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Abstract: During the wireless charging of an automated guided vehicle (AGV), the output voltage is
unstable due to changes in parameters such as coil mutual inductance and load resistance caused
by external interferences and internal mismatches of the system. In this paper, an integral sliding
mode control method based on an unknown input observer (UIO) containing predictive equations
is designed to build an inductor–capacitor–capacitor-series (LCC-S) topology model for wireless
power transfer (WPT). The observer designed by this method can perceive changes in the secondary
resistance parameter and the mutual inductance of the primary and secondary coils. The design
with the prediction equation speeds up the convergence of the observer to the true value. The
observer’s compensation of the control system avoids the occurrence of integral oversaturation. The
experimental results show that, based on the UIO-SMC system output, voltage can be accurately
controlled to meet the requirement for a given voltage. The effect of suppressing disturbance is
better than with SMC and PI control. When the system parameter changes, it has better voltage
anti-interference performance and stronger ripple suppression.

Keywords: wireless power transfer (WPT); sliding mode control (SMC); prediction equation;
unknown input observer (UIO)

1. Introduction

With the wide usage of automated guided vehicles (AGVs), battery life has become
the main aspect affecting them, and the battery charging mode has become a hotspot for
electrical engineering research. Wireless power transfer (WPT), due to its advantages of
safe and reliable charging, convenient carrying, light weight, and small switch wear [1],
has been studied and applied in new energy vehicles by many researchers at home and
abroad, opening up a new way to improve AGV endurance.

The AGV charging system requires a reliable, efficient, and high-quality power supply.
From the perspective of battery life, stability of battery charging power and diagnosis of
battery charging status are required [2]. In reference [3], the author proposed to perform
electrochemical impedance spectroscopy (EIS) simulation of battery impedance match-
ing characteristics, and estimated the battery state of charge in a high-frequency WPT
system. Considering the stability of battery charging power, to obtain required charg-
ing performance, the system itself needs to meet a set of performance features related
to anti-interference ability, steady-state error, overshoot, and dynamic behavior, among
others [4].

Various control methods have been proposed at home and abroad to improve the
performance of the control system, such as adaptive control [5], robust control [6], sliding
mode control [7,8], fuzzy control [9], etc. Among them, in terms of response speed and
dynamic performance that meet the system requirements, sliding mode control is easy to
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implement and easy to design. It is widely used in wireless power transmission system
control. In the approach [7], a combination of phase shift control based on climbing search
and sliding mode control theory for WPT systems with series–series topology to control
the output voltage of the system was established. In the approach [8], a control method for
an outer ring proportional-integral (PI) controller and inner ring sliding mode to realize
constant voltage control of the WPT system was adopted.

However, in actual circuit systems, parameters such as capacitance, inductance, and
resistance can change due to the influence of uncertain factors in the external environ-
ment [10]. Therefore, when designing the controller, it is necessary to consider the influence
of changes in such parameters on the control effect. If disturbances are not considered
when designing a sliding mode controller, non-matching errors that cannot be adjusted by
robustness will occur [11,12]. Based on this situation, a composite control method based on
a disturbance observer is proposed, which is more effective in solving a class of systems
with non-matching disturbances. Researchers have proposed a variety of observers in
the field of interference estimation, such as extended state observers (ESO), disturbance
observers, generalized proportional integral observers (GPIO), and sliding mode observers
(SMO) [13–17]. An ESO was proposed in [13], and an adaptive sliding mode controller
based on disturbance estimation was designed to realize position tracking of the servo
mechanism. The disturbance observer designed in [14] estimates the influence of the
disturbance and updates the sliding manifold and control law. In another study [15], the
GPIO is applied to a direct-current-direct-current (DC-DC) step-down circuit controlled by
SMC to achieve a stable output voltage. In [16], the author proved that the global stability
of SMC + SMO and SMO was designed to estimate load and state variables at the same
time. This observer design needs to derive the system state variables, which can cause
certain noise amplification problems. In [17], the author proposed a dynamic estimator for
unknown systems, which is less sensitive to noise and only needs to adjust one parameter;
this estimator has been widely used in actual systems.

In summary, this paper proposes an integral sliding mode control method based on
unknown input observer. First, an unknown input observer is designed to observe the
changes of the secondary resistance, inductance parameters, and coil coupling coefficient.
A prediction function is added to the observer to ensure that the observed disturbance
value quickly converges to the neighborhood of the real disturbance value. Feedforward
compensation to the controller is carried out to ensure that the controller has good anti-
interference ability, and to prevent the controller from generating integral oversaturation.
Second, an observer is constructed that can effectively observe the mutual inductance
disturbance. Speeding up the convergence speed to approach the sliding mode surface
reduces chattering of the controller. Finally, a low-power wireless power transmission
experiment platform is built. The effectiveness of the control method proposed in this paper
is verified through experiments. To better illustrate the comparison among the proposed
method in this article and other methods, the Table 1 is used to display.

Table 1. Comparison of the observer designed in this paper with those in other studies.

Observer Type ESO13 SMO16 UIO17 Observer in this Paper

Number of parameters
to be adjusted

3 2 1 1

Whether to add wave
filter

No No Yes Yes

Other features Designed ESO can
reduce control gain of
SMC

Stability of SMC +
SMO is proven;
chattering caused by
constant velocity
approaching law in
SMO is inevitable

Proposed and used in
servo mechanism

Initial observation error
is small; mutual
inductance disturbance
observed in WPT
system, which can
suppress controller
chattering
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When using ESO13 and other observers of the same structure, it is necessary to consider
the complexity of matching multiple parameters. Therefore, in the servo system, this type
of observer is more popular. Considering that id and iq or torque and speed need to be
controlled in the motor system, it is more appropriate to use an SMO16 observer. The
SMO has the feature of simultaneously observing two variables, but some noise will be
introduced. In the WPT system, in order to avoid the complicated design of the observer
from introducing difficulty to the system control, UIO17 can be considered, which is simple
in design and convenient to construct. In this paper, UIO is used in the WPT system, which
is designed to observe mutual inductance disturbances, and reduces the initial observation
error of UIO. The method proposed in this paper is suitable for use in WPT systems, where
the mutual inductance changes and the output waveform is required to be stable.

2. System Topology

In a WPT system, the four basic compensation topologies, SS, SP, PS, and PP (where S
represents series form and P represents parallel form), have been well researched [2]. In
recent years, hybrid compensation topology has been proposed, such as inductor–capacitor–
inductor-series (LCL-S) compensation topology [18]. Based on that, in order to reduce the
volume of compensation inductance, LCC compensation topology is proposed with the
addition of a compensation capacitor in series with the coil [19].

The primary side adopts the LCC topology structure. Constant voltage or constant
current output characteristics can be realized through the topology parameter configura-
tion and working frequency setting. These match the constant current/constant voltage
charging characteristics of the battery and make it easy to realize zero voltage switching
(ZVS) [20], thereby reducing switching losses. The secondary side adopts the s-type topol-
ogy structure, which is beneficial to reduce the number of secondary side components and
the weight of onboard equipment. Therefore, the LCC-S resonance compensation structure
is selected for the system studied in this paper.

The topology of the LCC-S magnetic coupling wireless power transmission circuit
system is shown in Figure 1, where E represents the DC input voltage of the system. The
inverter bridge converts the DC voltage into a high-frequency alternating current, which
is coupled to the secondary side through the magnetic field of the primary coil, and then
converts the high-frequency alternating current into direct current through series resonance
and the rectifier bridge. After the filter circuit is supplied to the battery, the equivalent
load is RL. Lp and Ls are the self-inductance of the primary and secondary coils, Cp is
the compensation capacitance of the primary coil, and M is the mutual inductance value
between the primary and secondary coils.
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Figure 1. WPT system structure with LCC-S topology.



World Electr. Veh. J. 2021, 12, 220 4 of 17

In order to make the primary and secondary sides of the LCC-S WPT system work
in resonance and improve system efficiency, the equivalent circuit parameters shown in
Figure 2 should meet the following:

C1 = 1
ω2L1

Cs =
1

ω2Ls
Cp = 1

ω2(Lp−L1)

(1)
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where 0u  is the load voltage, refV  is the reference voltage, and equ  is a switching 
law control, which is equivalent to the effective value of the output voltage of the second-
ary side rectifier bridge. 

The sliding surface is designed as follows: 
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Figure 2. Block diagram of control system.

In the formula, ω is the angular frequency (rad/s) of the inverter output voltage Uin,
and ω = 2π f , and f is the resonant operating frequency (Hz) of the system. According to
the SAEJ2954 international standard, the resonant operating frequency f of the system in
this paper is set to 85 kHz.

In order to facilitate control, the system uses phase-shifted full-bridge control technol-
ogy to control the output voltage of the inverter [21]. In the phase-shift power modulation
mode, the duty cycle of each switch tube driving pulse is 50% and the frequency is un-
changed. The duty cycle of the inverter output voltage is adjusted by adjusting the phase
difference between the inverter and tube drive pulses. That is, in Figure 1, the driving
pulses of S2 and S3 lag behind the driving pulses of S1 and S4 by a certain phase angle α to
realize regulation of the output fundamental wave voltage.

The relationship between phase-shift angle α and fundamental effective value Uin of
the output voltage of the high-frequency inverter is as follows:

Uin =
2
√

2
π

M
L

cos
α

2
(2)

The primary and secondary resonance in the relationship between the effective value
of the inverter output voltage Uin and the secondary coil of current term IP is as follows:

Uin = ωLIp (3)

According to the law of electromagnetic induction, the effective value Us of the
secondary voltage is shown in Formula (4):

Us = ωMIp (4)

where M is the mutual inductance value between primary and secondary side coils.
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The secondary circuit adopts a series resonance compensation circuit which satisfies
ω = 1/

√
CsLs. Considering the mismatch of system parameters and external interfer-

ence, the effective value Uout of the rectifier bridge output voltage can be equivalent to
Formula (5):

Uout = ω(M + ∆M)Ip (5)

When the coil is offset, the mutual inductance changes by ∆M.
According to Equations (2)–(5), the relation between inverter phase-shift angle α and

the effective value of Uout can be expressed as follows:

Uout =
M + ∆M

L

(
2
√

2
π

E cos
α

2

)
(6)

3. Control System Design
3.1. Sliding Mode Controller Design

A mathematical model was established, and the tracking deviation of the load output
voltage was selected as the state variable of sliding mode control. Then the tracking
deviation x1, the rate of change of tracking deviation x2, and the integral of tracking
deviation x3 can be expressed as follows:

x1 = Vre f − u0

x2 =
•
x1 =

d(Vre f−u0)

dt = u0
RLC f

+
∫ u0−ueq

L f C f
dt

x3 =
∫

x1dt =
∫
(Vre f − u0)dt

(7)

where u0 is the load voltage, Vre f is the reference voltage, and ueq is a switching law control,
which is equivalent to the effective value of the output voltage of the secondary side
rectifier bridge.

The sliding surface is designed as follows:

s(x) = αx1 + x2 + βx3 (8)

where α and β are the sliding mode coefficients and must meet the Hurwitz condition,
namely, α > 0 and β > 0.

The Lyapunov function is defined as follows:

Vs =
1
2

s2 (9)

In order to guarantee lim
s→0

s
•
s < 0, the sliding mode control law is designed as follows:

ueq = icL f (
1

RLC f
− α) + [β(Vre f − u0) + ηsign(s)]L f C f + u0 (10)

To solve the problem of system parameter mismatch and mutual inductance change
caused by variations of the ideal charging environment, this paper proposes a control
method based on UIO-SMC. Perturbation ϕ(t) is introduced into the state space equation:

•
x1 = x2 + ϕ1(t)
•
x2 = u0−u

L f0
C f0

+ ic
C f0
· 1

RL0 C f0
+ ϕ2(t)

•
x3 = x1 = Vre f − u0

(11)

where ϕ1(t) is the load interference quantity, ϕ2(t) is the energy transmission interference
quantity. The expansions of ϕ1(t) and ϕ2(t) is shown in the following formula:
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[
ϕ1(t)
ϕ2(t)

]
=

[ 1
RL0 C f0

− 1
RLC f

1
C f0

( 1
L f0
− 1

L f
) + 1

RL0 C f0
· 1

RLC f

]
u0 +

[ 1
C f
− 1

C f0
− 1

RL0 C f0
· 1

C f

]
iL +

[
d1(t)

1
C f0

(
ueq
L f
− uout

L f0
) + d2(t)

]
(12)

where d1(t) and d2(t) are the external interference of the system. Given s = 0, Formula (8)

can be expressed as follows:

•
x1 = −αx1 − β

∫
x1dt + ϕ1(t) (13)

As can be seen, although integral sliding mode steady-state error can be compensated,
it will cause slow system response and the presence of a wind-up phenomenon [22]. The
estimated value is fed to the sliding surface as a feedforward compensation, as shown in
Formula (14):

•
x1 = −αx1 − β

∫
x1dt + ϕ1(t)−

∧
ϕ1(t) = −αx1 − β

∫
x1dt + d1(t) (14)

Employing compensation, the system hysteresis caused by the integral term is reduced,
integral supersaturation is reduced, and the reaction speed of the system is improved.

As shown in Equations (3) and (5) above, the system will inevitably encounter distur-
bance in the energy transmitting terminal and energy transmission. It can be seen from
Equation (6) that the disturbance will be reflected in the energy receiving terminal. We can
observe the disturbance value at the energy receiving terminal and provide compensation
for the system.

3.2. Unknown Input Observer Design

In the wireless power transmission system, changes in parameters such as capacitance,
inductance, and resistance at operating temperature, or other reasons, will cause the
parameter values to change. The parameter change value can be regarded as a kind
of disturbance to the control system: if left alone, it will affect the control performance.
Conversely, for the primary and secondary coils that transmit energy, any change in their
relative position will affect the mutual inductance of the system. Formula (6) derivation
shows that a change of mutual inductance will directly affect the output voltage of the
system. Therefore, it is necessary to design a feedback control to address the influence of
disturbance caused by parameter changes in the system. This paper proposes an unknown
input observer to estimate disturbances in the secondary side parameters of the system and
the mutual inductance between the coils. Feedforward compensation to the sliding mode
controller is used to eliminate the influence of integral saturation on the control system.

In the design of the unknown input observer, the variable filter is defined, as shown
in Formula (15): [

x1
x2

]
= λ

[ .
x1 f.
x2 f

]
+

[
x1 f
x2 f

] {
x1 f (0) = 0
x2 f (0) = 0

(15)

where λ is the filtering time constant, and λ > 0.
At the initial time, the value of the filtering variable x1 f is 0, and the initial value of x1

is Vre f .
After the observation value is magnified, the observer has a larger error at the initial

moment. It is easy to produce overshoot during feedforward compensation of the control
system. When the control system includes an integral function, it is easy to produce
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oversaturation. The same thing applies to x2 f . For the dynamic performance of the system,
the following unknown input observers are designed:

[
ϕ̂1(t)
ϕ̂2(t)

]
=

[
− 1

λ −1
1

C f0
L f0

− 1
λ

][
x1 f
x2 f

]
+

[ x1
λ − σkx1

x2
λ −

Uout
C f0

L f0
+

Vre f
C f0

L f0
− σkx2

]
(16)

Formula (16) satisfies lim
λ→ 0
t→ ∞

ϕ̂1(t) = 0 and lim
λ→ 0
t→ ∞

ϕ̂2(t) = 0.

In the formula, σkx is the prediction equation, which means that the prediction of
changes x1 uses the exponential function to converge. 0 < σ < 1, according to the system,
selects σ = 0.99, k = T/Ts, where k is the current time divided by the control period. The
selection of filter time constant λ was analyzed in [23], and λ = 0.001 was selected here for
better tracking.

The filter variables ϕ1 f and ϕ2 f are defined, and the relationship with the disturbance
variables ϕ1(t) and ϕ2(t) is as follows:[

ϕ1(t)
ϕ2(t)

]
= λ

[ .
ϕ1 f.
ϕ2 f

]
=

[
ϕ1 f

ϕ2 f

]
(17)

Defining errors s1 = ϕ1(t)− ϕ̂1(t) and s2 = ϕ2(t)− ϕ̂2(t), taking the derivative of
error variables s1 and s2, and substituting Equation (16) into the formula, we obtain the
following: [ .

s1.
s2

]
= − 1

λ

[
s1
s2

]
+

[ .
ϕ1(t).
ϕ2(t)

]
(18)

It is assumed that disturbances ϕ1(t) and ϕ2(t) are bounded and have supt≥0

∣∣ .
ϕ1(t)

∣∣ ≤ ϕ1
∗(t)

and supt≥0

∣∣ .
ϕ2(t)

∣∣ ≤ ϕ2
∗(t), where sup represents the supremum of the parameter. Taking

the Lyapunov function as Vs = 1
2 s2

1 +
1
2 s2

2, and taking the derivative of it, we obtain the
following:

•
Vs = s1

•
s1 + s2

•
s2

≤ − 1
2k s2

1 +
k
2 ϕ∗21 (t)− 1

2k s2
2 +

k
2 ϕ∗22 (t)

(19)

According to the differential equation, s1 and s2 are bounded, and Equation (20) can
be obtained as follows: 

∣∣∣∣s1

∣∣∣∣= √s2
1 ≤

√
s2

1(0)e
− t

λ + λ2 ϕ∗21 (t)∣∣∣∣s2

∣∣∣∣= √s2
2 ≤

√
s2

2(0)e
− t

λ + λ2 ϕ∗22 (t)
(20)

It can be inferred that when λ→ 0 and t→ ∞ , we have s1 → 0 and s2 → 0 . The
system converges to the equilibrium point in a finite time. Replacing the disturbance term
in Formula (11) with the observed value, the equivalent control law of the integral sliding
mode controller based on the unknown input observer (UIO-SMC) is as follows:

u = icL f (
1

RLC f
− α) + [α

∧
ϕ1(t) +

∧
ϕ2(t) + βx1 + ηsign(s)]L f C f + u0 (21)

The equivalent control expression, u, contains the system parameters RL and Cf. In
order to reduce the interference of system parameter deviation and load change on the
control function, when selecting system control parameters, they should meet the following
condition:

α >>
1

RLC f
(22)
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4. Verification and Discussion
4.1. System Structure Design

In order to verify the anti-jamming performance of the integral sliding mode control
method based on the unknown input observer in the WPT system and the estimation accu-
racy of the unknown input observer to the disturbance, a system structure was designed,
as shown in Figure 2. MATLAB/Simulink was used to establish the system model and
design simulations and experiments. In the actual system, changes in the inductance and
capacitance parameters at the receiving end are not obvious, but a change in the resistance
parameter will have a great influence on the output voltage. The deviation of the distance
between coils in the energy transmission will affect the system; it will cause the mutual
inductance to change and make the output voltage of the receiving end unstable. There-
fore, we designed a simulation experiment of load resistance and coil mutual inductance
changes.

The model parameters are shown in Table 2, the control parameters are shown in
Table 3, and the simulation results are shown in Figures 3–5.

Table 2. Model parameters of WPT system.

Description/Unit Parameter Value

Inverter input DC voltage (V) E 18
Inverter frequency (kHz) f 85
Primary side topological inductance (µH) L1 31
Primary side coil inductance (µH) Lp 79
Primary sideline compensation capacitor (nF) Cp 33
Primary topology resonance capacitance (nF) C1 47
Secondary side coil inductance (µH) Ls 70
secondary side resonant capacitance (nF) Cs 56
Filter inductance (µH) Lf 100
Filter capacitor (µF) Cf 470
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Table 3. Control parameters.

Control Parameter Value

λ 0.001
σ 0.99
α 6.6 × 106

β 3 × 1013

η 1
kp 1.2
ki 180

Choosing an appropriate sliding mode coefficient will ensure good dynamic perfor-
mance of the output voltage. The selection of sliding mode coefficient must satisfy the
existence condition of sliding mode. Substituting S = 0 into Equation (8), we obtain the
following:

αx1 + x2 + βx3 = 0 (23)

Substituting Formula (7) into Formula (23) for further transformation, we obtain the
following:

αx1 +
dx1

dt
+ β

∫
x1dt = 0 (24)

Equation (24) is derived from the time to obtain the standard second-order system
equation as follows:

..
x1 + 2ζωn

.
x1 + ωn

2x1 = 0 (25)

In the formula, ζ is the damping coefficient, ζ = 1
2 α, and ωn is the undamped natural

oscillation frequency, ωn =
√

β.
The second-order system mainly has three types of responses: under-damped (0 < ζ < 1),

critically damped (ζ = 1), and over-damped (ζ > 1). In this paper, integral sliding mode
control based on the law of constant velocity is adopted, and the design requires a fast
approach to the sliding mode surface. Therefore, we designed the sliding mode coefficient
for the over-damped state [24]. The attenuation coefficient τ = 1/(ζωn) and damping
coefficient ζ represent the adjustment time and oscillation of the system, respectively.
From the calculation formula of attenuation coefficient τ and damping coefficient ζ, the
relationship between sliding mode coefficients α and β can be expressed as follows:{

α = 2
τ

β = 1
τ2ζ2

(26)

In [24], the author analyzed the relationship between damping ratio, overshoot, and
response time, and generally selected ζ = 0.4–0.8; this paper selects ζ = 0.6. The attenuation
coefficient τ represents the dynamic response of the controller, which is mainly determined
by the system power level and switching frequency [25]. If τ is too large, the system
response time will be longer. If τ is too small, the system response becomes faster, but
the performance requirements of the system controller are too high, and system stability
is reduced. At the same time, the selection of τ must satisfy the sliding mode existence
condition (10) and the assumption condition (22). Here, the parameters were selected based
on the restriction conditions of the parameter selection described above. Considering that
the sliding mode control law contains Lf and Cf, and the parameters of Lf and Cf are smaller,
for the dynamic response performance and stability of the system, the control parameters
need to be enlarged by corresponding multiples. Based on these considerations, the sliding
mode control parameters are selected as follows:

α= 6.6× 106, β = 3× 1013.
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The parameters of the PI controller are designed based on the rated system parameters.
Because the system parameters and reference values change under different working
conditions, it is difficult for the designed PI controller to achieve the same optimization
under different working conditions. However, it can be seen from the actual test results
that the PI parameters were optimally designed to imitate an actual application; thus, they
can be compared with the effect of the sliding mode controller.

The values of the system parameters are shown in Table 3.

4.2. Analysis of Simulation Result
4.2.1. Controller Performance

The reference voltage was set to 9 V. In order to verify the output voltage anti-offset
ability of the UIO-SMC under mutual inductance changes and load mutations, an output
voltage comparison experiment of PI control and SMC control was designed. The output
voltage waveform of the system under sudden load changes is shown in Figure 3. As
shown in Figure 3a, the load changes from 5 to 20 to 5 Ω, and the changing moments are at
0.02 and 0.04 s. As shown in Figure 3b, the mutual inductance changes from 17 to 32 to
17 µH, which corresponds to the change in vertical distance of the coil from 7 to 4 to 7 cm,
and the time of change is 0.02 s and 0.04 s. It can be seen from the figure that the output
voltage of the three control strategies can be stabilized at the reference voltage value, but
the ripple size has a more obvious difference. The output voltage ripple based on UIO-SMC
control is 80% less than that of PI control and SMC control.

When the load resistance changes, since ϕ1(t) and ϕ2(t) are parameters that include
loads, the observer can observe their numerical changes. When the mutual inductance
changes, according to Formula (5), the input voltage at the receiving end changes within
the observation range of ϕ2(t); thus, ϕ1(t) does not change at this time, and ϕ2(t) changes.
It can be seen from Figure 4 that the observer proposed in this paper greatly reduces the
initial error and shortens the time to converge to the true value.

The above simulation results show that the sliding mode controller based on the
unknown input observer in the WPT system has strong anti-interference ability. The
disturbance observer can accurately observe the disturbance and perform feedforward
compensation for the sliding mode controller.

4.2.2. Observer Performance

In order to compare the UIO proposed in this paper, ESO13 and SMO16 are used in
this section to observe disturbance ϕ1(t). The experimental results are shown in Figure 5.
It can be found that the proposed UIO has better observation performance than ESO and
SMO. Comparing the performance of UIO and ESO, it can be seen that although ESO can
observe system disturbances, compared with UIO, it has a larger initial observation error.

4.3. Analysis of Experimental Results

In order to verify the control method proposed in this paper, an experimental platform
based on TMS320F28027DSP as the control core was built. The experimental setup is shown
in Figure 6. In the load mutation experiment, the distance between the transmission coils
was 7 cm. In the coil offset experiment, the load resistance was 5 Ω.

4.3.1. Coil Offset Experiments

The reference voltage was set to 9 V. In this paper, a coil offset experiment was designed
to correspond to the change of mutual inductance in the simulation.

Figure 7 shows the changes in the mutual inductance of the coil under different vertical
distances. The mutual inductance value of the coil in the picture was measured by the LCR
method in an open loop [26]. Figure 8 shows the waveform of load output voltage u0, load
output current i0, and secondary rectifier current is when the coil changes from a vertical
distance of 7 to 4 cm and then back to 7 cm.
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Figure 8a shows that the output voltage ripple of the sliding mode control added to
the observer is smaller. This indicates that the chattering of the controller is suppressed.

4.3.2. Load Mutation Experiments

The experimental design load resistance changed from 5 to 20 to 5 Ω, and the ex-
perimental waveforms are shown in Figure 6. The response time of the control method
proposed in this paper was 0.4 and 0.8 ms, the response time of the sliding mode control
was 1 and 1.2 ms, and the response time of PI was 1.2 and 1.4 ms. Compared with the
control method proposed in this paper, the response times of sliding mode and PI control
were longer. It can be seen from Figure 9a that when the load changed to 5 Ω, the output
voltage ripple of the proposed control method was smaller than that of SMC and PI control.



World Electr. Veh. J. 2021, 12, 220 14 of 17

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 15 of 20 
 

Figure 6. Exterior appearance of experimental setup. 

4.3.1. Coil Offset Experiments 
The reference voltage was set to 9 V. In this paper, a coil offset experiment was de-

signed to correspond to the change of mutual inductance in the simulation. 
Figure 7 shows the changes in the mutual inductance of the coil under different ver-

tical distances. The mutual inductance value of the coil in the picture was measured by 
the LCR method in an open loop [26]. Figure 8 shows the waveform of load output voltage 
u0, load output current i0, and secondary rectifier current is when the coil changes from a 
vertical distance of 7 to 4 cm and then back to 7 cm. 

 
Figure 7. Relationship between vertical distance of coil and mutual inductance. 

Figure 8a shows that the output voltage ripple of the sliding mode control added to 
the observer is smaller. This indicates that the chattering of the controller is suppressed. 

 Time(400ms/div)

i0 (2A/div)

is (2A/div)

Mutual inductance mutation

34uH→17uH 17uH→34uH
u0 (10V/div) 

0

0

0

 

(a) 

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 16 of 20 
 

 Time(400ms/div)

i0 (2A/div)

is (2A/div)

Mutual inductance mutation

34uH→17uH 17uH→34uH

u0 (10V/div) 

0

0

0

 

(b) 

 Time(400ms/div)

i0 (2A/div)

is (2A/div)

Mutual inductance mutation

34uH→17uH 17uH→34uH
u0 (10V/div) 

0

0

0

 

(c) 

Figure 8. Output waveforms under change of mutual inductance: (a) UIO-SMC; (b) SMC; (c) PI. 

4.3.2. Load Mutation Experiments 
The experimental design load resistance changed from 5 to 20 to 5 Ω, and the exper-

imental waveforms are shown in Figure 6. The response time of the control method pro-
posed in this paper was 0.4 and 0.8 ms, the response time of the sliding mode control was 
1 and 1.2 ms, and the response time of PI was 1.2 and 1.4 ms. Compared with the control 
method proposed in this paper, the response times of sliding mode and PI control were 
longer. It can be seen from Figure 9a that when the load changed to 5 Ω, the output voltage 
ripple of the proposed control method was smaller than that of SMC and PI control. 

Figure 8. Output waveforms under change of mutual inductance: (a) UIO-SMC; (b) SMC; (c) PI.



World Electr. Veh. J. 2021, 12, 220 15 of 17
World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 17 of 20 
 

Time(400ms/div)

i0 (2A/div)

is (2A/div)

Sudden change in load resistance

5Ω→20Ω 20Ω→5Ω

u0 (10V/div) 

0

0

0

 
(a) 

Time(400ms/div)

u0 (10V/div) 

i0 (2A/div)

is (2A/div)

Sudden change in load resistance

5Ω→20Ω 20Ω→5Ω

0

0

0

 
(b) 

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 18 of 20 
 

Time(400ms/div)

i0 (2A/div)

is (2A/div)

Sudden change in load resistance

5Ω→20Ω 20Ω→5Ω

u0 (10V/div) 

0

0

0

 
(c) 

Figure 9. Output waveforms under sudden change in resistance: (a) UIO-SMC; (b) SMC; (c) PI. 

5. Conclusions 
This paper proposes an integral sliding mode control method based on an unknown 

input observer. The unknown output observer is designed based on the first-order low-
pass filter. The method achieves estimation and feedforward compensation of the second-
ary side resistance parameters and coil mutual inductance mismatch to give the system 
better anti-interference ability. At the same time, a prediction equation is added to the 
design of the unknown input observer. The initial observation error of the observer be-
comes smaller, and the time to converge to the true value becomes shorter. The observer 
is combined with an integral sliding mode controller. While integral saturation is effec-
tively suppressed, the robustness of the controller is improved and the chattering of the 
controller is reduced. The designed observer proves that the error between the observed 
and true values can converge to zero. The stability of the observer is proven by Lya-
punov’s theorem, and a brief comparison with ESO13 and SMO16 is made. The experi-
mental results show that the robustness and dynamic performance of the proposed con-
trol method in WPT systems are better than those of traditional PI and sliding mode con-
trol. This method can be used to solve the disturbance problem caused by coil offset and 
load change during wireless charging of AGVs. In this paper, an uncontrolled rectifier 
bridge is selected at the rectifier side. In order to better integrate battery BMS management 
in the future, it can be changed as a semi-controlled or controllable full bridge to realize 
the regulation of power and efficiency under the condition of original anti-disturbance 
stable voltage output. 

Author Contributions: Conceptualization, J.H.; methodology, J.H.; software, J.H.; validation, J.H.; 
formal analysis, J.H.; investigation, J.H.; resources, D.H. and W.H.; data curation, J.H.; writing—
original draft preparation, J.H.; writing—review and editing, D.H.; visualization, D.H.; supervision, 
J.H. and D.H.; project administration, J.H.; funding acquisition, W.H. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research was funded by STS Plan in Fujian Province under Grant No. 2020T3016. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data sharing not applicable. 

Figure 9. Output waveforms under sudden change in resistance: (a) UIO-SMC; (b) SMC; (c) PI.



World Electr. Veh. J. 2021, 12, 220 16 of 17

5. Conclusions

This paper proposes an integral sliding mode control method based on an unknown
input observer. The unknown output observer is designed based on the first-order low-pass
filter. The method achieves estimation and feedforward compensation of the secondary
side resistance parameters and coil mutual inductance mismatch to give the system better
anti-interference ability. At the same time, a prediction equation is added to the design of
the unknown input observer. The initial observation error of the observer becomes smaller,
and the time to converge to the true value becomes shorter. The observer is combined with
an integral sliding mode controller. While integral saturation is effectively suppressed, the
robustness of the controller is improved and the chattering of the controller is reduced.
The designed observer proves that the error between the observed and true values can
converge to zero. The stability of the observer is proven by Lyapunov’s theorem, and a
brief comparison with ESO13 and SMO16 is made. The experimental results show that the
robustness and dynamic performance of the proposed control method in WPT systems
are better than those of traditional PI and sliding mode control. This method can be used
to solve the disturbance problem caused by coil offset and load change during wireless
charging of AGVs. In this paper, an uncontrolled rectifier bridge is selected at the rectifier
side. In order to better integrate battery BMS management in the future, it can be changed
as a semi-controlled or controllable full bridge to realize the regulation of power and
efficiency under the condition of original anti-disturbance stable voltage output.
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