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Abstract: The construction of hydrogen refueling stations is an important part of the promotion of
fuel cell vehicles. In this paper, a multi-period hydrogen refueling station location model is presented
that can be applied to the planning and construction of hydrogen infrastructures. Based on the
hydrogen demand of fuel cell passenger cars and commercial vehicles, the model calculates the
hydrogen demand of each zone by a weighting method according to population, economic level and
education level. Then, the hydrogen demand of each period is calculated using the generalized Bass
diffusion model. Finally, the set covering model is improved to determine the locations of the stations.
The new model is applied to the scientific planning of hydrogen refueling stations in Jiading District,
Shanghai; the construction location and sequence of hydrogen refueling stations in each period are
given, and the growth trend of hydrogen demand and the promoting effect of hydrogen refueling
stations are analyzed. The model adopted in this model is then compared with the other two kinds
of node-based hydrogen refueling station location models that have previously been proposed.

Keywords: hydrogen refueling station; location optimization; hydrogen demand estimation; generalized
Bass diffusion model; set covering model

1. Introduction
1.1. Background

The increasingly serious problem of global warming has made people aware of the
importance of the promotion of new sources of energy. As a clean, efficient, and safe
energy, hydrogen is regarded as the most promising clean energy source in the 21st century.
Hydrogen fuel-cell vehicles (HFCVs) are one of the main ways that have been suggested
for hydrogen energy applications.

Hydrogen infrastructure construction is a crucial step in the development and promo-
tion of HFCVs. In China, great attention has been paid in recent years to the construction
of hydrogen refueling stations. By the end of 2020, 118 hydrogen refueling stations had
been built in China [1]. In addition, according to the Energy-saving and New Energy
Vehicle Technology Roadmap 2.0, by 2025, China plans to build 1000 hydrogen refueling
stations [2], and the number of HFCVs will reach 100,000. The large-scale application
of hydrogen energy could be achieved by 2030 to 2035; the number of hydrogen refuel-
ing stations is estimated to go up to 5000, and the number of HFCVs could reach about
1 million.

However, the cost of building a hydrogen refueling station is quite high. According
to the data, the cost of setting up a hydrogen refueling station in China can be more
than USD 1 million. Therefore, it is impossible to build as many hydrogen refueling
stations as there are petrol stations in the early stages to achieve high availability coverage.
Therefore, choosing the correct locations for building hydrogen refueling stations to meet
the requirements of users and better promote the development of HFCVs has become a
problem. This reveals the significance and major contribution of this paper.

World Electr. Veh. ]. 2021, 12, 146. https:/ /doi.org/10.3390/wevj12030146

https://www.mdpi.com/journal /wevj


https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://doi.org/10.3390/wevj12030146
https://doi.org/10.3390/wevj12030146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/wevj12030146
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj12030146?type=check_update&version=3

World Electr. Veh. ]. 2021, 12, 146

20f 15

1.2. Literature Review

At this point in time, many scholars have studied hydrogen refueling station location
models. In terms of a station location optimization model, these are mainly divided into
two types: a node-based model and a flow-based model [3]. In the literature of Itaoka
Kenshi et al. [4] and Kuby et al. [5], according to survey results, the refueling behavior of
drivers in node-based and flow-based models were summarized. The node-based model is
more in line with the fueling habits of traditional gasoline vehicle owners, and surveys of
natural gas vehicle drivers show that they are more cautious about refueling and willing to
take detours when faced with sparse stations, which is more in line with the flow-based
model. In node-based models, hydrogen demand is located on nodes in the network,
and the models can be divided into three types [6]—a set covering model [7], a p-median
model [8], and a p-center model [9], among which the former two types are more commonly
used in analyses of the hydrogen refueling station location problem. The most famous
application is the STREET model [10] developed by the University of California in the
Advanced Power and Energy Program, which combines the node-based model with GIS,
and it has been applied as a means to locate hydrogen refueling stations in California,
United States. In the flow-based model, hydrogen demand lies on a particular path in the
network, as first proposed by M.J. Hodgson et al. [11]. Michael Kuby et al. [12] introduced
the factor of limited driving range and proposed the Flow Refueling Location Model
(FRLM), applying it to the location optimization of hydrogen refueling stations. Later, on
this basis, other scholars introduced such factors as hydrogen demand uncertainty [13],
the filling capacity of the station [14], and flow deviation [12], etc., and carried out location
optimization of hydrogen refueling stations by comprehensively considering multiple
factors [15,16]. The node-based model and the flow-based model each have their own
advantages; which one to choose depends on the actual application scenario. When the
number of stations is small, the results of a flow-based model may be more accurate.
However, the data for a flow-based model is more difficult to obtain.

To describe the study area on the map, the transport demand model can be used.
The first step is to divide the area into zones and then, analytical methods, such as the
geographical and temporal weighted regression (GTWR) method [17], are applied to model
spatiotemporal heterogeneity. Xinxin Zhang et al. [18] divided the study area of Xiamen
City into grid cells, designated the appropriate grid cell size, and then used GTWR to
study the spatiotemporal influence of the urban environment on taxi ridership. Elsewhere,
Xiaolei Ma et al. [19] divided the target area into traffic analysis zones (TAZs) by means of
administrative divisions and also used GTWR to explore the spatiotemporal influences of
the built environment on public transport demand. In addition, Ricardo Ewert et al. [20]
used a road network model consisting of links and nodes derived from OpenStreetMap and
presented a synthetic model for waste collection demand. Lennart Adenaw et al. [21] also
used this method to establish their network and proposed a novel agent-based simulation
framework for urban electromobility.

Hydrogen demand is an important input factor for station location optimization.
However, the current number of HFCVs is still relatively small, so it is necessary to
estimate the potential HFCV market. In terms of the spatial distribution of hydrogen
demand, the penetration rate of the HFCV market is affected by many socioeconomic
factors, such as population, education, income, gender, age, vehicle ownership, urban
environment, etc., and the spatial distribution of hydrogen demand can be estimated by
weighting different factors. M. Melendez et al. [22] in the USA, Amy R. Campbell et al. [23]
in Birmingham, UK, Sylvia Y. He et al. [24] and Rongheng Lin et al. [25] in Beijing, China,
all used this method to estimate the hydrogen demand of HFCVs in different regions.
When determining the weight of each element, commonly used methods include ranking
by Delphi method [24], cluster analysis [23], multiple regression analysis [4], etc. In
addition to the spatial distribution, predicting the growth of hydrogen demand over
time is also an important aspect for consideration. The most commonly used method is
the generalized Bass diffusion model, combined with the system dynamics. Michael H.
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Shoemaker et al. [26] verified the validity of the model by using the sales data of alternative
fuel vehicles from 1995 to 2011. Sang Yongpark et al. [27] and Yushan Li et al. [28] used this
model to forecast the HFCV market in South Korea and China. Patrick E. Maier et al. [29]
analyzed the relationship between the HFCV market and hydrogen infrastructure through
this model. C. Funez Guerra et al. [30] improved the processing of the elements of hydrogen
refueling stations in the previous model to make the prediction results more accurate.
David R. Keith et al. [31] further explored the technical connection among various vehicles
and the influence of technological progress and proposed a more comprehensive model.
The combination of the spatial distribution of hydrogen demand and the station location
optimization model or the growth of hydrogen demand over time and the station location
optimization model has been studied by many scholars. However, few studies combine all
three elements at the same time, and this research gap is what this article aims to address.

In this paper, the first part is an introduction, explaining the background research,
and previous articles are reviewed. The second part introduces the multi-period hydrogen
refueling station location model. In this part, the assumptions, three sub-models, and the
algorithm that has been used are described. The third part is a case study, listing the data
used, and the results gained, as well as a discussion of their implications. The final part
comprises our concluding remarks.

2. Multi-Period Hydrogen Refueling Station Location Model
2.1. Introduction of a Multi-Period Hydrogen Refueling Station Location Model

The multi-period hydrogen refueling station location model consists of three parts.
Firstly, the source of hydrogen demand is divided into commercial vehicles and passenger
cars, according to practical application scenarios, and the spatial distribution of their
hydrogen demand is calculated in various ways. Secondly, the variation of hydrogen
demand over time is predicted, and the promoting effect of hydrogen refueling stations
on the HFCV market is considered; thus, the construction of hydrogen refueling stations
in multi-periods is incorporated into the model. Finally, in terms of station location
optimization, an improved set covering model is established, based on the set covering
model and p-median model.

2.1.1. The Division of the Study Area

To describe the study area, Jiading District in Shanghai, China, the method used
in the transport demand model has been adopted. The study area is a continuous two-
dimensional area on the map, so it is important to divide it into zones of transport demand
to identify specific features in different zones. The most common method is to first divide
the area by administrative region. Information on population and socioeconomic level in
a particular administrative region is relatively easy to obtain since the government has
collected the relevant statistics. Sometimes, the zones, when divided by administrative
regions, are still too large and need to be subdivided. At this point, several adjacent
communities with similar socioeconomic levels can be divided into a zone, and these
zones can be bounded by roads, rivers, etc. The zone of transport demand is also a two-
dimensional area, but it is one that is much smaller and contains similar socioeconomic
levels, so it can be treated as a whole. The distance between the zones is defined as the
length of the shortest road connecting the centroids of zones. The zone of transport demand
is assigned attributes such as population, economic level, and education level, and these
attributes would influence the hydrogen demand in the zone.

2.1.2. Assumptions of the Model
This model makes various assumptions, as follows:

People prefer to refuel near home or near their work;
The distance between a station and a zone is the distance between the zone where the
station is and the area of interest;

e  The capacity of the hydrogen refueling stations is not limited;
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In the case of commercial vehicles, they refuel only at the start and end of the trip;
When using a fuel cell vehicle, the user gets the same mileage as when using a
gasoline vehicle.

The first three assumptions are the general assumptions of a node-based hydrogen
refueling station location model, to which type the location optimization model used in
this model belongs. For commercial vehicles, the hydrogen demand of buses is the main
transport type considered, and a bus is unlikely to make a refueling stop, so the fourth
assumption is also reasonable. The fifth assumption is used to estimate the hydrogen
demands of vehicles.

2.2. Spatial Distribution of Hydrogen Demand
2.2.1. Passenger Cars

To calculate the spatial distribution of the hydrogen demand of passenger cars, we can
solve this by evaluating several socioeconomic factors. The number of passenger HFCVs in
a region can be influenced by many factors, and according to previous research, it is closely
related to certain socioeconomic factors such as the population’s economic level, education
level and car ownership, so we can estimate the HFCV number in a region based on these
factors. Of course, different factors have different effects, so we use a weighting method to
represent different levels of effects for different factors.

Considering that different factors have different units, a normalization process can be
adopted, as shown in Equation (1):

Ry = Tik — Vkmin 1)
Tkmax — Tkmin
where i is the index of the zone in the district; k is the index of socio-economic factors;
Rjx is the normalized value of the factor k at zone 7 and ry is the original value; r,;,, and
Tkmax Tepresent the minimum and maximum values of factor k in all regions, respectively.
The relative hydrogen demand of passenger cars at zone i, R;,,, can be calculated by the
method of weighting social and economic factors, as shown in Equation (2):

Ricar = nj- Zk 8k Rik (2)

where 1; is the population of zone i, g is the weight of factor k. As an emerging technology,
people are not familiar with fuel cell vehicles, so the weight of each element can be
determined by a ranking Delphi method, according to the opinions of different experts.
Therefore, the number of passenger cars at zone i, 11;.,,, can be calculated with Equation (3):
Mear

mzcar RlCﬂ)’ zl Ricﬂr (3)
where 11,4, is the sum of the number of passenger cars in all zones. Finally, the hydrogen
demand of passenger cars in zone i, h;.,, can be calculated by combining the average daily
driving distance of passenger cars, dc;r, and hydrogen consumption per unit distance e,
as shown in Equation (4):

hicar = Micay-dear-car 4)

2.2.2. Commercial Vehicles

In this model, buses are considered to be the main commercial vehicle in question,
and their distribution is relatively concentrated. The hydrogen demand of buses at zone i,
hipys, can be estimated using Equation (5):

hibus = nibus'dbus'ebus'mbus (5)
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where 71,5 is the number of bus routes at zone i; dj, 4 is the driving distance of the bus route;
epys is the hydrogen consumption per unit distance of buses, and 1,4 is the proportion of
fuel cell buses.

2.3. The Variation of Hydrogen Demand over Time

As a new product, the development of HFCVs cannot be predicted by existing sales
data. The Bass diffusion model is a commonly used model to estimate the market share
of new products. It was first proposed by Bass in 1969 to predict the sales of consumer
durables such as refrigerators and televisions. Bass diffusion model divides product users
into two categories—innovative users and imitators. Innovative users are those who are not
easily influenced by other consumers, and they are mainly influenced by the performance of
the product itself. In the early stages of product development, they are the main user group.
With the accumulation of users, more and more imitators will join under the influence of
existing users. Therefore, this group of users is related to the number of existing users.
Finally, the market share of the product will stabilize. In addition to these two types
of users, external factors, such as infrastructure, should also not be ignored. Therefore,
Bass et al. introduced the external factor function on the basis of the Bass diffusion model,
and constructed the generalized Bass diffusion model (GBDM) [32], the general form of
which is shown in Equation (6):

76 = (5 p- 5 ) = F0) (1) ©

where f is the index of the time period; f(t) is the number of newly added users in period
t; g is the innovation factor, i.e., the influence of the product’s own attributes on its sales
volume; p is the imitation factor, i.e., the influence of others’ use and recommendation on
product sales; m is the final number of vehicles; F(t) is the integral of f(t), and represents
the number of users accumulated up to the period t; x(t) is the influence of external factors
on product sales in period t.

In this model, the convenience of hydrogen refueling stations is considered an external
factor. In the models of Sang Yongpark et al. [27] and Yushan Li et al. [28], the convenience
of hydrogen refueling stations can be calculated according to the number of stations, as
shown in Equation (7):

y(t) —y(t-1)
y(t=1)
where y(t) is the number of hydrogen refueling stations in period ¢; and a is the influence

coefficient of the number of hydrogen refueling stations.

Therefore, there are mainly four parameters to be determined in GBDM: the final
number of vehicles m, the innovation factor g, the imitation factor p, and the influence coef-
ficient of the number of hydrogen refueling stations, a. In addition, the above parameters
may not be identical because of the differences between passenger cars and commercial
vehicles. For fuel cell vehicles, due to the limited sales data, the parameters in GBDM
are generally estimated through the sales data of similar alternative fuel vehicles, such as
natural gas vehicles.

x(t) =1+a- @)

2.4. Station Location Optimization Model

The node-based location optimization model is adopted in this paper. In the node-
based model found in previous research, the set covering model and p-median model
are commonly used. The goal of the set covering model is to maximize the hydrogen
demand, meeting the given driving time when given the number of stations, as shown in
Equation (8):

max Zi hi-x; (8)
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where /; is the hydrogen demand at zone 7, and it is equal to the sum of ;s and hjc,,; x; is
a 0-1 variable and is equal to 1 when the driving time from zone i to the nearest hydrogen
refueling station is less than the given arrival time, otherwise it is 0.

The goal of the p-median model is to minimize average driving time, with hydrogen
demand as a weight when given the number of hydrogen refueling stations, as shown in
Equation (9):

min Zi hi'bi (9)

where b; is the driving time from zone i to the nearest hydrogen refueling station.

The two models have their own priorities. The set covering model tends to locate the
stations more evenly in space, while the p-median model tends to concentrate the stations
in those areas with high hydrogen demand, especially when the hydrogen demand in some
areas is much higher than that in other areas.

Based on the set covering model and the p-median model, we made some improve-
ments and establish the improved set covering model, as shown in Equation (10):

max ) . hy- Z]‘ wj-zji (10)

where j is the index of the given driving time from a zone to the station; w; is the weight
of the given driving time j; z; is a 0-1 variable, and it is equal to 1 when the driving time
from zone i to the nearest station is less than the given driving time j, otherwise it is 0. In
the improved set covering model, when determining whether a zone is covered or not,
we can use multiple given times, rather than a single one as used in a set covering model,
so it can reflect the impact of different refueling times. It can also avoid the phenomenon
of an excessive concentration of stations because the selection of the given driving time
is discrete.

2.5. Algorithm Procedure

In terms of solving the improved set covering model, the greedy algorithm is adopted.
When calculating the location of the newly added station, it traverses all the candidate
zones that have not yet built a hydrogen refueling station, and calculates the increment of
the objective function when the newly added station is located at this zone according to
Equation (10), as shown in Equation (11):

O(S(t—1)+ Su(t) +5s) = Zi h;- Z], w].,z]si(t—l)+sn(t)+s (11)

where S(t — 1) is the set of zones where a station is constructed up to the period of t — 1;
S (t) is the set of zones where a station is constructed in period ¢; and s is the zone where
the newly added station is constructed. The calculation O(S(t — 1) + S, (t) + s) gives the
value of the objective function in Equation (10) if zone s is selected to build a new station.

. . S(t=1)4Su(t
Likewise,z -i( )+5n(t)+s

represents the value of z;; if the zones in set S(t — 1) + S, (t) +s
have already built stations. When different zones are chosen, the value of Zji will also
change. Our target is to get the set of zones to make the objective function largest. Then
the candidate zone with the largest objective function would be selected as the location of

the new station and added to S, (t), as shown in Equation (12):
Su(t) = Su(t) + s where max O(S(t —1) + Su(t) +5) (12)

In each period, there is a double loop to determine the location of the stations, until
the number of stations established at this stage reaches the given number that would be
built in period t and, finally, we can obtain the set of stations in period t by Equation (13):

S(t) = S(t — 1)+ Su(t) (13)

The process is shown in Figure 1.
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{ Start Choose a candidate node s

v v

Determine nodes having Calculate the objective
stations in last period S(7-1) function O(S(1-1)+Sn(1)1s)

tations built in this
period up to target 2

Select the node where the

objective function is
Output S(2)—S(t-1) +Sn(1) optimized as the next

construction location

Figure 1. The procedure of calculating the location of stations in each period by a greedy algorithm.

The calculation procedure of the whole model is shown in Figure 2.

The number of HRSs to Determine the state at the «—
be built in this period g start of the period
( - ) (" Calculate the hydrogen )
Determine the parameters demand at the end of the
| in the model J | period by GBDM
( + ) (" Calculate the location of
Calculate final hydrogen HRSs to be built in this
demand at each node .
L + ) L period J
Initialization Calculate all Periods?
) + ’ Yes
Calculate the final station |
location Output

Figure 2. The calculation procedure of the whole model.

Step 1: Determine the parameters in the model, including the weight of each socioe-
conomic factor in the spatial distribution of hydrogen demand (these can be obtained
through a questionnaire-based survey or from previous research), the value of m, p, g,
and a for different vehicles in GBDM, as shown in Equations (6) and (7) (these can be
obtained through sales data for similar new energy vehicles, such as natural gas vehicles)
and the value of the given driving time in the improved set covering model as well as
the corresponding weight (these can be estimated by referring to the survey on how long
drivers would spend in refueling).

Step 2: Calculate the final hydrogen demand at each zone. Hydrogen demand for pas-
senger cars is calculated by weighting socio-economic factors, as shown from Equation (1)
to Equation (4), while this factor regarding commercial vehicles is calculated by information
on bus routes, as shown in Equation (5).

Step 3: Initialization, that is, to determine the initial state, including the existing
stations, the existing hydrogen demand, and the zones where hydrogen refueling stations
cannot be built.

Step 4: Calculate the final set of station locations through the greedy algorithm, as
shown in Figure 1; they are also set as candidate zones when calculating the station
locations in each period.

Step 5: Determine the state at the beginning of the period, such as the hydrogen
demand at each zone F;(f + 1), the set of stations that have already been built 5(¢), and the
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external function x;(t). In addition, the number of stations to be built in this period will
also be added to the model.

Step 6: According to the state determined in Step 5, calculate the hydrogen demand of
passenger cars and commercial vehicles in each zone at the end of this period by GBDM,
as shown in Equation (6), as well as the hydrogen demand at the beginning of the next
period in Step 5. By making a formula change, the calculation can also be achieved in the
following form:

tHl Fi(u)
R =FO+ [ (a9 )00 = R (19
where u is a time between f and ¢ + 1.

Step 7: According to the hydrogen demand calculated in Step 6 and the input number
of stations to build in this period, calculate the location of the newly added stations in this
period by the greedy algorithm shown in Figure 1. The candidate zones in this step are the
set of locations calculated in step 4.

Step 8: Calculate the state and the location of stations in each period through iteration.

3. Case Study
3.1. Data and Calculation Results

This paper takes the Jiading District of Shanghai as an example of a region suitable for
locating hydrogen refueling stations. First of all, Jiading District was divided into zones of
transport demand. The results are shown in Figure 3. Zones with the same letters belong
to the same town. The distance between adjacent zones can be obtained through the Baidu
Map, and the road speed limit is set as 60 km/h.

According to the planning in the Energy-saving and New Energy Vehicle Technology
Roadmap 2.0, and the hydrogen industry policy in the Jiading District, it is estimated that
the final number of fuel cell passenger vehicles in the Jiading District will be 400,000, that
the average daily driving distance of passenger vehicles is 100 km, and that the hydrogen
consumption of each car will be 0.7 kg /100 km. In terms of commercial vehicles, fuel cell
buses will account for 50% of all buses at the final stage. The given driving times in the
improved set covering model are set as 3 min, 5 min, and 8 min, and the corresponding
weights are 1, 4, and 1.

In terms of the spatial distribution of hydrogen demand, the factors of education
and income were selected in this paper, and then the result was weighted according to
population. The population, income, and education of each town and street in Jiading
District could be searched on http:/ /www.jiading.gov.cn/ (accessed on 15 February 2021),
and the information on bus routes could be searched on http://www.jd-bus.com/Web/
Index.aspx (accessed on 15 February 2021). According to the research results of Sylvia Y.
He et al. [24], the weight of the income factor is 0.58, and the weight of the education factor
is 0.42. The equations used in the calculation process are as shown, from Equation (1) to
Equation (5). The final hydrogen demand density at each zone is shown in Figure 3.

In terms of parameters in the generalized Bass diffusion model, according to the
research results of Sang Yongpark et al. [27], Yushan Li et al. [28], Michael H. Shoe-
maker et al. [26], and Livia Moraes Marques Benvenutti et al. [33], the values of each
parameter are shown in Table 1.
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Hydrogen demand
density

>1800
1000
550 ’
400 H“'ﬁ Stations to build
::g H“-ﬁ Stations existing or under construction
0

Figure 3. Zones of Jiading District, final hydrogen demand density, and locations of hydrogen refueling stations (unit:

kg/km?).

Table 1. The value of the parameters in GBDM.

Parameter 4 q a m
Passenger cars 0.0001 0.1074 5.3853 400,000
Commercial vehicles 0.0078 0.0391 5.3853 account for 50%

Currently, 6 hydrogen refueling stations have been built or are under construction
in Jiading District, respectively located at H13, H14, ]7, ]39, J42, K19. When calculating
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the final locations of hydrogen refueling stations, it is assumed that hydrogen refueling
stations can be built at all the zones. According to the hydrogen energy industry planning
of Shanghai and Jiading Districts, a total of 18 stations are planned to be built in Jiading
District by 2025. The locations of 12 additional hydrogen refueling stations have been
determined in this paper. The locations of hydrogen refueling stations at the final stage are
shown in Figure 3.

One year is taken as a period in this paper. It is assumed that 3 hydrogen refueling
stations will be built every year before 2025, and the construction of hydrogen refueling
stations after 2025 will not be included in the plan. Finally, the construction locations of
hydrogen refueling stations in each period have been shown in Table 2.

Table 2. Construction locations of hydrogen refueling stations in each period.

Period 0 (Existing) 1 2 3 4

Locations H13,H14,]7,
of stations J39, J42, K19

E1, L5, G5 C7, K8, B6 C17,]22,]5 G3, A3,L17

3.2. Discussions
3.2.1. Hydrogen Demand Growth Trends and the Impact of Hydrogen Refueling Stations

Figure 4 describes the changing trend of hydrogen demand for commercial vehicles
and passenger cars. It can be seen that, in the early stages of producing hydrogen vehicles,
commercial vehicles developed faster than passenger cars. Through the comparison of
the innovation coefficient and imitation coefficient of the two types of vehicle, it can be
seen that the innovation coefficient of commercial vehicles is obviously larger than that
of passenger cars, indicating that people are more cautious about the choice of their own
vehicle in the field of passenger cars, and prefer to choose the cars that have been most
widely bought. In the initial location of hydrogen refueling stations, candidate zones near
the bus routes, such as E1, G5, and L5, were also selected first. The top 11 zones with the
most hydrogen demand for buses and hydrogen refueling stations nearby in Period 1 are
shown in Table 3.

1400 r r r r r r r r r
—&— Passenger cars ._,-"c
1200 |~ Commercial vehicles ’6,-" ]
o Passenger cars without stations
= 1000 F| " Commercial vehicles without stations T J
é .
o 8OO
o
o 600 f
o
=
g o400r
T
200
0=
0

Period

Figure 4. Trends in hydrogen demand at different periods.
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Table 3. The top 11 zones with the most hydrogen demand for buses and stations nearby, in Period 1.

Final Hydrogen Demand for

Zone Buses (kg) Station Nearby
D7 533.98 El
D5 524.775 E1l
126 415.45 J42
C24 313.145 G5
G6 282.85 G5
D2 237.38 E1l
136 175.14 139
L14 158.825 L5
Cc22 151.24 G5

n 145.99 K19
L8 145.73 L5

In addition, compared with the results without taking into account new stations, it is
also evident that the construction of stations has a positive effect on hydrogen demand,
especially in terms of passenger cars. As can be seen in Figure 4, after the initial periods of
rapid growth, there was a significant slowdown in Period 5, mainly because there were
no stations built after that. On the whole, the calculation results of hydrogen demand in
each period in this paper are relatively small, mainly for two reasons. Firstly, it is assumed
that no hydrogen refueling station will be built after Period 5; secondly, the influence of
external factors, such as policies, has not been taken into account. Further work needs to
be conducted that includes these two parts in the model.

According to the research results of Rongheng Lin et al. [25], in a particular region, the
relationship between the average driving time (or distance) with demand as a weighting
agent, and the number of newly added hydrogen refueling stations can be expressed using
the calculations from Equation (15):

T=uy"® (15)

where T is the driving time to the nearest hydrogen refueling station; y is the number of
newly added stations; u and v are two coefficients that are related to the transportation
network and the distribution of hydrogen demand in the region. In general, the value of v is
between 0.3 and 0.5. Using the hydrogen demand distribution and transportation network,
the relationship between the average driving time and the number of new hydrogen
refueling stations in Jiading District can be calculated. The fitting curve is shown in
Figure 5, and the fitting calculation has been given earlier in Equation (16):

T = 6.074-y~931% (16)

Time to the nearest station/min

2 4 6 8 10 12
Number of new stations

Figure 5. Relationship between average driving time and the number of new stations in Jiading District.
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That is, v is equal to 0.3149, within the range of 0.3-0.5 obtained in the previous
literature. In addition, in terms of the error of fitting results, SSE = 0.1248 and R? =0.9885,
which also indicate that the fitting result is accurate enough.

3.2.2. Comparison of Three Station Location Optimization Models

In this paper, the set covering model has been improved. Here, the set covering model,
the improved set covering model, and the p-median model are compared. Figure 6 shows
the station location of the set covering model and the p-median model when the given
driving time is 5 min in the set covering model. Table 4 shows the comparison of specific
factors of the three models in Period 10.

Hydrogen demand
density

>1800

400 B  stations to build
B stations existing or under construction

(@) (b)

Figure 6. Station locations: (a) set covering model; (b) p-median model (unit: kg/km?).

Table 4. Comparison of three station location optimization models.

Model Average Driving Time with Average Driving Time with Maximum Driving Time
Demand as Weight (min) Space as Weight (min) (min)
Set covering model 3.08 3.08 7.8
Improved set covering model 2.78 3.16 8.6
p-median model 2.46 3.56 9.4

It can be seen that the set covering model is more inclined to cover more zones in
geographical space, and the distribution of hydrogen refueling stations is more uniform
in that space, which makes the space-weighted average driving time and the maximum
driving time of this model the shortest of the three models. However, the set covering
model treats all zones covered equally, which may give some zones with high hydrogen
demand a relatively long driving time, such as the new hydrogen refueling station in Zone
K5. Therefore, the demand-weighted average driving time of the set covering model is the
longest. The goal of the p-median model is to minimize the average driving time, with
hydrogen demand as weight, so the model is optimal in this term. However, the p-median
model tends to locate stations at zones with high hydrogen demand, in order to reduce the
driving time at these zones. When the driving time of these zones is short enough, such
optimization is unnecessary. Instead, it may ignore the zones with low hydrogen demand,
resulting in a biased spatial distribution of stations. For example, there are no hydrogen
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refueling stations in the north and east of Jiading District when using the p-median model.
Therefore, the space-weighted average driving time of the p-median model is the largest.
The improved set covering model proposed in this paper improves the disadvantages
of the above two models so that the model can not only take into account some zones
with large areas but low hydrogen demand but also give those zones with high hydrogen
demand a relatively short driving time.

The above comparison results show that compared with the set covering model and
p-median model used by previous scholars, the improved set covering model established
in this paper can take into account the advantages of both models. Besides, flow-based
models are also commonly used in the literature for station location optimization. However,
the acquisition of flow data is one of the difficulties in the application of such models,
which is also the reason why this paper chooses the node-based model for station loca-
tion optimization.

In addition to station location optimization, more and more attention is given to the
determination of hydrogen demand in the hydrogen refueling station location model,
because meeting the demand of users more efficiently is the goal of the hydrogen refueling
station location model, so the estimation of hydrogen demand has a direct influence on the
location selection of hydrogen refueling stations. Some scholars have considered the spatial
distribution of hydrogen demand and station location optimization, such as Rongheng
Lin et al. [20], while other scholars consider the growth of hydrogen demand with time
and station location optimization, such as Yongpark et al. [22] and Yushan Li et al. [23].
In this paper, these three aspects are included in the model, and according to the actual
situation, hydrogen demand is divided into passenger cars and commercial vehicles to
build a more comprehensive model.

4. Conclusions

In this paper, a multi-period hydrogen refueling station location model is proposed,
including the modeling of the spatial distribution of hydrogen demand, the modeling of
variation of hydrogen demand over time, and the modeling of station location optimization.
In addition, there are differences in modeling methods and data according to the differences
between passenger cars and commercial vehicles. In terms of the spatial distribution of
passenger cars, the weighted method of various socioeconomic factors is adopted. In this
step, those factors with different units are normalized. In terms of commercial vehicles,
buses are the main consideration, and the hydrogen demand is directly on the network of
bus routes. In the modeling of the variation of hydrogen demand over time, the generalized
Buss diffusion model has been adopted, and the number of hydrogen refueling stations is
taken as the external function. In regard to the station location optimization model, the set
covering model is improved, and the greedy algorithm is used to solve problems. Finally,
taking the Jiading District of Shanghai as an example, the growing trend of passenger cars
and commercial vehicles, and the locations of hydrogen refueling stations in each period,
are calculated. Through the analysis of the results, it can also be seen that the construction
of hydrogen refueling stations plays a major role in the early stage of the promotion of
HFCVs. The results of the three location optimization models are compared, to illustrate
the effectiveness of the improved set covering model in this paper.

Further research can be carried out from the following perspectives. The classification
of hydrogen demand can be more carefully assessed and, in the generalized Bass diffusion
model, in addition to the factor of hydrogen refueling stations, other external factors, such
as government policies and the prices of HFCVs and hydrogen, can also be considered,
which may make the prediction of hydrogen demand more accurate. In terms of the
algorithm, the greedy strategy is an approximate algorithm. Although it has high efficiency,
the calculation results may not be accurate enough. Thus, the algorithm can be optimized
to make the calculation results more reliable.
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