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Abstract: Due to the large number of electric vehicles (EVs) connected to the distribution network of
residential areas (RAs), community charging has become a major constraint. The planning of the
distribution network in RAs needs to consider the orderly charging load of EVs. In the current study,
an orderly charging planning method for the charging posts and distribution network of RAs was
proposed. First, a charging load forecasting model based on the travel characteristics, charging time,
and ownership of EVs in RAs was established. Then, a hierarchical orderly charging optimization
method, including a distribution network layer and EV access node layer, was devised. The upper
layer optimizes the distribution network. The objective function is the minimum variance of the
overall load in the RA and the constraint conditions satisfy the overall charging load demand and the
capacity of the distributed network. The lower layer optimizes the EV access nodes. The objective
function is the minimum variance of the node access load, and the constraint conditions are to
meet the regional charging load demand and the optimal power balance demand transmitted from
the upper layer to the lower layer. A nonlinear optimization algorithm is employed to solve these
objective functions. An IEEE 33 node example was used to obtain the orderly charging power load
curves for weekdays and weekends in RAs, and the simulation results prove the effectiveness of the
proposed method.

Keywords: electric vehicles; residential areas; orderly charging; hierarchical optimization; nonlinear
optimization algorithm

1. Introduction

Electric vehicles (EVs), as a means of replacing gasoline/diesel with electric energy,
can help energy systems reduce their carbon emissions and achieve “carbon peak and
carbon neutrality” [1]. Therefore, EVs have undergone rapid development in recent years.
At present, EVs are mainly used for urban commuting in China. Further development of
EVs is restricted by their lack of mileage and charging facilities. In particular, charging in
residential areas (RAs) has become a bottleneck. Chinese urban residents mainly live in
RAs, and private EVs are mainly charged in RAs. However, in the past, the distribution
network planning of China’s RAs did not consider the charging requirement of EVs.
The large-scale connection of EVs to the distribution network of RAs will accelerate the
demand for expansion and transformation of the distribution network, especially in old
RAs. Nonetheless, charging facilities are gradually becoming more intelligent, and orderly
charging has been implemented in the operation of the distribution network. Therefore,
forecasting the charging load and analyzing the impact of orderly charging on the overall
load level in the distribution network planning of RAs can assist in the planning of charging
facilities and the required distribution network. This can effectively reduce the investment
in construction or capacity expansion of the residential distribution network.

The forecasting of the EV charging load is the basis for the coordinated planning of
charging facilities and distribution networks in RAs. It is mainly divided into short-term
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load forecasting, and medium- and long-term load forecasting. In short-term forecasting of
the charging load, a large amount of historical data of the charging point is collected, and
the charging load characteristics of EVs are analyzed, to obtain the forecasted charging load
power [2–5]. This is usually used for the optimal operation of the distribution network.
In medium- and long-term forecasting of the charging load, a mathematical model is
established based on the level of economic development, travel characteristics, and charging
habits, and then used to predict the EV charging load power for the next few years [6–9].
This approach is mainly used for the planning and construction of the distribution network.
The charging behavior of EVs is random in time and space, and the charging load power
in different scenarios has different characteristics. The characteristics of the EV load
include two main aspects: (1) the time distribution characteristics of the EV charging load;
and (2) the space distribution characteristics of the EV charging load. Furthermore, EV
ownership forecast is an important part of forecasting the charging load. Three models can
be employed: the discrete model, the multi-agent model, and the diffusion model [10]. The
discrete model constructs a utility function to describe a specific individual’s preference for
vehicle types, and further calculates the probability of consumers choosing each vehicle
type. The multi-agent model takes individuals as the research object to model the response
and mutual influence of individuals in different market environments. The diffusion
model dynamically evolves the market share after the birth of a new product from a
macro perspective. Diffusion models can be further divided into the Bass model, the
Gompertz model, and the Logistic model. The Bass model is mainly affected by two factors,
namely, external media spreading and internal oral spreading. For ownership forecasting
of EVs in RAs, the internal oral spreading factors can include the purchase cost of EVs,
mileage anxiety, the availability of charging facilities, and the visibility of electric vehicles.
Therefore, the Bass model is used to predict the medium- and long-term EV ownership of
RAs in this paper.

Orderly charging has been widely used in the optimal operation of distribution
networks because it can reduce the network’s peak-to-valley load [11]. However, in the
current distribution network planning, the impact of orderly charging on the overall load
level of the distribution network is rarely considered. For newly-built RAs, the EV load
power is mainly used for distribution network planning with saturated load power, and
the planning margin is too large, resulting in a waste of investment. For old RAs, a
disorderly charging load is mainly used for distribution network planning, which leads to
an increase in the peak load and difficulties in expanding the capacity of the residential
distribution network. Therefore, by fully considering the impact of orderly charging
loads in distribution network planning, an accurate and reasonable construction of the
distribution network can be achieved. The orderly charging optimization strategy of EVs
can be divided into two categories, that is, the direct optimization method and the indirect
optimization method [12]. The direct optimization method directly controls the charging
power and start time of EVs to meet the basic charging demand of EV users, and thus
reduce power grid losses and peak-to-valley differences [13–17]. The indirect optimization
method, that is, an electricity price mechanism, is used to guide users to actively adjust
their charging behavior to maximize benefits of stakeholders [18–22].

In this paper, a charging load forecasting model based on the travel characteristics,
charging time, and ownership of EVs in RAs is presented. First, Monte Carlo simulation is
used to forecast future charging loads in RAs on weekdays and weekends. A hierarchical
load optimization method including the distribution network layer and EV access node
layer is presented. The objective function of the upper level minimizes the variance of
the overall load in the RA, and the constraint conditions satisfy the overall charging load
demand and the capacity of the distributed network. The objective function of the access
node layer minimizes the load variance of the node access, and the constraint conditions
are to meet the regional charging load demand and the optimal power balance demand
transmitted from the upper layer to the lower layer. In addition, a nonlinear optimization
algorithm is used to solve the orderly charging model, and an IEEE 33 node example is
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used to obtain the orderly charging load curves for weekdays and weekends in RAs. Hence,
the main goals of this paper as follows:

(1) To propose a forecasting mathematical model of the charging load for RAs;
(2) To develop a hierarchical load optimization method for analyzing the impact of

orderly charging on the overall load level of the residential distribution network;
(3) To present a new typical analysis method for the daily load characteristics of urban RAs.

This paper is organized as follows. Section 2 introduces the structure of analyzing the
impact of orderly charging on the overall load of RAs. Section 3 introduces the charging
load forecasting of EVs in RAs. Section 4 describes the hierarchical optimization method,
including load optimization of the distribution network layer and the EV access node layer.
The case analysis of IEEE 33 node is presented in Section 5. Section 6 concludes this paper.

2. Architecture of Orderly Charging Load Planning in RAs

Figure 1 shows the architecture of mid-and long-term orderly charging load planning
in RAs. The architecture mainly includes three parts: EV charging load forecasting in RAs,
the hierarchical orderly charging strategy, and analysis of the impact of orderly charging
on the overall load of distribution network in RAs. Firstly, the charging load forecast is
obtained according to the ownership of EVs in RAs predicted by the Bass model and the
charging probability curve of EVs in RAs. Then, based on the forecasted charging load, a
hierarchical load optimization model for the distribution network of RAs considering the
orderly charging of EVs is established. The minimum variance of the overall load of the
distribution network is the upper-level optimization objective function and the minimum
node load deviation is the lower-level optimization objective function. Therefore, the peak
load growth level of the distribution network in RAs is the lowest considering the growth
of the charging load. The nonlinear optimization algorithm is used to solve the hierarchical
optimization model. The overall load optimization considering orderly charging in RAs
during weekdays and weekends in the target year can be obtained.
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3. Forecasting EV Charging Load in RAs

The ownership of EVs and charging probability will affect the characteristics of EV
charging load power. Therefore, a mathematical model to forecast the ownership of EVs in
RAs is first established, and a charging probability model is also established considering
the travel characteristics and charging time. Monte Carlo simulation is used to forecast the
medium- and long-term charging load of EVs.

3.1. The Ownership of EVs

The ownership of EVs in RAs is affected by two main factors: external media spreading
and internal oral spreading. A Bass model to forecast the ownership of EVs in RAs
is established.

The expression of the Bass model is shown in Equation (1).

g(t)
1− G(t)

= p + qG(t) (1)

where G(t) is the proportion of total accumulated products in the largest market potential at
time t; g(t) is the proportion of new products at time t; p is the innovation coefficient, which
reflects the degree of influence of media spreading on the ownership of new products; q
is the imitation coefficient, which reflects the degree of influence of oral spreading on the
ownership of new products. In this paper, the innovation coefficient p of the Bass model of
EVs is 0.03, and the imitation coefficient q is 0.38 [23].

The private vehicle growth rate function is fitted by the private vehicle ownership
data in a certain city [24]. It is shown in Equation (2).

f (x) = αe−(
t−β

γ )
2

(2)

where α = 0.4652, β = 2003, γ = 12.51.

3.2. Charging Probability Model

I. Travel Characteristics

According to the family vehicle data from the department of transportation’s survey,
the characteristics of private vehicle travel on weekdays and weekends are obtained sepa-
rately [25]. The probability density function at the work travel end time in the weekdays is
shown in Equation (3).

fwd-w(t) =
1

σwd-w
√

2π
e
− (t−µwd-w)2

2σ2
wd-w (3)

where σwd-w = 1.747, µwd-w = 17.3.
The probability density function at the end time of the weekday shopping and social

travel is shown in Equation (4).

fwd-s(t) =
a1

σwd-s1
√

2π
e
− (t−µwd-s1)

2

2σ2
wd-s1 +

b1

σwd-s2
√

2π
e
− (t−µwd-s2)

2

2σ2
wd-s2 (4)

where a1 = 0.3841, σwd-s1 = 2.32, µwd-s1 = 12; b1 = 0.59, σwd-s2 = 2.575, µwd-s2 = 18.2.
The probability density function at the end time of the weekend shopping and social

travel is shown in Equation (5).

fwe-s =
a2

σwe-s1
√

2π
e
− (t−µwe-s1)

2

2σ2
we-s1 +

b2

σwe-s2
√

2π
e
− (t−µwe-s2)

2

2σ2
we-s2 (5)

where a2 = 0.302, σwe-s1 = 2, µwe-s1 = 11.6, b2 = 0.6395, σwe-s2 = 3.2, µwe-s2 = 17.
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The probability density function of the mileage of a single trip of a vehicle is expressed
as Equation (6).

Ls(l) =
1

lσs
√

2π
e
− (ln l−µs)2

2σ2
s (6)

where l is the mileage of the vehicle in a single trip, in km; µs is the expectation value of ln l;
σs is the standard deviation of ln l [2]. In this paper, the average travel distance of a single
trip on weekdays is 11.4 km with a standard deviation of 4.88 km; the average mileage of a
single trip on weekends is 13.2 km with a standard deviation of 5.23 km [24].

The initial state of charge (SOC) for EV charging can be expressed as Equation (7).

SOC0 = (1−
n

∑
j=1

dj

D
)× 100% (7)

where SOC0 represents the starting SOC of EV; dj represents the mileage of the j-th trip; D
represents the maximum mileage of the EV.

II. Charging Time

The formula for calculating the charging time of an EV is shown in Equation (8).

tc =
(1− SOC0)E

Pc
(8)

where tc is the charging time of the EV in h; Pc is the charging power in kW; E is the battery
capacity of the EV in kW·h.

3.3. Forecasting of Charging Load

According to the established probability model of charging start time, charging start
SOC, and charging duration, a large number of calculation samples are generated. The
Monte Carlo simulation method is used to calculate the charging status of each calculation
sample for a 24 h day, and to solve the charging probability curve of RAs during weekdays
and weekends. Multiplying the prediction results of the ownership of EVs in RAs with
the charging probability curve, the number of EVs in a charging state at each moment is
calculated, and the number of EVs charged at each moment is multiplied by the charging
power of EVs to obtain the EV charging load power of the RAs.

The steps of EV charging load prediction are as follows:

(1) The maximum market potential, innovation coefficient p, and imitation coefficient q
of EVs are selected, and the Bass model is used to iterate the medium- and long-term
ownership of EVs in RAs;

(2) According to the established mathematical model of EV travel characteristics, a large
number of samples are randomly selected;

(3) Using Equations (7) and (8), the charging start SOC and charging time of each random
sample is calculated;

(4) Determine whether each random sample is in the charging state at each moment;
(5) According to the results of step (4), the daily charging probability curve of EVs in RAs

is obtained;
(6) Cycle the above steps (2) to (5) 100 times to obtain the average value curve of the daily

charging probability of EVs;
(7) Multiply the number of medium- and long-term EVs obtained in step (1) with the EV

charging probability obtained in step (6), to obtain the number of charging EVs at
each moment;

(8) The number of charging EVs at each moment in step (7) is multiplied by the charging
power to obtain the EV charging load power in RAs.
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4. Orderly Charging Strategy for EVs in RAs

A hierarchical load optimization method, including the distribution network layer in
RAs and the lower layer of EV access nodes, is shown in Figure 2. The objective function
of the upper level is to minimize the overall load variance of the RA, and the constraint
conditions meet the overall charging load demand and the capacity of the distribution
network. The objective function of each access node in the lower layer is to minimize the
load variance of node access, and the constraint condition is to meet the charging load
demand of the charging area, the node capacity requirement, and the optimal load power
balance for each time period transmitted from the upper layer to the lower layer. If the
lower-layer access node cannot meet the optimized load power balance required by the
upper layer, it needs to feed back to the upper layer, requiring adjustment of the access
node or adjustment of the optimized load power.
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4.1. Orderly Charging Optimization of Distribution Network

I. Objective Function

By shifting the charging load of EVs, it is possible to reduce the load peak of the
distribution network in RAs.

The objective function of orderly charging of the overall charging load in the RA is
shown in Equation (9).

minF =
1

24

24

∑
i=1

(PEV(i) + Pnorm(i)− P)2 (9)

where PEV(i) is the EV charging load power at the i-th hour; Pnorm(i) is the conventional
daily load power of the RA at the i-th hour; P is the average value of the overall load power
of the RA.
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II. Constraints

(1) Charging time constraints
The departure time for working travel is generally concentrated at 8:00 to 9:00, and the

departure time for shopping–social travel is generally concentrated at 10:00. This article
considers two charging time constraints for work trips and shopping–social trips.

The EV charging time constraint for workday travel is shown in Equation (10).

tww-open ≤ t ≤ tww-end (10)

where tww-open is the start time of orderly charging of EVs for work travel during workdays,
and obeys the probability distribution at the end time of work travel during workdays,
that is, Equation (3); tww-end is the end time of orderly charging of EVs for work travels, and
the value in this paper is 7:00.

The EV charging time constraint for shopping and social travel on weekdays is shown
in Equation (11).

tss1-open ≤ t ≤ tss1-end (11)

where tss1-open is the start time of orderly charging of EVs for shopping–social travel on
weekdays, and obeys the probability distribution of the end time of shopping-social travel
on weekdays, that is, Equation (4); tss1-end is the end time of orderly charging of EVs for
shopping–social travel, and the value in this paper is 10:00.

The EV charging time constraint for shopping–social travel on weekends is shown
in Equation (12).

tss2-open ≤ t ≤ tss2-end (12)

where tss2-open is the start time of orderly charging of EVs for shopping–social travel on
weekends, and obeys the probability distribution of the end time of shopping–social travel
on weekdays, that is, Equation (5); tss2-end is the end time of orderly charging of EVs for
shopping–social travel, and the value in this paper is 10:00.

(2) Capacity constraints
The total load of the RA optimized through orderly charging should not exceed the

capacity of the RA distribution network.
Therefore, the orderly charging capacity constraint is shown in Equation (13).

PEV(i) + Pnorm(i) ≤ Cmax (13)

where PEV(i) is the total charging load power of the EV at the i-th hour; Cmax is the maximum
capacity of the residential distribution network.

(3) Electricity constraints
The EV charging electricity is equal before and after the orderly charging optimization.

Therefore, the orderly charging electricity constraint is shown in Equation (14).

24

∑
i=1

EEV(i) = Esum (14)

where EEV(i) is the EV charging electricity at the i-th hour; Esum is the total charging electricity.

4.2. Node Orderly Charging Optimization

The optimization results obtained by the orderly charging optimization of the distri-
bution network layer are not the best results for the charging nodes. Therefore, the overall
load of each charging node needs to be optimized again.

I. Objective Function
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The objective function of each charging node is shown in Equation (15).
min f = [ f1, f2, . . . , f j, . . . , fn]

f j =
1

24

24
∑

i=1
(pEV-j(i) + pnorm-j(i)− pj)

2 (15)

where fj is the overall load variance of the node j; pEV-j is the EV charging load of the node j
at the i-th hour; pnorm-j is the conventional daily load of the node j at the i-th hour; pj is the
load mean value of the node j in the RA.

II. Constraints

(1) Charging time constraints
The orderly charging optimization load of each node should meet the same charging

time constraints.
(2) Electricity constraints
The EV charging electricity in each charging node is equal before and after the orderly

charging optimization. Therefore, the orderly charging electricity constraint of the charging
node is shown in Equation (16). 

24
∑

i=1
EEV-j(i) = Esum-j

n
∑

j=1
Esum-j = Esum

(16)

where EEV-j(i) is the EV charging electricity of the node j at the i-th hour; Esum-j is the sum
of the charging electricity of the node j.

(3) Node capacity constraints
The node load should not exceed the node capacity of the distribution network.

Therefore, the capacity constraint of charging node is shown in Equation (17).

pEV-j(i) + pnorm-j(i) ≤ Cj-max (17)

where Cj-max is the maximum capacity of the node j.
(4) Charging power constraint
The superimposed orderly charging optimization curve of each charging node should

be the same as the orderly charging optimized power of the distribution network.
Therefore, the charging power constraint of each charging node is shown in Equation (18).

n

∑
j=1

pEV-j(i) = PEV(i) (18)

4.3. Nonlinear Optimization

The orderly charging optimization models of EVs are typical nonlinear algebraic
equations. The nonlinear optimization method is to solve the extreme value of an n-ary
real function under the constraints of a set of inequalities or equalities. The results of EV
load forecasting in RAs are obtained first, then the forecasted charging load is the load
balance constraint of the orderly charging optimization model. The nonlinear optimization
method is used to solve the orderly charging load power of the distribution network and
each charging node.

5. Case Analysis
5.1. Simulation Parameters

An IEEE-33 node power distribution system is used as a typical case to verify the
orderly charging planning strategy of EVs in RAs. The capacity reference value of IEEE-33
node power distribution network is set to 5 MVA, the reference voltage is set to 10 kV,
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and its active and reactive load power load parameters and line impedances are shown in
Appendix A (Tables A1 and A2). Node 1 is the power supply node and its node voltage
has a per unit value of 1.05. The other nodes are all PQ nodes, and the allowed per unit
value of the node voltage is 0.93–1.05.

By analyzing the daily load data of a RA in a certain province of China, the daily load
power curve of typical weekdays and weekends in summer was obtained, as shown in
Figure 3. This paper assumes that the load characteristics of each node in the IEEE-33 node
distribution network meet the typical daily load curve. Multiplying the typical daily load
factor with the load power data of the IEEE-33 node system, we can obtain the load power
of each node at each time of the day.
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The parameters of a typical RA are shown in Table 1. The parameters of “BYD Yuan EV”
are used in this paper. The EV has a battery capacity of 40.62 kW·h and a driven distance
of 305 km. On weekdays, the proportion of work travel is set to 80%, and the proportion
of shopping–social travel is set to 20%. On weekends, the proportion of shopping–social
travel is set to 100%. Furthermore, the travel probability of private vehicles is set to 77% on
weekdays and 70% on weekends [26].

Table 1. Relevant parameters of the RA.

Number of
Households

Charging Power of a
Single Charging Post

Number of
Residents

Capacity of
Distributed Network

2000 7 kW 6000 5000 kVA

According to data collected by a provincial statistics bureau in China, it can be seen
that the ownership of private vehicles per 1000 people in the region in 2019 was 338, and
EVs accounted for about 2.05%. Therefore, in 2019, the ownership of private vehicles in
this RA was 2028, and the ownership of EVs was 41. Using Equation (2) and the ownership
of private vehicles in 2019, the saturation value of private vehicle ownership in the RA can
be calculated as 2762. In this paper, the innovation coefficient p of the Bass model of EVs
was selected as 0.03, and the imitation coefficient q was selected as 0.38. The maximum
market potential of EVs is 70% of the saturation value of private vehicle ownership in RAs.
Table 2 shows the forecast results of the ownership of EVs in RAs.

Table 2. Forecast results of the ownership of EVs in RAs.

Years 2021 2022 2023 2025

EV ownership 168 260 373 654
Private vehicles 2303 2409 2495 2618
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5.2. Simulation Result

The Bass model and Monte Carlo simulation are used to predict the medium- and
long-term charging load of EVs in RAs, and the objective function is to minimize the
overall load variance of the RA distribution network, and the orderly charging load of
EVs is calculated using a nonlinear optimization algorithm. The conventional load of
RAs is predicted by the equal growth rate method, and the growth rate is set to 1%. By
superimposing the orderly charging load curve with the conventional load curve, the
overall load optimization curve of the RA distribution network in 2021, 2022, 2023, and the
target year 2025 can be derived, as shown in Figure 4.
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From Figure 4a,e, it can be seen that there are fewer EVs in RAs, and disorderly
charging has less impact on the distribution network of RAs. From Figure 4a–h, it can
be seen that, with the continuous increase in the ownership of EVs in RAs, the impact
of disorderly charging on the distribution network of RAs will gradually increase, and
the peak load power of EVs will be added to the daily load power. By comparison, after
orderly charging, the peak charging load can be moved to the valley period of the daily
load power. By the target year 2025, when the charging load electricity accounts for about
10% of the daily load, it will not increase the peak load of the distribution network.

The peak-to-valley difference comparison between disorderly charging and orderly
charging is shown in Table 3. With the increase in the charging load and conventional
daily load, the peak-to-valley difference in disorderly charging will increase, accelerating
the upgrading of the residential distribution network. The peak-to-valley difference in
orderly charging is significantly lower than that in disorderly charging. Therefore, orderly
charging can be used to reduce the peak load power of the distribution network in RAs
and avoid possible heavy overload problems in the network.
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Table 3. Comparison of load peak-to-valley difference between orderly and disorderly charging.

Years
Peak-to-Valley Difference/kW

Disorderly Charging
(Weekday)

Orderly Charging
(Weekday)

Disorderly Charging
(Weekend)

Orderly Charging
(Weekend)

2021 2208.1 1949.1 1971.8 1506.7
2022 2285.3 1970.3 2025.9 1403.8
2023 2375.5 1928.8 2080.2 1277.6
2025 2579.9 1937.3 2238.3 1035.6

Taking the overall load optimization data of the RA distribution network in 2025 as
an example, the impact of EV charging load power on the RA distribution network was
analyzed. The IEEE-33 node power distribution system is divided into four areas, among
which nodes 2, 3, 7, and 26 are charging nodes for EVs, as shown in Figure 5. The charging
load of each area is distributed in proportion to the daily load of this area.
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On the basis of satisfying the overall load optimization of the residential distribution
network, the node loads of nodes 2, 3, 7, and 26 are optimized again with the minimum
node load variance as the objective function. The optimization results are shown in Figure 6.
It can be seen from Figure 6 that after the implementation of the orderly charging strategy,
the peak load of the EV access node will shift. The maximum peak of the overall load of the
charging node after orderly charging on weekdays appears at 7:00, and the maximum peak
of the overall load on weekends appears at 7:00. From Figure 6e–h, it can be seen that the
orderly charging peak power may be bigger than the peak power of disorderly charging.
This is because the charging load power will be shifted after the implementation of the
orderly charging strategy and the total charging load of each EV access node is required to
meet the optimal charging load power transmitted from the upper layer to the lower layer.
If the peak load power of each EV access node is over the node capacity, the number of EV
access nodes will be increased. The orderly charging peak load of each access node can
provide a data basis for the future planning of charging facilities and the transformation of
distribution transformers in the station area in RAs.

Table 4 shows the comparison between the charging electricity of each access node
and the overall load electricity. It can be seen from Table 4 that the charging electricity of
each access node accounts for more than 20% of the total electricity of the node. Therefore,
after the implementation of orderly charging, the overall load peak value of the EV access
node may be higher than the load peak value of disorderly charging. From Figure 6, the
overall load peak after orderly charging on weekends will be higher than that of disorderly
charging. The reason for this is that the disorderly charging load power of EVs on weekends
is more evenly distributed in time. After orderly charging, the charging load is concentrated
in 1:00–10:00.
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Table 4. Comparison of charging power of access nodes.

Typical
Day

Node 2
Overall

Electricity
(kWh)

Node 2
Charging
Electricity

(kWh)

Node 3
Overall

Electricity
(kWh)

Node 3
Charging
Electricity

(kWh)

Node 7
Overall

Electricity
(kWh)

Node 7
Charging
Electricity

(kWh)

Node 26
Overall

Electricity
(kWh)

Node 26
Charging
Electricity

(kWh)

Weekday 2218 637 3271 1848 4716 1554 2285 1337
Weekend 2433 574 3395 1722 5181 1463 2368 1253

The voltage of the EV access node by orderly and disorderly charging is shown in
Figure 7. It can be seen from Figure 7 that the node voltage drops after the node is connected
to the EV load. After orderly charging optimization, the voltage offset of the EV access
node is reduced overall, and the power quality is improved.

The voltages of the 18th, 22th, 25th, and 33rd nodes in the IEEE-33 distribution network
are shown in Figure 8. It can be seen from Figure 8 that the farther the node from the power
supply node, the greater the degree of node voltage deviation. When the 2nd, 3rd, 7th, and
26th nodes are connected to the EV load, the voltage drop will be more serious. If orderly
charging is implemented, the voltage quality will be improved. In the IEEE-33 node system,
the maximum voltage deviation node is the 18th node. Therefore, when considering the
planning of charging facilities in RAs, we should avoid connecting the charging facilities at
the end node, and the access point should be as close to the power supply node as possible.
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The voltages of the IEEE-33 distribution network are shown in Figure 9. The IEEE-33
node voltages at 19:00 and 22:00 on weekdays are shown in Figure 9a. The time of 19:00 is
when the load difference between orderly charging and disorderly charging is the largest
on a weekday; that is, the voltage characteristic curve at 19:00 can describe the maximum
improvement of orderly charging to the voltage quality of the distribution network. The
time of 22:00 is when the IEEE-33 node system load is the highest; that is, the voltage
characteristic curve at 22:00 can describe the node voltage deviation in the most serious
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situation. In the above two cases, orderly charging can improve the voltage quality. The
same analysis can be undertaken in Figure 9b.
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Table 5 shows the comparison of the network loss between orderly charging and
disorderly charging. By 2025, when the EV load electricity on weekdays and weekends
accounts for 8.39% and 6.77%, respectively, of the overall residents’ load electricity, if
disorderly charging is used, the network loss will account for 4.15% and 4.72%; if orderly
charging is used, the network loss will account for 3.97% and 4.57%. Therefore, the use of
orderly charging can reduce the network loss. In the future, with the increasing proportion
of EV load electricity, distribution network planning considering orderly charging can
effectively save operation costs.

Table 5. Comparison of the network loss between orderly charging and disorderly charging.

Typical
Day

Daily Electricity
(kWh)

EVs Charging
Electricity

(kWh)

Network Loss of
Disorderly
Charging

(kWh)

Network Loss of
Orderly

Charging
(kWh)

Weekday 58,725.7 5376 2658 2545
Weekend 69,066.8 5012 3499 3388

6. Conclusions

An orderly charging method for planning the charging facilities and distribution
network of RAs is proposed. A charging load forecasting model based on the travel
characteristics, charging time, and ownership of EVs in RAs is first established. Then,
a hierarchical optimization method including load optimization of the distribution network
layer and each access node of EVs is presented. The nonlinear optimization algorithm is
employed to solve these objective functions, and an IEEE 33 node case is used to obtain
the orderly charging load power curves for weekdays and weekends in RAs. Thus, the
following functionalities are achieved:

(1) For the optimization of the distribution network layer, when using orderly charging,
the overall peak–valley difference and peak load of the RA does not exceed the daily
peak load until the target year.

(2) For the optimization of each access node, the charging load power will be shifted
after the implementation of the orderly charging strategy. The total peak load of the
EV access node may be bigger than the peak power of disorderly charging depending
on the number of EV access nodes and the shifted charging load power. The orderly
charging load of each EV access node can provide a data basis for the future planning
of charging facilities in RAs.
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(3) Implementation of orderly charging can improve the voltage quality of the distribu-
tion network in RAs and can reduce the network loss. With the increasing proportion
of EV charging electricity, distribution network planning considering orderly charging
can effectively save investment and operation costs.
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Nomenclature

Parameter Description
g Ratio of newly added products to the largest market potential [-]
G Ratio of the total cumulative products to the largest market potential [-]
p Innovation coefficient [-]
q Imitation coefficient [-]
h Private vehicle ownership growth rate [-]
fwd-w Probability density function at the work travel end time in the weekdays [-]
fwd-s Probability density function at the end time of the weekday shopping

and social travel [-]
fwe-s Probability density function at the end time of the weekend shopping

and social travel [-]
L Probability density function of a single mileage [-]
l Mileage of the vehicle in a single travel [km]
µs Expectation of lnl [km]
σs Standard deviation of lnl [km]
SOC0 Starting SOC of the electric vehicle charging [%]
dj Mileage of the j-th travel [km]
D Maximum mileage of the electric vehicle [km]
tc Charging time of the electric vehicle [hour]
E Battery capacity of the electric vehicle [kW·h]
Pc Charging power [kW]
F Objective function of the upper level [-]
PEV Charging load [kW]
Pnorm Conventional electricity load [kW]
P Average value of the overall load [kW]
tww-open Start time of orderly charging of electric vehicles for work travels

on workdays [hour]
tww-end End time of orderly charging of electric vehicles for work travels

on workdays [hour]
tss1-open Start time of orderly charging of electric vehicles for shopping and social travel

on weekdays [hour]
tss1-end End time of orderly charging of electric vehicles for shopping and social travel

on weekdays [hour]
tss2-open Start time of orderly charging of electric vehicles for shopping and social travel

on weekends [hour]
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tss2-end End time of orderly charging of electric vehicles for shopping and social travel
on weekends [hour]

Cmax Maximum capacity of the residential distribution network [kVA]
EEV Electric vehicle charging electricity in each hour [kW·h]
Esum Total charging electricity [kW·h]
fj Load variance of the node j [-]
pEV-j Electric vehicle charging load of the node j [kW]
pnorm-j Conventional daily load of the node j [kW]
Pj Average value load of the node j [kW]
EEV-j Electric vehicle charging electricity of the node j in each hour [kW·h]
Esum-j Charging electricity of the node j [kW·h]
Cj-max Maximum capacity of the node j [kVA]

Appendix A

Table A1. Load parameters of IEEE-33 node power distribution system.

Node Number Node Injected
Active Power (kW)

Node Injected
Reactive Power (kVar) Node Capacity(kVA)

1 - - -
2 100 30 400
3 90 25 400
4 120 35 400
5 60 15 400
6 60 15 400
7 200 60 400
8 200 60 400
9 60 15 400
10 60 15 400
11 45 10 400
12 60 15 400
13 60 15 400
14 120 35 400
15 60 10 400
16 60 15 400
17 60 15 400
18 90 25 400
19 90 25 400
20 90 25 400
21 90 25 400
22 90 25 400
23 90 25 400
24 420 100 630
25 420 100 630
26 60 15 400
27 60 15 400
28 60 10 400
29 120 35 400
30 200 60 400
31 150 45 400
32 210 60 400
33 60 15 400
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Table A2. Line parameters of IEEE-33 node power distribution system.

Starting Node End Node Resistance (Ω) Reactance (Ω)

1 2 0.0922 0.047
2 3 0.493 0.2511
3 4 0.366 0.1864
4 5 0.3811 0.1941
5 6 0.819 0.707
6 7 0.1872 0.6188
7 8 0.7114 0.2351
8 9 1.03 0.74
9 10 1.044 0.74
10 11 0.1966 0.065
11 12 0.3744 0.1238
12 13 1.468 1.155
13 14 0.5416 0.7129
14 15 0.591 0.526
15 16 0.7463 0.545
16 17 1.289 1.721
17 18 0.732 0.574
2 19 0.164 0.1565
19 20 1.5042 1.3554
20 21 0.4095 0.4784
21 22 0.7089 0.9373
3 23 0.4512 0.3083
23 24 0.898 0.7091
24 25 0.896 0.7011
6 26 0.203 0.1034
26 27 0.2842 0.1447
27 28 1.059 0.9337
28 29 0.8042 0.7006
29 30 0.5075 0.2585
30 31 0.9744 0.963
31 32 0.3105 0.3619
32 33 0.341 0.5302
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