehicles (EVs), so it has a broad development prospect. The dynamic
charging system consists of transmitter and receiver. The receiving end is installed on the
driving vehicle, and the transmission end is buried under the road. At present, the dynamic
wireless charging technology is mainly divided into track type and segmented type [1].
Taking the segmented type in Figure 1a as an example, the output power of the power
grid is converted into DC voltage through the rectifier, and the DC voltage is supplied to
the transmitter network of each part through the long horizontal cable, and the converter
network of each part is connected in parallel. The cable connecting the transmission end
will be aged and corroded because it is buried underground. Long-term use may lead to
the deterioration of ground insulation, power cable tripping, equipment damage, and even
fire. Therefore, it is necessary to monitor the insulation of these buried cables to avoid huge
losses. At present, there are few studies on cable insulation in dynamic wireless charging
system. This paper focuses on the insulation monitoring method in ITN system. Generally,
the cable insulation monitoring in ITN system is mainly realized by injecting signal, which
is divided into DC signal and AC signal [2]. The advantage of injecting DC signal is that
when the ground capacitor is fully charged, the calculation results are not affected by the
capacitance [3]. The disadvantage is that when the value of the ground capacitor is large,
the charging time will be very long, and the current insulation status cannot be analyzed
quickly. The injected AC signal is usually a low frequency signal to distinguish it from the
power frequency signal. AC injection method is divided into single frequency injection
and dual frequency injection. The single frequency injection method needs to obtain the
phase information at the same time [4], while the dual frequency injection method needs
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to generate the dual frequency signal and separate the dual frequency signal [5]. The
disadvantage is that when the capacitance to ground is large, the calculation result error is
large due to phase error. In addition to the AC injection method, there are other methods,
such as adaptive pulse injection, which uses superimposed adaptive pulse voltage signal to
detect the fault circuit, and continuously measures the insulation resistance to the ground.
The periodic value of the pulse is related to the capacitance to the ground. The larger the
capacitance, the longer the period [6]. The disadvantage is that the calculation time is long
when the capacitance is large. There are some additional methods for DC power grid,
such as bridge balance method, signal tracing method and differential current detection
method [7–9]. The disadvantage is that it is only for DC power grid and the hardware
implementation is complex.
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Figure 1. (a) Dynamic wireless charging network model for highway. (b) Calculation model of cable to ground insulation 

resistance in dynamic wireless charging network. 
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Figure 1. (a) Dynamic wireless charging network model for highway. (b) Calculation model of cable to ground insulation
resistance in dynamic wireless charging network.

The above calculation methods are more complex, for large ground capacitance and
large insulation resistance, it is very difficult to achieve the required calculation accuracy,
so many other measures need to be added to maintain the accuracy. In this paper, an
insulation monitoring method based on BP neural network is proposed. By learning
the signal waveforms at both ends of the sampling resistance after the signal injection,
the corresponding relationship between the waveform and the insulation resistance is
established to solve the problem of inaccurate calculation of the insulation resistance
under the condition of large capacitance (above 100 uF) [10]. We creatively introduce
deep learning method into the field of electric vehicle cable insulation monitoring. In
order to solve the insulation resistance calculation under large capacitance, the traditional
AC injection method can only find ways to improve the phase calculation accuracy. For
large capacitance above 100 uF, the phase accuracy must reach 0.1◦, which has high
requirements for software and hardware. The insulation monitoring method based on BP
neural network effectively avoids the problem of high-precision phase calculation, reduces
the difficulty of software and hardware design, and ensures the accuracy of insulation
resistance calculation.

2. Calculation Model of Insulation Monitoring

As shown in Figure 1b, the model of cable to ground insulation between power grid
and transmission unit in highway dynamic wireless charging is proposed. There are
capacitance and insulation resistance between cable to ground, which can be equivalent
to Cf and Rf in the model. RP1 and RP2 are parasitic resistances on the loop, which are
very small and can be ignored in the actual calculation model. R1 is the current limiting
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resistance, R0 is the sampling resistance, and S1 is the external injection signal used to
detect insulation resistance. Through the external injection of a certain frequency signal,
the frequency component of the sampling resistance is collected, and then the insulation
resistance value of the cable can be obtained through filtering and operation.

If the DC signal with the amplitude of VDC is selected as the injection source and the
injection time is t1 in a cycle t0, the injection signal Vs (t) can be expressed as:

VS(t) = VDC

∞

∑
n=0,1,2..

[ε(t − nt0)−ε(t − nt0 − t1)] (1)

The current i (t) generated by the injection signal in the loop is as follows, where V0 (t)
is the voltage signal at both ends of the sampling resistor:

i(t) =
V0(t)

R0
(2)

The injection current through the ground capacitance Cf is iCf (t), and the injection
current through the insulation resistance Rf is iRf (t). The sum of the two satisfies the
following equation:

i(t) = iCf(t) + iRf(t) (3)

The injection voltage Vf (t) at both ends of insulation resistance can be expressed as:

Vf(t) = VS(t)−
V0(t)(R0 + R1)

R0
(4)

Then, iCf (t) and iRf (t) can be expressed as:

iCf(t) = Cf
dVf(t)

dt
, iRf(t) =

Vf(t)
Rf

(5)

By substituting (2) and (5) into (3), we can get:

Cf
dVf(t)

dt
+

Vf(t)
Rf

=
V0(t)

R0
(6)

It can be further written as:

Cf(R0 + R1)

R0

·
V0(t) +

(R0 + R1 + Rf)

R0Rf
V0(t) = Cf

·
VS(t) +

1
Rf

VS(t) (7)

After simplification

·
V0(t) +

(R0 + R1 + Rf)

RfCf(R0 + R1)
V0(t) =

R0

R0 + R1

·
VS(t) +

R0

RfCf(R0 + R1)
VS(t) (8)

For the convenience of the next calculation, let

a =
(R0 + R1 + Rf)

RfCf(R0 + R1)
, b =

R0

R0 + R1
, c =

R0

RfCf(R0 + R1)
(9)

Then, (8) can be simplified as

·
V0(t) + aV0(t) = b

·
VS(t) + cVS(t) (10)

Substituting (1) into (10), we obtain

·
V0(t) + aV0(t) = b

∞

∑
n=0,1,2..

VDC(δ(t − nt0)−δ(t − nt0 − t1)) + c
∞

∑
n=0,1,2..

VDC(ε(t − nt0)−ε(t − nt0 − t1)) (11)
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According to the solution of the first order linear differential equation, it can be
concluded that:

V0(t) = e−at + e−at
∫ ∞

∑
n=0,1,2..

[bVDC(δ(t − nt0)−δ(t − nt0 − t1)) + c
∞

∑
n=0,1,2..

VDC(ε(t − nt0)−ε(t − nt0 − t1))]eatdt (12)

Integrate the two parts of the integral separately; the first term can be reduced to:

∫ ∞
∑

n=0,1,2..
bVDC(δ(t − nt0)−δ(t − nt0 − t1))eatdt

= bVDC
∫ ∞

∑
n=0,1,2..

eatd(ε(t − nt0)− ε(t − nt0 − t1))

= bVDC
∞
∑

n=0,1,2..
eat(ε(t − nt0)− ε(t − nt0 − t1))− abVDC

∞
∑

n=0,1,2..

∫
eat(ε(t − nt0)− ε(t − nt0 − t1))dt]

= bVDC
∞
∑

n=0,1,2..
eat(ε(t − nt0)− ε(t − nt0 − t1))− abVDC

∞
∑

n=0,1,2..

∫ nt0+t1
nt0

eatdt

= bVDC
∞
∑

n=0,1,2..
eat(ε(t − nt0)− ε(t − nt0 − t1)) + bVDC

∞
∑

n=0,1,2..
(eant0 − ea(nt0+t1))

(13)

The integral result of the second term is the same as that of the above method

c
∞
∑

n=0,1,2..
VDC(ε(t − nt0)−ε(t − nt0 − t1))]eatdt

= − c
a VDC

∞
∑

n=0,1,2..
(eant0 − ea(nt0+t1))

(14)

By substituting (13) and (14) into (12), we can find that:

V0(t) = e−at + e−at[bVDC

∞

∑
n=0,1,2..

eat(ε(t − nt0)− ε(t − nt0 − t1)) + (b − c
a
)VDC

∞

∑
n=0,1,2..

(eant0 − ea(nt0+t1))] (15)

Further, it can be written as:

V0(t) =


e−at + bVDC + (b − c

a )VDC
∞
∑

n=0,1,2..
(eant0 − ea(nt0+t1))e−at, nt0 < t < nt0 + t1

e−at + (b − c
a )VDC

∞
∑

n=0,1,2..
(eant0 − ea(nt0+t1))e−at, nt0 + t1 ≤ t < (n + 1)t0

(16)

Substituting (9) into (16), the final result is:

V0(t) =


e
− (R0+R1+Rf)

RfCf(R0+R1)
t
+ R0

R0+R1
VDC + R0Rf

(R0+R1+Rf)(R0+R1)
VDC

∞
∑

n=0,1,2..
(e

(R0+R1+Rf)
RfCf(R0+R1)

nt0 − e
(R0+R1+Rf)
RfCf(R0+R1)

(nt0+t1))e
− (R0+R1+Rf)

RfCf(R0+R1)
t
, nt0 < t < nt0 + t1

e
− (R0+R1+Rf)

RfCf(R0+R1)
t
+ R0Rf

(R0+R1+Rf)(R0+R1)
VDC

∞
∑

n=0,1,2..
(e

(R0+R1+Rf)
RfCf(R0+R1)

nt0 − e
(R0+R1+Rf)
RfCf(R0+R1)

(nt0+t1))e
− (R0+R1+Rf)

RfCf(R0+R1)
t
, nt0 + t1 ≤ t < (n + 1)t0

(17)

The above formula is the signal expression of the injection signal contained at both
ends of the sampling resistance. It can be clearly seen that the voltage V0 at both ends of
the sampling resistor is a periodic signal. There is a difference in DC component between
the first half cycle and the second half cycle, and the signal component decays with time
in both the first and second half cycles. Generally speaking, it is a relatively complex
calculation formula. If it is realized through real-time calculation, the amount of calculation
will be very large, Additionally, the expression of Cf must be inversely solved, which is
very difficult. Therefore, the method of BP neural network is considered. By learning
the waveform of voltage V0 at both ends of the actual sampling resistance, the BP neural
network is used to fit the expression (17), and the corresponding relationship between
insulation resistance and sampling waveform is established through a large amount of data
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training. Thus, for a certain V0 waveform, when other variables are determined, there is a
certain Rf and Cf corresponding to it, which greatly simplifies the calculation difficulty.

3. Insulation Monitoring Based on BP Neural Network
3.1. Subsection

An insulation monitoring method of wireless charging cable based on BP neural
network is proposed. BP neural network is a kind of multilayer feed forward neural
network based on error back propagation algorithm, which is the most widely used neural
network [11]. BP neural network can establish the corresponding relationship between
target and input signal through a lot of data training, especially fitting function curve [12].
BP neural network can be used to predict many nonlinear curves, such as the prediction of
power price and power load. Through the training of a large number of targeted data, it
can establish a good nonlinear relationship and predict the target trend [13,14]. As shown
in Figure 2, it is a typical BP neural network structure, including an input layer, a hidden
layer, and an output layer. The input has three nodes, the output has two nodes, and the
hidden layer has four nodes. In the actual use process, the number of nodes can be adjusted
according to the actual needs. According to the previous calculation principle, the collected
signal is periodic charging curve signal, which is very suitable for neural network fitting.
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Figure 2. Typical BP neural network structure.

3.1.1. Improvement of BP Neural Network

In addition, the number of hidden layers and the number of neurons in each layer
can be increased infinitely, so that the ability of BP neural network has no upper limit.
However, it also has some disadvantages, such as slow convergence speed, low accuracy
and easy to fall into local minimum. In order to improve the above shortcomings, the
learning rate adaptive adjustment function is designed in the process of using.

The learning rate determines the accuracy of network prediction to a certain extent.
If the learning rate is too large, the accuracy is poor, or even does not converge. If the
learning rate is too small, the convergence is slow. Adaptive adjustment of learning rate is
to solve this problem.

If the value E of the error function decreases in this iteration, the learning rate
η increases:

η = β·η,β > 1 (18)

If the value E of the error function rises in this iteration, the adjustment is invalid and
the learning rate η is reduced:

η = α·η, 0 < α < 1 (19)

In the actual training process, it is found that when a fixed learning rate is used, if the
initial learning rate is large, the initial error often decreases rapidly, but most of the time,
the error value stays at a large value and does not decrease. If the initial learning rate is
small, the error may always decrease. However, the error reduction rate is significantly less
than that in the case of large initial learning rate. After using the adaptive learning rate, it
is found that the error can decline all the time, which obviously improves the problem of
non-convergence and slow decline of error.
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3.1.2. Parameter Design of BP Neural Network

BP neural network parameters mainly include the number of input nodes, the number
of hidden layers, the number of output nodes, the number of hidden layer nodes, learning
rate and learning accuracy. For function fitting, in theory, BP neural network with only one
hidden layer can fit any continuous function. Only when the function is not continuous,
the number of hidden layers needs to be increased. However, in fact, the number of hidden
layers will affect the speed of fitting convergence, so it should be adjusted according to the
actual training process. In addition, the excitation function of the hidden layer will also
affect the convergence rate and fitting degree. In this paper, hyperbolic function is selected
as the excitation function, as shown in Equation (20).

f(x) =
2

1 + (e−2x)
− 1 (20)

After actual test and adjustment, the final parameters of BP neural network are shown
in Table 1.

Table 1. Parameters of BP neural network.

Parameter Name Parameter Value

Number of input nodes 1
Number of output nodes 1
Number of hidden layers 4

Number of hidden layer nodes (50, 50, 50, 50)
Initial learning rate 0.001
Learning accuracy 0.000001

Training times 3000000

3.2. Neural Network Training Process

According to the previous calculation principle, we need to inject a certain signal into
the cable, and realize the calculation of insulation resistance by learning the waveform
of sampling signal. The calculation results need to be updated in real time, so constant
DC signal cannot be injected. On the other hand, in order to improve the waveform
difference under different resistance and capacitance conditions and improve the accuracy
of the calculation results, it is necessary to increase the injection time of the injection signal
appropriately. In this paper, a DC injection source with 24 V amplitude is selected, which
is injected for 26 s, turned off for 9 s and injected for the next cycle. A total of 200 groups
of sampling voltage values under different combinations of grounding capacitance and
insulation resistance are collected. These sampling values and corresponding insulation
resistance values are used as training data. As shown in Figure 3, partial sampling data
values, different combinations of resistance and capacitance correspond to different curves.
After 3,000,000 training times, the expected accuracy is achieved. As shown in Figure 4, the
curve of error decrease in the process of training.
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4. Simulation and Analysis
4.1. Build the Actual Experimental Circuit

As shown in Figure 5, metal film resistance is used to simulate insulation resistance,
polypropylene film capacitance is used to simulate ground capacitance, and air switch is
used to switch capacitance. The insulation measuring device is made with stm32f407 chip
of ST company as the core. The insulation resistance is calculated with the insulation
measuring device. The right side of Figure 5 is the voltage waveform of the sampling
resistance when the resistance is 6 MΩ and the capacitance to ground is 100 uF.
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4.2. Recognition Results

As shown in Table 2, different combination values of insulation resistance and ground
capacitance are set, and nine groups of insulation resistance values are obtained. The
errors between the calculated values and the theoretical values of nine groups were less
than ±9%. Because this method is realized by learning curve of BP neural network, the
insulation resistance value can be calculated accurately in the case of large capacitance to
ground, which effectively overcomes the problem of large error of direct calculation result
in large capacitance.

Table 2. Experimental results.

Analog Value of Capacitance
to Ground

True Value of
Insulation Resistance

Calculated Insulation
Resistance Value Error Value

253 µF 2.616 kΩ 2.791 kΩ +6.68%
388 µF 12.31 kΩ 13.402 kΩ +8.87%
387 µF 85.627 kΩ 89.737 kΩ +4.80%
63 µF 599.73 kΩ 598.83 kΩ −0.15%

491 µF 174.96 kΩ 184.92 kΩ +5.69%
350 µF 732.31 kΩ 756.22 kΩ +3.27%
123 µF 1.462 MΩ 1.496 MΩ +2.33%
37 µF 8.897 MΩ 9.041 MΩ +1.62%

260 µF 5.006 MΩ 5.103 MΩ +1.93%

5. Conclusions

Based on the insulation monitoring method described above, this paper builds the
corresponding experimental platform, uses farad capacitance and metal film resistance to
simulate the value of ground capacitance and insulation resistance, and randomly generates
nine groups of different combinations of ground capacitance and insulation resistance to
carry out the experiment. The experimental results are shown in Table 2, and the accuracy
of nine groups of calculation results can be maintained within the error range of 9%, which
can be realized accurate judgment of insulation condition achieves the initial purpose.

Through the experimental data, it is obvious that the method proposed in this paper
can still maintain high accuracy in the case of large capacitance above 100 uF, or the case of
large capacitance is a special case for the traditional AC injection method, which requires
additional hardware and software design to ensure the phase accuracy and calculation
accuracy. However, there is no obvious difference between large capacitance and small
capacitance for the calculation method proposed in this paper. It does not need to be
treated differently, which breaks through the technical bottleneck of traditional methods
and greatly reduces the difficulty of hardware design. The calculation method of insulation
resistance proposed in this paper can be applied to highway dynamic wireless charging,
parking lot static wireless charging and other applications involving underground cables.
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