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Abstract: Recently, in order to ensure the reliability and safety of trains, online condition monitoring
and fault diagnosis of traction induction motors have become active issues in the area of rail trans-
portation. The fault diagnosis algorithm can be developed and debugged in a real-time environment
based on hardware-in-the-loop simulation (HILS). However, the dynamic space model of induction
motors with stator interturn short-circuit faults faces the problem that the faulty state and the healthy
state are not compatible, which is inconvenient for the HILS. In this paper, a fault injection model
is proposed for the first time, which can realize the online switching between the healthy state and
the faulty state of the motor. The feasibility and effectiveness of the proposed model are verified by
simulation experiments the based on MATLAB/Simulink and dSPACE HILS platforms.

Keywords: modelling; asynchronous (induction) motor; hardware-in-the-loop (HIL); stator interturn
fault; diagnosis

1. Introduction

Regarded as the “heart” of rolling stock, traction systems provide the tractive effort
to support the continuous operations of trains, and their safety and reliability are there-
fore crucial [1]. Traction system failures may cause catastrophic accidents to rail vehicles.
Therefore, regular maintenance is needed in order to ensure the safety of rail vehicles—that
is, “plan-based repair”. This can face problems such as over-maintenance, missed inspec-
tions, and untimely maintenance. Recently, prognostics and health management (PHM) of
traction systems have brought new solutions, which can transform the traditional “plan-
based repair” into “condition-based repair”, improving vehicle maintenance efficiency and
vehicle operating reliability [2,3].

The asynchronous traction motor is the core component of the traction system, respon-
sible for the output of kinetic energy necessary to complete the transformation of electric
energy to mechanical energy. Therefore, online condition monitoring and fault diagnosis
of traction induction motors are an indispensable part of traction PHM systems [4].

The stator insulation fault is one of the typical induction motor faults. Most sta-
tor insulation failures stem from interturn short-circuits caused by interturn insulation
breakdown. Then, the high voltage potential differences between adjacent coils cause a
large circulating current to flow in the shorted turns, further damaging the insulation as a
result of the abnormal heat generated, causing the rapid spread of insulation failure, and
gradually developing into a more serious phase-to-phase or phase-to-ground fault [5–8].
Therefore, incipient detection of interturn faults is essential in order to avoid hazardous
operating conditions.

Modelling of faulty induction motors is the first step to study fault diagnosis algo-
rithms. The model of induction motors with interturn short-circuit faults has been studied
in some of the literature [9–13], and the state-space representation of the dynamic equations
suitable for digital simulation has been presented. However, although there are some
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differences in the details, such as the calculation method of leakage inductance [12] and
the consideration of magnetic saturation [13], all of these models model the faulty motor
as a whole, meaning that the healthy part and the faulty part of the motor are integrated
rather than modeled separately. Due to the presence of fault parameters, these models can
only be used for fault simulation, and cannot be switched to a healthy state. Therefore, the
dynamic space model of induction motors with stator interturn short-circuit faults faces a
problem in that the faulty state and the healthy state are not compatible.

The hardware-in-the-loop simulation (HILS) platform based on dSPACE perfectly
combines the software system with the hardware system, including the processor and
I/O interface, which can realize the software development and testing in a real-time
environment [14,15]. Compared with offline simulation, HILS can not only verify the
effectiveness of the fault diagnosis algorithm, but also evaluate the online real-time response
ability, assist in parameter tuning, and improve the efficiency of algorithm development.
However, dSPACE’s online simulation mode can only activate one model at a time. In
other words, model parameters can be adjusted online, but model transformation can only
be done offline. If the healthy motor and the fault motor are modelled separately, the
switch from the healthy state to the fault state cannot be realized directly in the online
simulation; thus, the real-time response ability of the fault diagnosis algorithm cannot be
evaluated effectively.

In this context, a fault injection model is proposed in this paper, which can directly
inject the interturn fault into the healthy motor during the online simulation in order to
realize the switch from the healthy state to the faulty state. First, the internal relationship
between the interturn short-circuit fault and the healthy motor is analyzed, where the
defective winding can be equivalent to a coil flowing through the reverse short-circuit
current and a normal winding. Then, the short-circuit coil is modeled and used as the
source of fault injection, which can produce a short-circuit current that affects the phase
current of the healthy motor. In contrast to the dynamic space models of motors with
interturn faults, only the fault injection model contains fault parameters. Thus, it can
simply set the fault parameter to zero in order to switch to the healthy state. The feasibility
and effectiveness of the proposed model are verified by simulation experiments based on
the MATLAB/Simulink and dSPACE HILS platforms.

2. Classical Model of Induction Motor with Interturn Fault
2.1. Dynamic Mathematical Model

The stator winding equivalent structure of an induction motor with an interturn
short-circuit fault is shown in Figure 1a. The interturn fault divides A-phase winding into
as1 and as2 parts, where as1 represents the normal winding coil and as2 represents the part
that is short-connected in the winding. Considering the short-circuit fault in the initial
stage, Rf represents the short-circuit resistance in the short-circuit, and if is defined as the
short-circuit current of the short-circuit branch.
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Figure 1. (a) The equivalent winding structure and (b) equivalent fault separation structure of
Y-connected stator windings with interturn short-circuit faults.
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Based on the above structure, the voltage equations of the faulty motor in the three-
phase static coordinate system can be expressed as follows:{

us = Rsis +
dψs
dt + µA1i f

0 = Rrir +
dψr
dt

(1)

and the flux linkage expressions are:{
ψs = Lssis + Lsrir + µA2i f
ψr = LT

sris + Lrrir + µA3i f
(2)

where µ = Nas2/Nas is the ratio of the number of short-circuit turns to the total number
of the located phase, and is defined as the fault factor; us is the stator voltage matrix; is
is the stator current matrix; ir is the rotor current matrix; ψs is the stator flux matrix; ψr
is the rotor flux matrix; Rs is the stator resistance; Rr is the rotor resistance; Lss is the
stator self-inductive matrix; Lrr is the rotor self-inductive matrix, Lsr is the stator and rotor
mutual inductance matrix; and A1, A2, and A3 are the fault coefficient matrixes. The specific
definitions are as follows:

us =
[

uas ubs ucs
]T ; is =

[
ias ibs ics

]T ; ir =
[

iar ibr icr
]T ;

ψs =
[

ψas ψbs ψcs
]T ; ψr =

[
ψar ψbr ψcr

]T ;

Lss =

 Lms + Lls − 1
2 Lms − 1

2 Lms
− 1

2 Lms Lms + Lls − 1
2 Lms

− 1
2 Lms − 1

2 Lms Lms + Lls

;

Lrr =

 Lms + Llr − 1
2 Lms − 1

2 Lms
− 1

2 Lms Lms + Llr − 1
2 Lms

− 1
2 Lms − 1

2 Lms Lms + Llr

;

Lsr = Lms

 cos θ cos(θ + 2π
3 ) cos(θ − 2π

3 )
cos(θ − 2π

3 ) cos θ cos(θ + 2π
3 )

cos(θ + 2π
3 ) cos(θ − 2π

3 ) cos θ

;

A1 = −
[

Rs 0 0
]T ; A2 = −

[
Lms + Lls − 1

2 Lms − 1
2 Lms

]T ;

A3 = −Lms
[

cos θ cos(θ + 2π
3 ) cos(θ − 2π

3 )
]T

where Lms is the stator excitation inductance, Lls is the stator leakage inductance, Llr is the
rotor leakage inductance, and θ is the relative position angle of stator and rotor.

The description equation of the short-circuit coil can be expressed as follows:{
uas2 = µRs(ias − i f ) +

dψas2
dt = R f i f

ψas2 = −µAT
2 is − µAT

3 ir − µ(Lls + µLm)i f
(3)

where uas2 is the short-circuit voltage and ψas2 is the flux in the short-circuit part.
The electromagnetic torque equation is:

Te = pLmsiT
s

∂Lsr

∂θ
ir − µpLmsi f

(
3
2

iar sin θ +

√
3

2
(ibr − icr) cos θ

)
(4)

where p is the number of pole pairs.
The first term in Equation (4) is the standard expression for torque developed by a

symmetrical induction machine. The second term, which is the effect of the turn fault,
results in a double-line-frequency pulsation in the torque and speed.
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2.2. Dynamic Space Model

After transforming Equations (1)–(4) to the two-phase coordinate system, referring
to [9] for details, the state-space model used for digital simulation can be sorted out and
obtained, as follows:

.
x = Ax + Bu
y = Cx

(5)

x =
[

ψαs ψβs ψαr ψβr ψas2
]T ;

y =
[

iαs iβs iαr iβr i f
]T ;

M =


Ls 0 Lm 0 − 2

3 µLs

0 Ls 0 Lm 0
Lm 0 Lr 0 − 2

3 µLm

0 Lm 0 Lr 0
µLs 0 µLm 0 −( 2

3 µ2Lm + µLls)

;

A =


−RsC1 +

2
3 µRsC5

−RsC2

−RrC3 +
[

0 0 0 0 −ωr 0
]

−RrC4 +
[

0 0 0 ωr 0 0
]

−µRsC1 + (R f + µRs)C5

;

B =

[
1 0 0 0 0
0 1 0 0 0

]T

; u =

[
uαs
uβs

]
;

C = M−1; Ci is the ith row of C.
The electromagnetic torque in space-vector notation is:

Te =
3
2

pLm(iαriβs − iαsiβr)− µpLmi f iβr (6)

The mechanical equation following Newton’s second Law is:{
dωr
dt = p Te−TL

J
dθr
dt = ωr

(7)

2.3. Drawbacks of Classical Model

When there is no fault—that is, µ = 0—the matrix M in Equation (5) is not full rank and
cannot be inverse, which makes the ordinary differential equation (ODE) solver ineffective.
Therefore, the classical interturn fault motor model cannot achieve compatibility between
the faulty state and the healthy state, so the faulty motor and the healthy motor can only
be modelled separately. However, dSPACE’s online simulation mode can only activate
one model at a time. In other words, model parameters can be adjusted online, but model
transformation can only be done offline. In this way, it is impossible to directly switch the
health state to the faulty state in the online simulation, and the real-time response ability of
the fault diagnosis algorithm cannot be effectively evaluated.

On the other hand, the workload of the hardware-in-loop simulation modelling of the
motor is huge. If only a fault injection model is added on the basis of the original healthy
motor model, the workload of the simulation construction will be greatly reduced.

Moreover, based on fault injection, the fault degree can be flexibly changed online,
and the trend of fault characteristics with the degree of fault can be observed more effectively.

3. Proposed Fault Injection Model
3.1. Essence of Stator Interturn Fault

When the short-circuit of A-phase winding occurs, there is essentially an additional
short-circuit coil loop flowing through the reverse short-circuit current. The short-circuit
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current affects the A-phase current which, in turn, affects the flux and torque. According
to the superposition principle, the fault motor is equivalent to two parts: the normal
symmetrical winding, and the short-circuit coil flowing through the reverse short-circuit
current. The stator winding equivalent structure of the fault motor after fault separation is
shown in Figure 1b. Clearly, the classic fault motor model can be equivalent to a healthy
motor model plus a fault injection model obtained by modelling the short-circuit coil.

When the A-phase winding has an inter-turn short-circuit, compared with the nor-
mal motor, only the A-phase current changes in the expression, and the change can be
expressed in the two-phase coordinate system as Equation (8). The theoretical derivation
of Equation (8) is shown in Appendix A.

iαs = iheathy
αs +

2
3

µi f (8)

where iheathy
αs is the α-axis component of the stator current of the healthy motor, and iαs is

the α-axis component of the stator current after fault injection.
The rotor current and β-axis component of the motor’s stator current are not affected

by fault injection in terms of the expressions shown in Appendix A.

3.2. Stator Interturn Fault Injection Model

According to the analysis in Section 3.1, the short-circuit coil flowing through the
reverse short-circuit current can be modeled as the source of fault injection, which can
produce a short-circuit current that affects the phase current of the healthy motor.

Transform Equation (3) to a two-phase coordinate system to obtain{
R f i f = µRs(iαs − i f ) +

dψas2
dt

ψas2 = µLsiαs + µLmiαr − ( 2
3 µ2Lm + µLls)i f

(9)

Then, substitute Equation (8) into Equation (9) to obtain{ dψas2
dt =

(
R f + µRs − 2

3 µ2Rs

)
i f − µRsiheathy

αs

ψas2 =
( 2

3 µ2Ls − 2
3 µ2Lm − µLls

)
i f + µLsiheathy

αs + µLmiαr
(10)

Equation (10) can be used as an independent fault injection source to output the
short-circuit current if, and then the α-axis component of the motor stator current after
fault injection can be obtained from Equation (8).

3.3. Overall Model of Induction Motor with Stator Interturn Fault Injection

The input-output relationship between the overall fault injection model and the
healthy motor model is shown in Figure 2. The electrical part of the healthy motor outputs
the healthy currents, and then the interturn fault injection outputs the short-circuit current.
After current compensation using Equation (8), the α-axis component of the stator current
after fault injection can be obtained. Then, the electromagnetic torque and speed can be
obtained using the torque equation and the mechanical equations, which are consistent
with Equations (6) and (7), respectively. The electrical equations of the healthy motor model
will not be described in detail in this paper.

In contrast to the dynamic space models of motors with interturn faults shown in
Equation (5), only the fault injection model (Equation (10)) contains fault parameters. When
the fault parameter µ is set to zero, the fault injection model does not work. At the time,
only the healthy motor model is running, and the desired interturn fault can be injected by
changing the fault parameters µ and Rf.
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4. Simulation Results
4.1. Hardware-in-the-Loop Simulation

The simulated controlled object model can run in real time in the hardware-in-the-loop
simulation, and is controlled by a real controller. The hardware-in-the-loop simulation
platform based on dSPACE perfectly combines the software system with the hardware
system, including the processor and I/O interface, which can realize the software de-
velopment and testing in the real-time environment. Compared with offline simulation,
hardware-in-the-loop real-time simulation can not only verify the effectiveness of the fault
diagnosis algorithm, but also evaluate the online real-time response ability of the algorithm,
assist in parameter tuning, and improve the efficiency of algorithm development.

Figure 3 shows the physical diagram of the hardware-in-the-loop simulation plat-
form for the development, testing, and research of the traction systems of rail vehicles.
The dSPACE hardware system contains the processor, component board cards, and I/O
resources. The traction control unit (TCU) is the actual controller.
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4.2. Simulation Results

In this paper, a 210 kW traction induction motor is taken as an example to carry out the
hardware-in-the-loop simulation of interturn short-circuit fault injection. Motor parameters
are shown in Table 1.

Table 1. Motor parameters.

Parameter Value Parameter Value

Stator resistance 76.24 mΩ Rated power 210 kW
Rotor resistance 57.82 mΩ Excitation inductance 18 mH
Stator leakage inductance 0.724 mH Pole pairs 2Rotor leakage inductance 0.868 mH

It should be noted that the main contribution of this paper is to propose an inter-turn
short-circuit fault injection model that can achieve the switch from healthy motor to fault
motor in the HILS. This paper only carried out simulation research, aiming at the induction
motor fed by an open-loop three-phase symmetric power supply, but it is sufficient to
demonstrate the validity of the model. The influence of inverter-fed drives and closed-loop
control on fault behaviors will be further studied in the future.

The simulation results of fault-state switching are shown in Figure 5. Figure 5a shows
the comparison of A-phase current waveforms from the fault injection model and the
normal motor model. During 0–0.2 s, the fault factor µ = 0, and the fault injection model
does not work, so the simulation results are consistent with the normal healthy motor
model. Then, the fault factor µ is switched to 0.01, 0.02, 0.03, and 0.04 at 0.2 s, 0.4 s, 0.6 s,
and 0.8 s, respectively. It is clear that the distortion of the current waveform becomes
more and more serious with the increase in the fault factor. It can also be seen from
Figure 5b–d that the short-circuit current and the fluctuations in torque and speed become
larger with the increase in the fault factor. The above simulation results show that the fault
injection model proposed in this paper can effectively realize the fault state switching of
the induction motor in online HIL simulation.
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Figure 5. Simulation results of faulty state switching based on fault injection.

Figure 6 shows the time-frequency spectrum of the A-phase current waveforms shown
in Figure 5a. The odd harmonics increase gradually with the increase in the fault factor. This
is merely a data analysis case to illustrate that online state changing can more effectively
observe the variation trend of fault characteristics with fault degree. The fault injection can
even generate functions with fault parameters µ and Rf as independent variables to realize
the desired faulty state evolution process.
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5. Conclusions

In this paper, an interturn short-circuit fault injection model is proposed for the first
time, which can directly inject the interturn fault into the healthy motor. Unlike the dynamic
space model of motors with interturn faults, only the fault injection model contains fault
parameters; thus, it can switch to the healthy state by simply setting the fault parameters to
zero. Based on this model, the online switching between the healthy motor and the faulty
motor can be realized in the HILS. The main contributions are as follows:

• The essence of inter-turn short-circuit faults of induction motors is revealed;
• The concept of modeling the fault source and the healthy motor separately is proposed,

which can reduce the workload of modeling and improve the application functions.

The simulation results show that the fault injection model proposed in this paper can
effectively realize the fault state switching (including from healthy to faulty) of induction
motors, and can observe the variation trend of fault characteristics with fault degree.
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Appendix A

Transform Equations (1) and (2) to the two-phase coordinate system, in combination
with Equation (8), and the internal relationship between healthy motor and faulty motor
can be obtained as follows:

uαs
uβs
0
0

 =


Rs

Rs
Rr

Rr



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iβs
iαr
iβr

+
d
dt
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0
0
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0
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Rr



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αs

iβs
iαr
iβr

+
d
dt
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
ψαs

ψβs
ψαr

ψβr

 =
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Ls Lm

Ls Lm

Lm Lr

Lm Lr
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ψαr
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Ls Lm
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


ihealthy
αs

iβs
iαr

iβr


To the left and right of the symbol “⇒” are the equations of the faulty motor and

the healthy motor, respectively. Clearly, Equation (8) can reveal the internal relationship
between the motor with an interturn short-circuit fault and the healthy motor.
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