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Abstract: The actual energy saving effect of plug-in hybrid vehicles (PHEVs) is usually evaluated by
the electricity utility factor (UF) in a standardized charging pattern. To further evaluate the impacts
of the charging pattern heterogeneity of PHEV, actual vehicle travel data are adopted to classify the
charging pattern in seven typical Chinese cities and derive its impacts on actual UF. Additionally, UF
curves are fitted as power exponential functions. The result shows that during daily usage, UF can
reach over 0.8 for 50 km all-electric-range PHEVs for the 77% frequently charging adopters, while it
is as low as 0.1 for the 3% rarely charging adopters. Comprehensive UF values at an actual charging
pattern are 0.53 and 0.68 for the 50 km and 80 km all-electric-range PHEVs, and the values are 0.03
and 0.04 smaller than the standard UF, respectively.

Keywords: PHEV (plug in hybrid electric vehicle); charging pattern; utility factor; fleet

1. Introduction

As the main segment of the global electric vehicle (EV) market, plug-in hybrid electric
vehicles (PHEVs) stock was 1205, 1838 and 2377 from 2017 to 2019, and comprised of 33%
to 38% of the total EV stock, according to market data statistics by the International Energy
Agency (IEA). Meanwhile, the number of worldwide registered PHEVs increased by more
than 500,000 per year since 2018, accounting for over 27–33% of electric vehicles [1]. For
example, in Europe (Germany and United Kingdom), PHEV market share has reached over
40% of EV market. Even in China, PHEV still accounts for 21% in 2019, with well-known
battery electric vehicle (BEV) friendly policies [2].

Promoting plug-in hybrid electric vehicles (PHEVs) is viewed as a promising strategy
to reduce the fuel consumption and greenhouse gas (GHG) emissions to peak carbon emis-
sion in the transportation sector [3,4]. However, the complexity of the energy source makes
it difficult to directly evaluate the different energy consumptions. PHEVs have two kinds of
onboard energy storage, the electricity stored in the battery and the chemical energy stored
in fuels (e.g., gasoline, diesel), to drive its operation alone or simultaneously [5,6]. The
energy consumption in different energy modes varies dramatically with driving conditions
and vehicle energy management strategies. Therefore, it is difficult to determine the actual
energy consumption of PHEVs due to the combination of different energy sources, which
are affected by driving conditions and driver preferences. An effective approach is needed
to clarify the coupling between different energy sources while quantitatively describing
their characteristics.

Electricity utility factor (UF) recommended by Society of Automotive Engineers (SAE)
was widely used in research to evaluate the fuel consumption and carbon emission of
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PHEVs [7–9]. Onat et al., used the travel survey results to depict the travel distance dis-
tribution of 50 states in the United States and the PHEV carbon emission reduction potential
according to UF [10]. Wu et al. [11], Requia et al. [12] and Wang [3,13] take similar measures
to research PHEV carbon emission in the United States, Canada and China. Currently UF
has been widely adopted in the PHEV energy consumption and emission regulations in the
United States [7,14], EU [15], Japan [16] and China [17]. These standards are based on different
travel patterns in different countries and are effective in their own contexts.

UF was defined as the ratio of electricity-driven range (usually the charge-depleting
[CD] range) to the total distance. Standard UF calculation follows the assumption that
each PHEV charge once a day [7]. However, it is not always the actual situation, especially
in China. Many consumers charge less than once a day due to the inconvenience to the
chargers [18]. Besides, most of the research are based on the travel pattern collected from
conventional vehicles instead of PHEVs. However, there are still some differences in the
travel patterns of conventional vehicles and PHEVs [5]. With the commercialization of
PHEVs, it is becoming possible to use PHEV travel data for a more accurate analysis of
energy consumption. Smart et al., used the actual PHEV driving pattern to correct UF [19],
and more actual driving and charging patterns are needed to derive actual energy saving
and emission reduction analysis. Thus, actual PHEV charging behavior impacts on UF
hasn’t been clearly illustrated.

Actual PHEV travel data are adopted to analyze real PHEV charging patterns and
evaluate its impacts on electricity UF. The ratio of actual distance between adjacent charging
events to New European Driving Cycle (NEDC) tested range (A/T ratio) is defined to
quantify actual charging patterns. Sales weighted actual UF and UF-fitting curves for seven
typical Chinese cities with different charging patterns are derived from the data.

2. Method and Data Introduction
2.1. Data Overview

The data used in this study is obtained through the remote vehicle monitoring platform
that adheres to Technical specifications of remote service and management system for electric
vehicles, published in 2016 [20]. It is based on PHEV actual big data travel in China cities
collected via National Monitoring and Management Centre for New Energy Vehicles
(NMMC-NEV). NMMC-NEV is a platform collecting actual travel data from different
automobile companies. Actual data includes time, speed and distance at a polling frequency
of 0.1 Hz.

Travel data for seven typical Chinese cities are chosen to calculate corresponding
UF curves, that is, Beijing, Shanghai, Tianjin, Xi’an Chengdu and Hangzhou, as shown
in Figure 1. PHEVs are popular in the above cities with over 4000 PHEVs sold in 2018,
except for Beijing (775 PHEVs sold in 2018) due to their BEV-friendly policy [21]. There are
over 69,000 battery electric vehicles sold in Beijing, making it one of the biggest plug-in
electric vehicle market in China [21]. Although Beijing has not yet included PHEV into
plate-lottery-free new energy vehicles (NEVs), which is one of the most attractive policies
for NEV consumers, PHEVs can be licensed as conventional vehicles. Here we include
Beijing into our research to show more representativeness of different cities. In terms of
geographical distribution, Beijing, Tianjin and Xi’an are in northern China, while Shanghai,
Chengdu, Shenzhen, Hangzhou are in southern China with a higher average ambient
temperature. In terms of urbanization level, Beijing, Shanghai and Shenzhen are first-tier
cities, while Tianjin, Xi’an, Chengdu and Hangzhou are second-tier cities. Tiers of cities are
administrative partitions by the Chinese government according to the political, economy,
and city size. The first-tier areas include the urban mega areas, including Beijing, Shanghai,
Guangzhou and Shenzhen. The second-tier areas refer to provincial capital cities, otherwise
known as direct-controlled municipalities [22]. Plug-in electric vehicle markets develop
quickly in the first-tier and second-tier cities.



World Electr. Veh. J. 2021, 12, 169 3 of 12

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 3 of 13 
 

Guangzhou and Shenzhen. The second-tier areas refer to provincial capital cities, other-
wise known as direct-controlled municipalities [22]. Plug-in electric vehicle markets de-
velop quickly in the first-tier and second-tier cities. 

Seven PHEV models of four popular PHEV brands sold in China are selected in the 
above cities, including BYD Qin, BYD Tang, BYD Song, Roewe eRX5, Roewe EI6, GAC 
GA3S and BMW X1. These models include compact sedans, compact SUVs and medium 
SUVs. The vehicles share an all-electric range (AER) of 53–80 km and a NEDC-tested fuel 
consumption of 1.4–2.0 L/100 km. Vehicle attributes are listed in Table 1. The data com-
prise a total of 527 PHEVs with a coverage of seven cities, 5,830,000 km and 11,036 driving 
days. As the brief summary shows in Table 2, the data set includes 45–87 cars and 10,000 
car-days in each city, with an average daily vehicle kilometers travelled (DVKT) of 43–55 
km. 

According to the data set, the average daily vehicle kilometer travelled of each city is 
52.9 km. Among the seven cities, the average daily mileage in descending order is Shen-
zhen (55.2 km), Hangzhou (54.8 km) and Shanghai (54.5 km), Tianjin (49.7 km), Beijing 
(47.1 km) and Xi’an (41.1 km) as shown in Table 2. This is mainly due to different urbani-
zation levels and urban traffic congestion. The detailed daily mileage distribution is lo-
cated in Section 3.1. 

 
Figure 1. Cities spatial distribution. 

Table 1. Vehicle attributes used in this research. 

Brand Model 
AER 
(km) 

Battery Capacity 
(kW·h) 

Motor Power 
(kW) 

Engine Power 
(kW) 

Fuel Consumption * 
(L/100 km) 

Vehicle Num-
bers 

BMW X1 PHEV 60 14.7 70 100 1.8 97 
GAC GA3S 58 11.56 130 71 1.8 49 
BYD Qin 80 13 110 115 1.4 81 
BYD Tang (DM) 100 18.4 110 153 2 105 
BYD Song 80 16.9 120 118 1.4 15 

Roewe ei6 53 9.1 80 80 1.5 63 
Roewe eRX5 60 12 56 119 1.6 101 

* NEDC comprehensive Fuel consumption. 

Beijing

Xi'an

Chengdu

Tianjin

Shanghai
Hangzhou

Shenzhen

Figure 1. Cities spatial distribution.

Seven PHEV models of four popular PHEV brands sold in China are selected in the
above cities, including BYD Qin, BYD Tang, BYD Song, Roewe eRX5, Roewe EI6, GAC
GA3S and BMW X1. These models include compact sedans, compact SUVs and medium
SUVs. The vehicles share an all-electric range (AER) of 53–80 km and a NEDC-tested fuel
consumption of 1.4–2.0 L/100 km. Vehicle attributes are listed in Table 1. The data comprise
a total of 527 PHEVs with a coverage of seven cities, 5,830,000 km and 11,036 driving days.
As the brief summary shows in Table 2, the data set includes 45–87 cars and 10,000 car-days
in each city, with an average daily vehicle kilometers travelled (DVKT) of 43–55 km.

Table 1. Vehicle attributes used in this research.

Brand Model AER (km) Battery Capacity
(kW·h)

Motor Power
(kW)

Engine Power
(kW)

Fuel Consumption *
(L/100 km)

Vehicle
Numbers

BMW X1 PHEV 60 14.7 70 100 1.8 97
GAC GA3S 58 11.56 130 71 1.8 49
BYD Qin 80 13 110 115 1.4 81
BYD Tang (DM) 100 18.4 110 153 2 105
BYD Song 80 16.9 120 118 1.4 15

Roewe ei6 53 9.1 80 80 1.5 63
Roewe eRX5 60 12 56 119 1.6 101

* NEDC comprehensive Fuel consumption.

Table 2. Data summary.

City Beijing Chengdu Hangzhou Shanghai Shenzhen Tianjin Xi’an

Effective days 10,372 18,182 16,932 17,022 19,440 16,145 12,275
Total distance (km) 488,521 1,083,829 928,042 927,699 1,073,282 803,052 529,543

Number of
vehicles 45 77 77 77 77 87 87

Average DVKT (km) 47.1 59.6 54.8 54.5 55.2 49.7 43.1
DVKT standard deviation (km) 56.2 64.8 64.2 58.6 62.8 54.5 55.8

Average speed (km/h) 24.8 27.6 25.8 28.3 26.8 27.8 24.2

According to the data set, the average daily vehicle kilometer travelled of each city is
52.9 km. Among the seven cities, the average daily mileage in descending order is Shenzhen
(55.2 km), Hangzhou (54.8 km) and Shanghai (54.5 km), Tianjin (49.7 km), Beijing (47.1 km)
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and Xi’an (41.1 km) as shown in Table 2. This is mainly due to different urbanization levels
and urban traffic congestion. The detailed daily mileage distribution is located in Section 3.1.

2.2. Data Processing

The data processing is carried out with Matlab (ver. R2018b) by Mathworks®. Data
processing includes the following steps:

1. Normalize data format. The data format is unified and adjusted according to the
time sequence to correct any changes in data sequencing that may occur during
data uploading.

2. Complete missing points. Data overflow and data loss may lead to possible missing
data. The missing points are smoothed via interpolation.

3. Segment trips. The data is segmented—any two adjacent data points with an interval
longer than 30 min are cut into two trips. An individual standard is 30 min to keep
in line with the previous research in this field [23], and can be adjusted according to
research needs. The threshold of 30 min may lead to clustering of some short trips,
e.g., short stops at a convenience store. However, the trip classification in this research
is applied for the identification of charging events. PHEV consumers rarely charge
if they stop less than 30 min. Therefore, the 30 min threshold is reasonable for this
research to segment trips.

4. Delete outlier trips. Because the speed limit on expressways in China is 120 kph
and statutory provisions limit continuous driving to 4 h [24], single trips longer than
480 km are not allowed. To include complete data as much as possible, trips longer
than 960 km (double the criteria) are deleted to avoid the possible data error. At the
same time, trips lasting less than 5 min or 1 km are omitted to avoid data deviation.

5. Derive DVKT. Trips with the same departure date are defined as trips on the same
day. Distances driven by the same vehicle on the same day are accumulated as DVKT.

6. Define charging events. Charging events are not directly recorded and are therefore
defined based on changes in the state of charge (SOC). A charging event is defined
when the starting SOC of a new trip is 10 percentage points higher than the arrival SOC
of the prior trip, and the time interval between these two trips is within 24 h. The time
limit aims to avoid data loss. Note 10% is also an individual threshold adopted in this
research. SOC may recover a little (2–3%) after the stop according to the actual travel
log data, without actual charging sessions. To avoid the miscalculation of charging,
an individual threshold of 10% is adopted to exclude the stops without charging.

7. Utility factor calculation. Utility factor calculation is based on daily mileage distri-
bution and the mileage distribution during two charging events. Check Section 2.3.2.
for more details.

2.3. Method
2.3.1. Travel and Charging Pattern

Travel pattern includes DVKT distribution. For a more convenient discussion of travel
patterns, the gamma distribution is assumed for daily driving distance and fitted using
the DVKT data. Lin and Greene were the first to use the gamma distribution for daily
driving distance in the analysis of plug-in electric vehicle energy consumption due to its
non-negativity, skewness flexibility, and specification ease [25]. The gamma method was
later validated by Lin et al., using GPS-tracked driving data [26], and it has been commonly
adopted in plug-in electric vehicle energy studies [27–29]. The gamma distribution is
described as follows [27,28]:

y = f = xα−1e−x/β/Γ(α) (1)

The gamma distribution can be specified with two parameters: scale β and shape
α. The gamma distribution expectation, which can be expressed as α·β, can be estimated
by dividing the annual driving distance by 365. The mode of the gamma distribution is
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(α − 1) β and can be approximated by the daily round-trip distance to work or the most
frequent destination. As a result, the gamma distribution can be specified by knowing the
annual distance and the commuting distance, as described in Lin et al. [28].

As for the charging pattern, the ratio of actual distance between adjacent charging
events to NEDC tested range (A/T ratio) is defined to evaluate the actual charging pattern.
Note that NEDC tested range is adopted here because it is available for all these vehicle
models to make it comparable. A/T ratio is less than one if the consumers charge before
the battery is exhausted, and is over one if the actual distance between adjacent charging
events is longer than the NEDC tested range, which the latter is common for PHEV users
due to the dual energy sources. Consumers with an A/T ratio≤ 1.5 are defined as frequently
charging adopters, 1.5 < A/T ratio ≤ 5 are occasionally charging adopters, and A/T ratio > 5 are
defined as rarely charging adopters. Compared to commonly used charging frequency, A/T
ratio removes the vehicle CD range variation effect and can clearly illustrate the consumer
charging preference.

2.3.2. Utility Factor

Only the driving distance and range of PHEV (i.e., the nominal or actual range) are
required for the derivation of UF. If the daily distance travelled, depicted by dk, is less than
or equal to the CD range, depicted by D, then 100% of the driving occurs in the CD mode.
In turn, if dk is higher than D, then the CD range divided by the total miles defines the
driver’s fraction of the CD mode traveled. Thus, UF is defined as the sum of the minimum
of either D or the driving distance of dk, divided by the sum of all distances covered. This
calculation is expressed as:

UF(D) =
∑dk

min(dk, D)

∑dk
dk

(2)

Furthermore, actual UF is defined as UFa based on actual charging frequency. Con-
sidering actual charging frequency, di is replaced by actual distance traveled during
two charging intervals (d′k) in the calculation, and the UFa can be expressed as:

UFa(D) =
∑d′k min(d′k, D)

∑d′k d′k
(3)

To easily apply the UF curve in energy saving and carbon emission analysis in the
regulations, power exponential function is adopted to fit the UF curve as:

UF = 1− exp

{
−
[

C1·
(

x
normdist

)
+ C2 + . . . + C9·

(
x

normdist

)9
]

(4)

The United States, EU and Japan offered the fitting parameters of 6-order or 9-order
as needed [7,14–16].

Furthermore, sales-weighted average UF in 2018 is derived from the sales-weighted
utility factor curve in different cities in China. Cities with more than 1000 PHEV sales in
China accounted for 83% of PHEV sales in 2018 [21]; travel pattern in these cities were
approximated by the above seven cities with existing data according to the city level and
the regions. Note that sales data in 2018 is adopted as the weighted factors to illustrate the
utility factor in 2018, to represent utility factor at the background of the PHEV technology
and market in 2018, and the weighted factors could be different for different UF factors in
different scenarios.

3. Results and Discussion
3.1. Travel and Charging Pattern

The gamma distribution fitting results of each city are shown in Table 3, and the
probability distribution curve and cumulative probability distribution curve are shown
in Figure 2. According to the gamma travel distribution, 59~69% of the average daily



World Electr. Veh. J. 2021, 12, 169 6 of 12

travel distance is less than 50 km, and 78~86% of the average DVKT is less than 80 km.
Among them, Xi’an has the highest proportion of short DKVT (less than 50 km) days at
nearly 70%; Shanghai and Shenzhen have the largest proportion of days with more than
80 km (19~20%). Furthermore, to ensure the indeed difference between different cities,
ANOVA and Student’s t-test are carried out on the daily mileages between each two cities.
It turns out that the assumption of all the cities are coming from the same data source can
be rejected at the significance level of 1%. As for the comparison between each two cities, it
turns out that most cities can reject the same data source assumption at the significance
level of 5% from the student’s t-test, except for Beijing-Tianjin, Shanghai-Hangzhou and
Shenzhen-Chengdu, indicating different travel patterns are representative among cities.
Moreover, Beijing and Tianjin, Shanghai and Hangzhou are very close to each other, and it
is acceptable to have similar travel patterns. It is necessary to further understand the travel
heterogeneity between Shenzhen and Chengdu with more data, which is not available in
this research. Check the Appendix A for the ANOVA and Student’s t-test.

Table 3. DVKT fitted gamma distribution.

City α 1/β DVKT ≤ 50 km (%) DVKT ≤ 80 km (%)

Beijing 1.51 31.37 64.0 84.0
Chengdu 1.58 34.23 59.8 78.4

Hangzhou 1.66 29.17 65.8 84.0
Shanghai 1.65 31.76 59.3 80.5
Shenzhen 1.54 33.36 60.9 81.0

Tianjin 1.58 29.95 65.1 83.8
Xi’an 1.52 29.31 69.1 86.0
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The ambient temperature impact on DVKT is illustrated via the daily mileage variation
in different seasons. As shown in Table 4, DVKT varies significantly with different seasons,
especially in the cities with distinct four seasons. In Beijing, Shanghai, Tianjin, Chengdu
and Hangzhou, there are fewer trips in winter due to the low temperature; therefore, the
DVKT difference between winter and summer can reach up to 7–14%. However, DVKT
difference between summer and winter in Shenzhen is only 4%, where the average yearly
ambient temperature is 20 ◦C. Here spring covers March, April, May, summer covers June,
July, August, autumn covers September, October, November, and winter covers December,
January and February.
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Table 4. Average daily vehicle kilometers travelled in different seasons.

City Spring (km) Summer (km) Autumn (km) Winter (km)

Beijing 44.9 55.3 50.6 49.3
Chengdu 59.7 64.1 63.1 59.7

Hangzhou 56.3 60.4 57.6 52.7
Shanghai 58.7 61.2 55.0 53.5
Shenzhen 56.8 59.0 57.6 58.5

Tianjin 50.3 51.8 52.7 45.0
Xi’an 49.9 50.3 45.9 49.6

Average distance travelled between two adjacent charging events is 67% to 138% of
NEDC tested range in the seven cities, that is, A/T ratio varies from 0.67 to 1.38 in the
seven cities. As shown in Figure 3b, based on actual travel characteristics and charging
behaviors, 70.5~87.4% of PHEV owners in these seven cities with an average of 77.0%
are frequent charging adopters, and only 2.4~6.1% of PHEV owners rarely charge (rarely
charging adopters) during daily use with an average of 3.0%. Among these seven cities,
there are most rarely charging adopters in Chengdu while there are least rarely charging
adopters in Shanghai, however the differences among cites are limited. Specially, there
is a unique double-peak phenomenon in the range of 0 < A/T ratio ≤ 1.5 in Shenzhen
(Figure 3a), which indicates two different charging patterns in Shenzhen.
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Figure 3. Actual charging pattern in different cities (a) probability density distribution (b) cumulative probability density distribution.

Standard UF of PHEV50 (50-km-all-electric range PHEV) varies from 0.55 to 0.62, and
UF of PHEV80 (80-km-all-electric range PHEV) varies from 0.71 to 0.77 as the red shadow
shown in Figure 4. Among the seven cities, the UF of PHEV50 was the smallest in Chengdu,
while the UF of Tianjin and Xi’an were the largest. Besides, the PHEV80 has the smallest
UF at Chengdu and the largest UF at Tianjin listed in Table 5.

Furthermore, sales-weighted average UF is 0.59 for PHEV50 and 0.74 for PHEV80.
Cities with more than 1000 PHEV sales in China accounted for 83% of PHEV sales in
2018 [29], travel pattern in these cities were approximated by the above seven cities with
existing data according to the city level and the regions. The sales-weighted average UF is
the red curve shown in Figure 4.

Power exponential function fitting is carried out based on the above UF values. Ac-
cording to the trips in this research, the DVKT of 400 km or more only accounts for about
1%, and the omission of this part of travel has little influence on UF research. Therefore,
400 km is set as the upper limit of daily travel mileage, and 400 km is set for trips above
400 km, with the fitting parameters listed in Table 6. The fitting is carried out as nine orders
to decrease the fitting error to less than 0.015 per the Beijing example shown in Figure 5.
The fitting parameters are listed to simplify the calculation in actual use.
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Table 5. Standard UF and actual UF in the seven cities.

City
Standard UF Actual UF

PHEV50 PHEV80 PHEV50 PHEV80

Beijing 0.61 0.76 0.66 0.79
Shanghai 0.59 0.75 0.52 0.76
Shenzhen 0.57 0.72 0.56 0.72
Hangzhou 0.58 0.72 0.53 0.68

Tianjin 0.62 0.77 0.51 0.66
Chengdu 0.55 0.71 0.65 0.78

Xi’an 0.62 0.76 0.44 0.59
Weighted average 0.58 0.73 0.55 0.69

Table 6. Standard UF fitting parameters.

City normdist C1 C2 C3 C4 C5 C6 C7 C8 C9

Beijing 398.00 9.46 −91.25 1366.74 −9367.48 33,665.02 −68,220.60 78,518.32 −47,888.49 12,021.37
Shanghai 397.00 8.21 −72.94 1204.37 −8548.95 31,337.30 −64,469.87 75,187.95 −46,410.66 11,777.62
Shenzhen 400.00 8.34 −82.13 1267.42 −8832.16 32,161.37 −65,899.49 76,585.96 −47,111.17 11,915.03
Hangzhou 398.00 8.41 −75.73 1199.40 −8670.57 32,304.97 −67,122.30 78,685.06 −48,667.52 12,351.97

Tianjin 398.00 9.89 −109.27 1698.94 −11,856.18 43,160.78 −88,357.88 102,543.21 −62,963.12 15,887.19
Chengdu 400.00 7.56 −45.53 708.06 −5080.46 18,969.70 −39,723.42 47,097.30 −29,529.82 7609.65

Xi’an 400.00 10.05 −95.77 1403.55 −9734.28 35,495.94 −72,870.28 84,782.31 −52,159.10 13,180.79
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3.2. Actual Utility Factor and Discussion

Actual UF is derived from the Equation (3), with the sales-weighted UF at an actual
charging pattern of 0.53 for the 50 km all-electric-range PHEVs and 0.68 for the 80 km
all-electric-range PHEVs, which is between 23.2% to 26.2% (0.03 to 0.04) smaller than the
standardized UF. In reality, this is mainly due to lower than average charging frequency. As
shown in Figure 5, the dashed line shows the standard sales-weighted UF while the solid
line shows the actual sales-weighted UF, and the shadows indicate the variation among
different cities. The actual UF varies from 0.44 to 0.66 for the 50km all-electric-range PHEV
and 0.59 to 0.79 for the 80 km-all-electric-range PHEV in different cities. Distinct inter-city
UF variation indicates various charging patterns among different cities, possibly due to
different charging infrastructure construction, consumer preference and charging prices.
Furthermore, the power exponential function fitting of actual UF is listed in Table 7. Similar
to the standard UF curves, actual UF curves are also fitted with nine order functions and
the fitting errors are less than 0.015.

Table 7. Actual UF fitting parameters.

City normdist C1 C2 C3 C4 C5 C6 C7 C8 C9

Beijing 794.00 13.75 −113.92 1536.87 −10,348.24 36,662.95 −73,058.48 82,548.97 −49,385.86 12,157.30
Shanghai 794.00 14.30 −133.60 1936.53 −13,685.01 50,331.46 −103,540.98 120,320.74 −73,807.53 18,577.33
Shenzhen 792.00 11.10 −87.36 1277.10 −8988.11 32,867.44 −67,251.68 77,841.41 −47,652.14 11,994.84
Hangzhou 793.00 15.60 −116.63 1349.18 −9146.02 33,799.47 −70,566.94 83,344.16 −51,931.21 13,265.98

Tianjin 797.00 14.78 −131.13 1642.46 −11,135.11 40,621.96 −83,679.21 97,685.70 −60,284.86 15,279.12
Chengdu 797.00 14.12 −203.70 2765.22 −18,433.28 65,771.65 −133,061.46 153,048.53 −93,244.68 23,357.53

Xi’an 796.00 16.49 −106.27 958.62 −5792.00 20,157.32 −40,350.97 46,040.24 −27,843.26 6933.06

Utility factor research is the basis of energy consumption and carbon emission research.
On-road carbon emission of PHEV can be simplified as the weighted average of on-road
carbon emission of fuel driven distance and on-road carbon emission of electricity driven
distance (zero for the on-road carbon emission) measured by utility factor. Therefore,
considering the sales-weighted UF at actual charging pattern is 0.53 for the 50 km all-
electric-range PHEVs, that is, over 50% distance is driven by electricity at actual charging
pattern, indicating over 50% on-road carbon emission reduction potential for PHEV.

Actual UF for frequently charging adopters can reach 0.8 for the 50 km all-electric-
range PHEV while it is only 0.1 for rarely charging adopters. As shown in Figure 6, bars
illustrate the ratio of frequently charging adopters, occasionally charging adopters and
rarely charging adopters at 77%, 18% and 3%, respectively. The UF curves in the seven
cities at different charging frequencies are depicted with different colors. For frequent
charging adopters, actual UF could reach over 0.8 for PHEV50 (with a range of 0.81 to
0.87) and over 0.96 for PHEV80 (with a range of 0.96 to 0.98), indicating a very significant
energy saving and on-road carbon emission reduction potential of PHEV. For occasionally
charging adopters, actual UF could reach a range of 0.28 to 0.33 for PHEV50 and a range
of 0.45 to 0.53 for PHEV80, indicating that extending the CD range could significantly
improve UF for these consumers. For rarely charging adopters, actual UF is as low as
a range of 0.10 to 0.12 for PHEV50 and a range of 0.17 to 0.19 for PHEV80 and improving
CD range have limited effects in such situation. Therefore, increasing CD range is effective
for frequent and occasional charging adopters.
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4. Conclusions

In this research, actual PHEV travel data are adopted to analyze real PHEV charging
patterns and its impact on electricity UF. The ratio of actual distance between adjacent
charging events to New European Driving Cycle (NEDC) tested range (A/T ratio) is
defined to quantify actual charging behavior and electricity. Sales-weighted actual UF and
UF at different A/T ratios are derived based on the travel pattern of seven typical cities in
China. Standard and actual UF curves are fitted as power exponential functions.

The average daily vehicle kilometer traveled in each city is 52.9 km. 60−69% of the
average daily travel distance is less than 50 km, and 78−86% of the average DVKT is less
than 80 km. Additionally, average distance traveled between two adjacent charging events
is 67% to 138% of NEDC test CD range in the seven cities, due to different charging patterns.

Sales-weighted UF at actual charging pattern is 0.53 for the 50 km all-electric- range
PHEVs and 0.68 for the 80km all-electric-range PHEVs, which is 23.2% to 26.2% smaller than
the standardized UF. That is, over 50% distance is driven by electricity at actual charging
pattern, indicating over 50% on-road carbon emission reduction potential for PHEV.

There are 70.5% to 87.4% frequently charging adopters in typical cities in China.
Only 2.4−6.1% personal PHEV adopters rarely charge during daily usage. Actual UF for
frequently charging adopters is over 0.8 for the 50 km all-electric-range PHEV while it is
close to 0.1 for rarely charging adopters. Therefore, increasing PHEV CD range to 80 km
has a significant energy saving effect for frequent and occasional charging adopters.

Utility factor based on actual charging pattern is the basis for the analysis of energy
saving and emission reduction effect of PHEV, which will largely help PHEV policy making
and consumer purchasing decisions. The actual UF will help consumers accurately eval-
uate the suitability and cost reduction effect of PHEVs and remove purchasing concerns.
Advantages for the government are shown in actual sales-weighted average UF could
better estimate the energy saving and emission reduction effect owing to PHEV and help
make promotion policies. Besides, it will also suggest PHEV energy saving measures and
contribute directly to the carbon peaking goal through PHEV.

As for the limitation of this research, the quantitative effects of charging events
and increasing CD ranges are still not clear yet. A clear mathematical expression of the
quantitative effects is needed for a further research. Besides, all electric ranges and energy
consumption tested under NEDC driving cycle in this research is not a good estimation due
to the limitation of the driving cycle itself, and it may overestimate the energy efficiency
compared to the actual situation. However, the NEDC tested range is adopted here because
it is available for all these vehicle models to make it comparable. More accurate all electric
range and energy consumption would be applied in this research in the future.
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Appendix A

Table A1. ANOVA test results for the seven cities.

Sum of Squares df Mean Square F p-Value

Between Groups 1,443,594.9200 6 240,599.1530 66.5480 0
Error 390,480,272 108,004 3615.4242
Total 391,923,866 108,010

Table A2. Student’s t-test results for the seven cities.

City Beijing Shanghai Shenzhen Hangzhou Tianjin Chengdu Xi’an

Beijing - t(27296) = −8.1382,
p < 0.001 t(29665) = −9.9723, p < 0.001 t(27043) = −7.4099, p < 0.001 t(26404) = −0.9236, p = 0.3557 t(26661) = −10.0174, p < 0.001 t(22550) = 3.5528, p < 0.001

Shanghai - - t(36315) = −2.3418, p = 0.0192 t(33693) = 0.2668, p = 0.7896 t(33054) = 8.3748, p < 0.001 t(33311) = −2.8000, p = 0.0051 t(29200) = 12.5029, p < 0.001
Shenzhen - - - t(36062) = 2.5043, p = 0.0123 t(35423) = 10.6448, p < 0.001 t(35680) = −0.5829, p = 0.5600 t(31569) = 14.4146, p < 0.001
Hangzhou - - - - t(32801) = 7.6530, p < 0.001 t(33058) = −2.9213, p = 0.0035 t(28947) = 11.5300, p < 0.001

Tianjin - - - - - t(32419) = −10.6954, p < 0.001 t(28308) = 4.9977, p < 0.001
Chengdu - - - - - - t(28565) = 14.2584 p < 0.001

Xi’an - - - - - - -
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