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Abstract: Large-scale fast charging of electric vehicles (EVs) probably causes voltage deviation
problems in the distribution network. Installing energy storage systems (ESSs) in the fast-charging
stations (FCSs) and formulating appropriate active power plans for ESSs is an effective way to reduce
the local voltage deviation problem. Some deterministic centralized strategies used for ESSs at FCSs
are proposed to solve the voltage deviation problem mentioned above. However, the randomness of
the EV load is very large, which can probably reduce the effects of deterministic centralized strategies.
A fast and reliable centralized strategy considering the randomness of the EV load for ESSs is a key
requirement. Therefore, we propose in this paper a day-ahead scheduling strategy with the aim
of maximizing the probability of the nodal voltage change being smaller than a preset limit at the
observation node. In the proposed strategy, the uncertainty of EV load is taken into account and
the probability of the voltage change of an observation node is quantified by a proposed analytic
assessment model (AMM). Furthermore, a voltage change optimization model (VCOM) based on a
novel control parameter β is proposed, where β can be used as a constraint to suppress the nodal
voltage change at the observation node. Finally, the IEEE 33-bus test system is used to verify the
effectiveness of the proposed day-ahead ESS strategy.

Keywords: electrical vehicles; distribution network; local voltage regulation

1. Introduction

The adoption of EVs is regarded as having very large potential in terms of reducing
carbon emissions [1,2]. The take-up rate of EVs has increased rapidly in recent years,
the number of EVs registered worldwide by 2018 having surpassed 5 million [3]. The high
penetration level of EVs can bring on a sharp increase in power load, which may cause
adverse impacts on the distribution grid [4], especially fast-charging EVs [5]. During peak
load periods, the distribution grid may easily suffer security risks such as transformer
overload, voltage problems, or cable overload [6].

The voltage problems caused by increasing EV charging load are widely seen as
concerning. Previous studies have confirmed that high penetrations of EVs can reduce the
voltage stability margin and may lead to the voltage instability of the power grid [7]. A sim-
ilar conclusion was obtained by using the IEEE 3-bus test system [8]. Since there is very
little voltage instability in the distribution networks operating under normal conditions,
more research focus is required on the impacts of EV charging on voltage change. The ran-
domness and impulsive characteristics of EV recharging loads mean that the injection of
power at the charging node can vary greatly, which may increase the nodal voltage change
at the local node or neighboring nodes. The findings in [9] show that voltage violation may
occur at 10–20% EV penetrations, and in [10] the voltage deviation reaches 3.46% at 20%
EV penetrations. Furthermore, large-scale EV fast charging also can cause voltage flicker in
the distribution network [11].
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Many studies show that installing energy storage systems (ESS) in fast-charging
stations with an appropriate energy management strategy can alleviate voltage problems.
A compensation control strategy for the ESS is proposed to deal with energy imbalance
in continuous operation [12]. An advanced ESS control strategy based on fuzzy control is
used to reduce the local voltage fluctuation [13]. The authors of Ref. [14] studied the ESS
used in the FCS, which demonstrates that the voltage profile of the transformer in the FCS
can be improved by the ESS. A local control algorithm for the FCS with flywheel energy
storage systems was proposed in [15], which can also guarantee the charging demand
power of the EV during the period of charging control. However, the randomness of the
EV load is not considered in these studies. Furthermore, the actual adjustable capacity of
the ESS in an FCS is very limited so that it is generally less effective despite using the above
local voltage regulation methods to solve the voltage problem in the distribution network.

To address these inadequacies, a centralized day-ahead scheduling strategy for ESSs
in FCSs is proposed in this paper to reduce the adverse impact of FCSs on the voltage
changes at observation nodes in the radial distribution network. This paper assumes that a
nodal voltage regulation system has been established between the distribution network
operator and the FCS operator to reduce the adverse impact caused by FCSs, which includes
a regional-level optimization decision-making system (RODS) and station-level energy
management systems (SEMSs), as shown in Figure 1. RODS is responsible for formulating
the day-ahead active power plan for the ESS. SEMS i is responsible for executing the
day-ahead active power plan i.
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The rest of the paper is arranged as follows. Section 2 presents the problem formu-
lation. Section 3 expounds on the AMM and the control characteristics of the control
parameters. The VCOM is illuminated in Section 4. Section 5 presents the case study and
discussion. Finally, Section 6 draws conclusions from the research.

2. Problem Formulation
2.1. FCS Model

The power supply system usually consists of the grid, the photovoltaic system (PV),
and the ESS, as shown in Figure 2. Since the traditional load mainly made up of lighting
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and air conditioning load is too low in comparison with the EV load, it is reasonable to
ignore the traditional load, in which case the FCS model can be expressed as,

PG
jκ = Pch

jκ − PS
jκ

Pch
jκ = PEV

jκ − PPV
jκ

PG
jκ ≤ STrans

j

(1)

where PG
jκ stands for the nodal grid load at the node j at κth time interval, PPV

jκ is the

output power of the photovoltaic (PV) source at κth time interval, PS
jκ stands for the charge-

discharge active power of the ESS at κth time interval, where negative sign stands for the
discharge and positive sign stands for the charge, PEV

jκ is the EV’s charging load, and STrans
j

is the rated capacity of the service transformer at the FCS.
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In many studies, the nodal load data at different time intervals are regarded as normal
distribution variables, and the normal probability density function is usually used to depict
the uncertainties of the load of each node [16–18]. We divide a day into 24 equal time
intervals, every time interval is 1 h. Let ∆PEV

jκ stand for the EV’s charging load change in
κth time interval, which can be calculated as follows,

∆PEV
jκ = PEV

jκ −mean
(

PEV
jκ1 , PEV

jκ2 , . . . , PEV
jκT) (2)

Histograms of the EV’s charging load change at 4th, 5th, and 7th time intervals can be
seen in Figure 3. Although EV charging load changes at these time intervals do not obey
normal distribution, they concentrate within 20 kW. Since nodal load changes within 20 kW
can hardly affect the nodal voltage significantly under normal circumstances, we use the
constant power model to depict the EV’s charging load at the time interval when the EV’s
charging load change is not a normal distribution variable. Let κj stand for a set of time
intervals when the EV’s charging load does not obey the normal distribution at the FCS j.
Then PEV

jκ can be formulated as,{
PEV

jκ ∼ N
(

µjκ , σ2
jκ

)
, κ ∈ κj

PEV
jκ = mean(PEV

jκ1 , PEV
jκ2 , . . . , PEV

jκT), κ /∈ κj
(3)
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where µjκ and σjκ stand for the expectation and standard change of PEV
jκ respectively. It is

reasonable to adopt the constant power model to express the output active power of the
PV at the κth time interval, since the fact that the change range of the PV power output
is usually much smaller than that of the EV’s charging load. Hence, when κ ∈ κj, Pch

jκ is

also a normal distribution variable, N(µjκ−PPV
jκ ,σ2

jκ). Since the linear transformation of a
normal distribution still follows a normal distribution, when κ ∈ κj, the FCS model can be
written as, 

PG
jκ = µjk − PPV

jκ + ∆Pch
jκ − PS

jκ

∆Pch
jκ ∼ N

(
0, σ2

jκ

)
PG

jκ ≤ STrans
j

κ ∈ κj

(4)

where ∆Pch
jκ stands for the Gaussian error component of Pch

jκ .
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2.2. Impact on the Radial Distribution Network

Numerous studies show that large-scale EV fast charging easily leads to nodal voltage
change in the radial distribution network, which can deteriorate the power quality. There-
fore, it is meaningful to reduce the nodal voltage change caused by FCSs. In this paper,
we use the evaluating function Foκ(.) to quantify the adverse impact of the FCSs on voltage
change at observation node o at κth time interval. Foκ(.) can be expressed as follows,{

Foκ(δoκ , βoκ , αoκ) =
1

Γ(α)

∫ βoκδ2
oκ

0 tαoκ−1e−tdt

Γ(αoκ) =
∫ +∞

0 tαoκ−1e−tdt, αoκ > 0
(5)

where δoκ
oκ stands for the upper limit of voltage change at observation node o at κth time

interval, βoκ and αoκ are control parameter and shape parameter, respectively, and Γ(.) is a
Gamma function. The detailed descriptions of Foκ(.) and the characteristic of the control
parameter βoκ are introduced in Sections 3.2 and 3.3, respectively.

2.3. Optimization Model

We can build up a one-objective optimization model to describe the problem which is
focused on in this paper,

max f (x)
s.t.

cj ≤ uj(x) ≤ dj, j= 1, . . . , q
aκ ≤ xκ ≤ bκ , κ = 1, . . . , m

(6)

where f (x) stands for the objective function calculated by the elements of the optimization
vector x, x = [x1, . . . , xm], uj(x) stands for the jth inequality constraint. It is obvious that
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many intelligent algorithms can be used to solve Equation (6), such as particle swarm
optimization (PSO) and the genetic algorithm (GA). Compared with other intelligent algo-
rithms, the traditional GA is more robust and can effectively search the complex spaces,
but it is easier to fall into a local optimum [19–21]. Therefore, an improved real-coded ge-
netic algorithm (RCGA-rdn) is used to solve Equation (6), which can reduce the probability
of falling into local optimum and improve the computational efficiency [22]. The con-
strained optimization model needs to be converted into an unconstrained optimization
model before using the RCGA-rdn. In this paper we use the penalty function method to
achieve this conversion, then Equation (6) can be rewritten as,

max
{

P1(x) · f1(x), . . . , Ppp(x) · fpp(x)
}

,

Pg(x) = 1− 1
q

√
q
∑

j=1

(
∆ujg(x)

∆umax
j (x)

)2

∆ujg(x) =


∣∣ujg(x)− dj

∣∣ , if ujg(x) > dj∣∣ujg(x)− cj
∣∣ , if ujg(x) < cj

0 , else
∆umax

j (x) = max
{

∆uj1(x), . . . , ∆ujpp(x)
}

j = 1, . . . q
g = 1, . . . pp

(7)

where Pg(.) stands for the penalty function of population g, and pp is the initial population
number. For a detailed description of the optimization model, please refer to Section 4.

3. Analytical Assessment Model of the Nodal Voltage Change
3.1. The Radial Distribution Network Model

Figure 4 shows a typical radial distribution network, there is only one source node
that can be regarded as a voltage source and we use current sources to depict the load
nodes. Let Us stand for the phase voltage at the source node s, Ud stand for the phase
voltage at the load node d, and Uo stand for the phase voltage at the observation node o.
Based on the circuit superposition theorem, the typical radial distribution network can be
decomposed into three different type sub-circuits as shown in Figure 4. The voltage at the
observation node o (Uo) can be expressed as,

Uo = Us − ∑
d∈D

S∗d
U∗d

Zod (8)

where S∗d stands for the conjugate complex draw power at node d, U∗d is the conjugate
phase voltage at node d, Zod is the shared impedance between the node d and observation
node o from the source node s, and D is a set of the load nodes.
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Let the complex draw power at the node d change from Sd to Sd + ∆Sd and the nodal
voltage change from Ud to Ud + ∆Ud, then the voltage change at the observation (∆Uo) can
be written as,

∆Uo = − ∑
d∈D

(
S∗d+∆S∗d

U∗d+∆U∗d
− S∗d

U∗d

)
Zod

= ∑
d∈D

S∗d ∆U∗d−∆S∗dU∗d
U∗d (U∗d+∆U∗d )

Zod
(9)

Since ∆U∗d << U∗d (U∗d + ∆U∗d ), ∆U∗d /U∗d (U∗d + ∆U∗d )→0, Equation (9) can be simplified as,

∆Uo = −∑
d∈D

∆S∗d
U∗d + ∆U∗d

Zod (10)

Let Zod = Rod+jXod, ∆Sd = ∆PG
d +j∆QG

d and ∆Ud = ∆Ur
d + j∆Ui

d. By listing the real and
imaginary parts of ∆Uo separately, we can get,

∆Ur
o = − ∑

d∈D


(∆PG

d Rod+∆QG
d Xod)(Ur

d+∆Ur
d)

(Ur
d+∆Ur

d)
2
+(Ui

d+∆Ui
d)

2

− (∆PG
d Xod−∆QG

d Rod)(Ui
d+∆Ui

d)

(Ur
d+∆Ur

d)
2
+(Ui

d+∆Ui
d)

2


∆Ui

o = − ∑
d∈D


(∆PG

d Xod−∆QG
d Rod)(Ur

d+∆Ur
d)

(Ur
d+∆Ur

d)
2
+(Ui

d+∆Ui
d)

2

+
(∆PG

d Rod+∆QG
d Xod)(Ui

d+∆Ui
d)

(Ur
d+∆Ur

d)
2
+(Ui

d+∆Ui
d)

2


(11)

where ∆Ur
o and ∆Ui

o stand for the real and imaginary parts of ∆Uo. Since the phase
angle of the phase voltage is usually small, it is reasonable to ignore the ∆Ur

d and ∆Ui
d.

Let Ud = |Ud| ∠ θd, then Equation (11) can be rewritten as,

∆Ur
o ≈ ∑

d∈D

[
Aod∆PG

d + Bod∆QG
d
]

∆Ui
o ≈ ∑

d∈D

[
Cod∆PG

d + Dod∆QG
d
]

Aod = − Rod cos θd−Xod sin θd
|Ud |

, Bod = −Xod cos θd+Rod sin θd
|Ud |

Cod = −Xod cos θd+Rod sin θd
|Ud |

, Dod = Rod cos θd−Xod sin θd
|Ud |

(12)

Since Ud and Zod are known variables, A, B, C, and D are constants. Therefore, ∆Ur
o

and ∆Ui
o can be approximated as a linear combination of ∆PG

d and ∆QG
d .

3.2. The AMM

It is obvious that the probability of the voltage change (∆Uo) smaller than the limiting
value (δo) can be used to measure the impact of the FCSs on the voltage change at the
observation node o. The larger P(|∆Uo| < δo) is, the smaller the impact of the FCSs on the
voltage change will be. In this section, we derive the AMM which is used to evaluate the
impact of the FCSs on the voltage change at any node in the LV radial distribution network.
In this paper, we select the average load at the node without the FCS as the initial load
at this node. Let the complex draw power change at the node without the FCS be zero,
then we can obtain the nodal voltage change of the observation node, which is caused by
charging load changes of FCSs. The reactive power change (∆Q) can be ignored at the
node with the FCS since the power factor of the node with the FCS is usually close to 1 so
that the reactive power change is usually very small. Hence, for an n-node LV distribution
network system, Equation (12) can be rewritten as,

∆Ur
o =

n
∑

i=1
Aoi∆PG

i , Aoi = − Roi cos θi−Xoi sin θi
|Ui |

∆Ui
o =

n
∑

i=1
Coi∆PG

i , Coi = −Xoi cos θi+Roi sin θi
|Ui |

(13)



World Electr. Veh. J. 2021, 12, 234 7 of 18

where ∆PG
i is 0 at the node without the FCS and is ∆PG

jκ at the node with the FCS. Rewrite
Equation (13) into a vector form as follows,

[
∆Ur

o
∆Ui

o

]
=

[
Ao1 · · · Aon
Co1 · · · Con

] ∆PG
1

...
∆PG

n

 (14)

Let the ESS at the FCS have two output modes as follows:

Mode1 : PS
jκ =

(
1− k jκ

)
Pch

jκ , κ ∈ κj (15)

Mode2 : PS
jκ = CS

jκ , κ /∈ κj (16)

where the output active power of the ESS is a normal distribution variable when κ ∈ κj and
is a constant (CS

jκ) when κ /∈ κj. By plugging Equation (15) into Equation (1), PG
jκ is,

PG
jκ = k jκ Pch

jκ , κ ∈ κj (17)

Since Pch
jκ is a normal variable when κ ∈ κj, PG

jκ is still a normal variable at this time.

Let µG
jκ stand for the expectation of PG

jκ when κ ∈ κj. Select µG
jκ as the initial nodal load for

the FCS j, then ∆PG
jκ is a normal variable, ∆PG

jκ~N(0, γ2
jκ). By plugging Equation (16) into

Equation (1), we can obtain the expression of PG
jκ when κ /∈ κj,

PG
jκ = PEV

jκ − PPV
jκ − CS

jκ , κ /∈ κj (18)

Since PPV
jκ , PEV

jκ , and Cjκ are all constant when κ /∈ κj, ∆PG
jκ is zero at this time.

Then Equation (14) can be rewritten as,

[
∆Ur

oκ

∆Ui
oκ

]
=

[
Ao1κ · · · Aonκ

Co1κ · · · Conκ

] ∆PG
1κ

...
∆PG

nκ


∆PG

iκ ∼ N
(

0, γ2
jκ

)
, κ ∈ κj&&i ∈ E

∆PG
iκ = 0, κ /∈ κj||i /∈ E

(19)

where E is a set of nodes with the FCS. According to Equation (19), ∆Ur
oκ and ∆Ui

oκ are linear
combinations of ∆PG

jκ . Therefore, ∆Ur
oκ and ∆Ui

oκ can be regarded as normal distribution
variables. We assume that the load at each node is independent of each other, then ∆Ur

oκ

and ∆Ui
oκ can be expressed as,

∆Ur
oκ ∼ N

(
0,

n

∑
j=1

A2
ojκγ2

jκ

)
, and ∆Ui

oκ ∼ N

(
0,

n

∑
j=1

C2
ojκγ2

jκ

)
(20)

Since Equation (20) has the same form for each time interval, the subscript κ is
omitted for convenience of writing in the following derivation. Let ∆Uo = (∆Ur

o,∆Ui
o)T,

∆Uo~N(0,Co), where Co is a covariance matrix of ∆Uo for observation node o. Co can be
written as,

Co =


n
∑

j=1
A2

ojγ
2
j

n
∑

j=1
AojCojγ

2
j

n
∑

j=1
AojCojγ

2
j

n
∑

j=1
C

2

ojγ
2
j

 (21)
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Co can be diagonalization by eigenvalue decomposition as:

Λo= Wo
TCoWo =

[
λ1o

λ2o

]
(22)

where Wo is an eigenmatrix of Co, λ1o and λ2o are related eigenvalues and Λo is the diago-
nally similar matrix of Co. Let Vo = WT

o ∆Uo, where Vo = (V1o,V2o)T. Since Cov(V1o,V2o) is
equal to 0, V1o and V2o are independent mutual variables. VT

o Vo can be expanded as,

VT
o Vo = ∆UT

o WoWT
o ∆Uo

= (∆Ur
o)

2 +
(
∆Ui

o
)2 (23)

Since ∆U2
o = (∆Ur

o)2 + (∆Ur
o)2, ∆U2

o =VT
o Vo. Therefore, ∆U2

o is the sum of two indepen-
dent weighed chi-square random variables. Then ∆U2

o can approximately obey Gamma
distribution (Γ(αo, βo)) and the parameters of Γ (αo, βo) can be calculated as [22],

αo =
(λ1 + λ2)

2

2
(
λ2

1 + λ2
2
) , and βo =

λ1 + λ2

2
(
λ2

1 + λ2
2
) (24)

Then, P(|∆Uo| < δo) can be calculated as,

Fo(δo, βo, αo) = P(|∆Uo| < δo) =
∫ δ2

o

0

βαo
o

Γ(αo)
xαo−1e−βo xdx (25)

The smaller the Fo(.) is, the greater the impact of the FCSs on the voltage change at the
observation node o will be.

3.3. The Control Characteristic of βo

When δo is a known constant, Fo(.) is decided by parameters αo and βo. We can increase
Fo(.) by controlling the two parameters. In this section, we discuss the control characteristic
of βo, which can give theoretical support for the VCOM. According to Equation (24), αo
and βo are functions of λ1o and λ2o. We next note that λ1o and λ2o can be expanded as,

λ1o =
1
2

 n
∑

j=1
Kojγ

2
j +

√√√√{ n
∑

j=1
Kojγ

2
j

}2

− 4
n−1
∑

j=1
Zojγ

2
jκγ2

j+1


λ2o =

1
2

 n
∑

j=1
Kojγ

2
j −

√√√√{ n
∑

j=1
Kojγ

2
j

}2

− 4
n−1
∑

j=1
Zojγ

2
jκγ2

j+1


Koj = A2

oj + C2
oj

Zoj = AojCoj+1 − Aoj+1Coj

(26)

Further expand Zoj and we can obtain the expansion of Zoj as follows,

Zoj = AojCoj+1 − Aoj+1Coj

=
(RojRoj+1−XojXoj+1) sin θjj+1+(RojXoj+1−Roj+1Xoj) cos θjj+1

|Vj||Vj+1|
(27)

where θjj+1 = θj+1−θ. Since the phase difference of the voltage between the neighboring
nodes in the LV radial distribution network is usually very small, it is reasonable to assume
that θj ≈ θj+1, then Equation (22) can be simplified as,

Zoj =
RojXoj+1 − Roj+1Xoj∣∣Vj

∣∣∣∣Vj+1
∣∣ (28)
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The impedance angle difference between shared impedances between adjacent nodes
is usually small, therefore,

tan ϕoj − tan ϕoj+1 =
Xoj
Roj
− Xoj+1

Roj+1
→ 0

⇒ Zj → 0

⇒
{

n
∑

j=1
Kjγ

2
j

}2

� 4
n−1
∑

j=1
Zjγ

2
jκγ2

j+1

⇒
{

n
∑

j=1
Kjγ

2
j

}2

− 4
n−1
∑

j=1
Zjγ

2
jκγ2

j+1 →
{

n
∑

j=1
Kjγ

2
j

}2

(29)

where ϕoj is the impedance angle of the shared impedance Zoj. Therefore, Equation (26)
can be simplified as,  λ1 ≈

n
∑

j=1

[
A2

oj + C2
oj

]
γ2

j

λ2 ≈ 0
(30)

By plugging Equation (30) into Equation (24), we can obtain,

αo ≈ 0.5, and βo =
1

2
n
∑

j=1

[
A2

oj + C2
oj

]
γ2

j

(31)

From Equation (31), αo is approximately equal to 0.5, which is not affected by the
change of the nodal load change. Let αo = 0.5 and t = βox, then Fo(.) can be rewritten as,

Fo(δo, βo) =
∫ βoδ2

o

0

t−0.5e−t

Γ(0.5)
dt (32)

Since the integrand function of Equation (32) is not less than 0 and βo > 0, Fo(.) increases
as the increase of βo until Fo(.) reaches 1. In other words, the smaller the value of βo is,
the smaller the nodal voltage change at the observation will be.

4. The VCOM

We restore the subscript κ in the rest of this paper. The objective of the day-ahead
scheduling strategy for the ESS is to reduce the adverse impact of the FCSs on nodal voltage
change at observation nodes. According to the analysis in Section 3, we can use the AMM
to evaluate this impact. Therefore, the optimization objective function can be written as,

Fo(δo, βo) =
∫ βoδ2

o

0

t−0.5e−t

Γ(0.5)
dt (33)

where O is a set of observation nodes. The inequality constraint of PS
jκ can be written as,

P
(

PSd
jκ ≤ PS

jκ ≤ PS+
j

)
≥ ξPs

j , κ ∈ κj (34)

PS−
j ≤ PS

jκ ≤ PS+
j , κ ∈ κj (35)

where ξPs
j is a preset constant for restraining PS

jκ , PS+
j , and PSd

jκ stand for the rated upper
and dynamic lower limits of the charge–discharge active power for the ESS at the FCS j,
respectively. PS−

jκ can be expressed as,

PSd
jκ =

{
Pch

jκ − STrans, Pch
jκ − STrans > PS−

j
PS−

j , Pch
jκ − STrans ≤ PS−

j
(36)



World Electr. Veh. J. 2021, 12, 234 10 of 18

where PS−
j is the rated lower limit of the charge-discharge active power for the ESS at the

FCS j. Let kjκ = γjκ/δjκ when κ ∈ κj, we can rewrite Equation (15) by plugging kjκ = γjκ/δjκ
in Equation (15),

PS
jκ =

(
1−

γjκ

σjκ

)
Pch

jκ , κ ∈ κ (37)

Next, according to the Bayesian probability formula, the analytical expression for the
constraint (34) can be expanded as,

P
(

PSd
jκ ≤ PS

jκ ≤ PS+
j

)
=


[

Φ
(
ajκ
)
−
(
1−Φ

(
bjκ
))(

1−Φ
(
cjκ
))

−Φ
(
cjκ
)
Φ
(
djκ
)
≥ ξPs

j

]
, κ ∈ κj

Φ
(
cjκ
)
+ Φ

(
ejκ
)
−Φ

(
cjκ
)
Φ
(
ejκ
)
≥ ξPs

j , κ /∈ κj

ajκ =
σjκ PS+

j

σjκ

(
σjκ−γjκ

) − µjκ−PPV
jκ

σjκ
, bjκ =

STrans
j

kκσjκ
−

µjκ−PPV
jκ

σjκ

cjκ =
PPV

jκ +PS−
j +STrans−µjκ

σjκ
, djκ =

σjκ PS−
j

σjκ

(
σjκ−γjκ

) − µjκ−PPV
jκ

σjκ

ejκ =
PPV

jκ +PS−
j +STrans−µjκ

σjκ

(38)

where Φ(.) is the standard normal probability distribution function. Let SOCj0 stand for the
initial state of charge (SOC) for the ESS at the FCS j at the beginning of the day, then SOCjκ
can be written as,

SOCjκ = SOCj0 −
1

ES
j

κ

∑
i=1

PS
ji (39)

where ES
j stands for the rated capacity of the ESS at the FCS j. The constraint of the SOC

can be written as,
P
(

SOC−j ≤ SOCjκ ≤ SOC+
j

)
≥ ξSOC

j (40)

where ξSOC
j is a preset constant for restraining SOCjκ . SOC+

j and SOC−j stand for the rated
upper and lower limits of the SOC for the ESS at the FCS j. The analytical expression of the
constraint (40) is,

P
(

SOC−j ≤ SOCjκ ≤ SOC+
j

)
= Φ

(
wjκ
)
−Φ

(
rjκ
)
≥ ξSOC

j

wjκ =
ES

j

(
SOCj0−SOC−j

)
σQ

−
∑

i/∈κj&&i≤κ
PS

ji+µQ

σQ

rjκ =
ES

j

(
SOCj0−SOC+

j

)
σQ

−
∑

i/∈|κj |&&i≤κ
PS

ji+µQ

σQ

µQ =
|κj∩Tκ

j |
∑

i=1

(
1−

γji
σji

)(
µjκ − PPV

jκ

)
σ2

Q =
|κj∩Tκ

j |
∑

i=1

(
1−

γji
σji

)2
σ2

ji + 2

|κj∩Tκ
j |−1

∑
i=1

|κj∩Tκ
j |

∑
l=i+1

(
1−

γji
σji

)(
1−

γjl
σjl

)
Cov

(
Pch

ji , Pch
jl

)

(41)

where Tκ
j is a set of time intervals, Tκ

j = [1, 2, . . . , κ]. Then the basic constraints which are
used to ensure the normal operation of the ESS at the FCS j can be listed as follows:{

(36), (39)
PS−

j ≤ PS
jκ ≤ PS+

j , κ ∈ κj
(42)

Using the analysis according to Section 3.3, we can control the voltage change by
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adjusting βo, which means βoκ can be designed as a constraint which is used to restrain the
voltage change at the observation node in the optimization framework as follows:

βoκ ≥ βmin
oκ (43)

where βmin
oκ stands for the lower limit for βoκ . According to Equation (32), Foκ(.) increases

with the increase of βoκ until it reaches 1 when δo is a known constant, we can obtain βmin
oκ

by the Algorithm 1 as follows:

Algorithm 1: Calculate βmin
oκ

1: INPUT: This algorithm knows the acceptable probability of the nodal voltage change at the
observation node (Fmin

oκ ) at time interval κ, the initial nodal load at each node at time interval κ,
the adjustment step size of βmin

oκ (∆), basic information of the distribution network, which can be
used to calculate power flow by using traditional Newton power flow method.
2: OUTPUT: βmin

oκ = [βmin
1κ , βmin

2κ , . . . , βmin
nκ ]

3: PROCEDURE:
4: Obtain the nodal voltage at each node by using traditional Newton power flow method.
4: for o = 1 to n do
5: Obtain βoκ according to Equation (31)
6: Obtain Foκ(.) according to Equation (32)
7: for I = 1 to N do
8: if Foκ(.) ≥ Fmin

oκ

9: βmin
oκ ←βoκ—∆

10: Update Foκ(.) by plugging βmin
oκ into Equation (32)

11: else
12 βmin

oκ ←βoκ

13: end if
14: end for
15: end for

Then the VCOM can be written as,

max
m
∑

κ=1
∑

o∈O
Fok(δoκ , βoκ)

s.t.
(38), (41) ∼ (43)

0 ≤ γjκ ≤
√

2σjκ , κ ∈ κj

PS−
j ≤ PS

jκ ≤ PS+
j , κ ∈ κj

j = 1, . . . , n
κ = 1, . . . , m

(44)

By converting Equation (44) to the unconstrained optimization model as shown in
Equation (7), RCGA-rdn can be used to solve the VCOM. The RCGA-rdn stops iterating
when the number of the genetic offspring reaches the specified value and we select the best
elite solution as the optimal solution.

The ratio plan can be converted into the active power plan of the ESS according to
Equation (45): {

PS
jκ = PS−

j + vj

(
PS+

j − PS−
j

)
, κ /∈ κj

γjκ = vj
√

2σjκ , κ ∈ κj
(45)

where vj is a random number in the range [0, 1].

5. Case Study and Discussion

In this section, we verify the effectiveness of the AMM and the proposed day-ahead
ESS strategy. The computer used for the test adopts an Intel® Core™ i7-6700 Processor and
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8 GB of memory, in which the CPU works at the nominal frequency of 3.4 GHz. The base
voltage of the system is 12.66 kV, and the base capacity is 100 MW. The reference voltage is
set to 0.95.

Two FCSs are connected to nodes 10 and 25 respectively, as shown in Figure 5. The ba-
sic configurations of FCSs A and B are the same as shown in Table 1. The probability
distributions of EV load changes of the FCSs A and B at different time intervals in a day
are listed in Tables 2 and 3 respectively. Here, sets of charging power test data come from
sets of 60-day historical charging power data from two different FCSs. Typical daily EV
charging curves of FCSs A and B are shown in Figure 6.

Table 1. The basic configuration.

Parameter Description Unit Value

STrans Rated capacity of the service transformer. kVA 1000
SPV Rated capacity of the PV. kWp 50
PS+ Rated upper boundary of the charge-discharge active power of the ESS. kW 250
PS− Rated lower boundary of the charge-discharge active power of the ESS. kW −250

SOC0 The initial SOC for the ESS at the beginning of the day. % 50
SOC+ Rated upper boundary of the SOC of the ESS. % 30
SOC− Rated lower boundary of the SOC of the ESS. % 80

ES Rated capacity of the ESS. kWh 1000

Table 2. The probability distribution of EV load change at the FCS A in different time intervals in a day.

κ The EV Load at κth Time Interval/kW

1~4 N(789,1922) N(532,2182) N(167,1212) E(40)
5~8 E(40) E(40) N(223,402) N(108,742)

9~12 N(107,952) N(190,1322) N(294,1592) N(406,1532)
13~16 N(547,1442) N(572,1692) N(575,1852) N(352,1982)
17~20 N(207,1632) N(306,1452) N(312,1632) N(309,1802)
21~24 N(328,1802) N(350,1432) N(494,1542) N(690,1802)

Table 3. The probability distribution of EV load change at the FCS B in different time intervals in a day.

κ The EV Load at κth Time Interval/kW

1~4 N(789,1922) N(532,2182) N(167,1212) E(40)
5~8 E(40) E(40) E(40) N(108,742)

9~12 N(107,952) N(190,1322) N(294,1592) N(406,1532)
13~16 N(547,1442) N(572,1692) N(575,1852) N(352,1982)
17~20 N(207,1632) N(306,1452) N(312,1632) N(309,1802)
21~24 N(328,1802) N(350,1432) E(40) N(690,1802)
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Each FCS is equipped with a PV source and the typical daily PV curve is shown in
Figure 7.

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 14 of 19 
 

0 2 4 6 8 10 12 14 16 18 20 22 24
0

15

30

Time/h

P
V

 o
u
tp

u
t 

p
o
w

er
/k

W

 

Figure 7. Typical daily PV curve in a day. 

5.1. The Performance of the AMM 

The cumulative probability distribution (CPD) of the actual voltage change is ob-

tained by statistical analysis based on a Monte Carlo probability power flow method 

(MCPFL) [23], which is used as a comparison to the AMM. The sampling times of MCPFL 

reach 10,000. Figure 8 shows the CPD curves of the voltage change at node 23 at the time 

interval (17:00, 17:59). It can be seen that the CPD curve obtained by the AMM is very 

close to the actual CPD curve, which can verify the effectiveness of the AMM. A similar 

result can also be seen in Figure 9 where node 12 is selected as the observation node. Fi-

nally, the correlation coefficient is used to measure the closeness between the actual CPD 

curve and the CPD curve obtained by the AMM. The corresponding correlation coeffi-

cients are listed in Table 4. The correlation coefficients all reach 0.99, which also verifies 

the effect of the AMM. Table 5 lists the computational overheads of assessment on voltage 

change at an observation node. It can be seen that the calculation time of the AMM is very 

short and its CPU occupancy rate is also small. 

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.2

0.4

0.6

0.8

1

1.2
The actual

The AMM

T
h
e
 C

P
D

 o
f 
th

e
 v

o
lt
a
g
e

 c
h

a
n
g

e

The voltage change (δ)  

Figure 8. The CPD curve of the voltage change of node 23. 

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.2

0.4

0.6

0.8

1

1.2
The actual

The AMM

T
h
e
 C

P
D

 o
f 
th

e
 v

o
lt
a
g
e

 c
h

a
n
g

e

The voltage change (δ)  

Figure 9. The CPD curve of the voltage change of node 12. 

  

Figure 7. Typical daily PV curve in a day.

5.1. The Performance of the AMM

The cumulative probability distribution (CPD) of the actual voltage change is obtained
by statistical analysis based on a Monte Carlo probability power flow method (MCPFL) [23],
which is used as a comparison to the AMM. The sampling times of MCPFL reach 10,000.
Figure 8 shows the CPD curves of the voltage change at node 23 at the time interval (17:00,
17:59). It can be seen that the CPD curve obtained by the AMM is very close to the actual
CPD curve, which can verify the effectiveness of the AMM. A similar result can also be
seen in Figure 9 where node 12 is selected as the observation node. Finally, the correlation
coefficient is used to measure the closeness between the actual CPD curve and the CPD
curve obtained by the AMM. The corresponding correlation coefficients are listed in Table 4.
The correlation coefficients all reach 0.99, which also verifies the effect of the AMM. Table 5
lists the computational overheads of assessment on voltage change at an observation node.
It can be seen that the calculation time of the AMM is very short and its CPU occupancy
rate is also small.
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Table 4. The correlation coefficients.

Observation Node The Correlation Coefficient

2~9 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
10~17 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
18~25 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
26~33 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 5. Computational overheads.

Methods Average Time, s CPU, %

MCPFL 1.527 2
AMM 20.313 11

5.2. The Effect of the Proposed Day-Ahead ESS Strategy

Next, two different cases are studied to verify the proposed day-ahead ESS strategy.

(i) Case 1: the traditional PV-ESS complementarity strategy is used for the ESS.
(ii) Case 2: the strategy proposed in this paper is used for the ESS.

For case 1, a compensation control strategy for the ESS mentioned in [12] is used.
For case 2, the ESS executes the proposed day-ahead ESS strategy. The ESS automatically
enters the charging state both in cases 1 and 2 when the SOC of the ESS is lower than 30%.
We select terminal node 18 as an observation node. Besides, the voltage change constraint
of the observation node is set to 0.01 and the acceptable probability of the nodal voltage
change of the observation node at each time interval is set to 0.95.

Figure 10 shows P(|∆Uo| < δo) at each node under different cases in a day. It is
obvious that the day-ahead ESS strategy can increase P(|∆Uo| < δo) in comparison with
the traditional PV-ESS complementarity strategy. Voltages under case 2 are closer to
the reference voltage than other cases as shown in Figure 11a, which is more intuitively
displayed in Figure 11b. Simulation results above demonstrate the effect of the proposed
day-ahead ESS strategy. It can be seen from Figure 12a that the ESS charges during periods
of low EV charging load and provides active power compensation by discharge during
periods of large EV charging load to reduce the voltage change between actual and reference
voltages. In addition, we can find that due to the constraint of the SOC of the ESS, the ESS
cannot always compensate for the active power. For example, from 6.00 p.m. to 9.00 p.m.,
since the SOC of the ESS is close to its lower boundary, the ESS can hardly compensate the
active power, which results in the failure of the day-ahead ESS strategy. A similar result
can also be obtained according to Figure 13. Therefore, to give full play to the effect of the
day-ahead ESS strategy, it is inseparable from reasonable energy storage system planning.
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6. Conclusions

With the increasing penetration of EVs, the adverse impact of EV charging load on
the nodal voltage in the distribution network can probably be aggravated. To alleviate this
impact, this paper proposes a centralized day-ahead ESS strategy with full consideration
of the randomness of EV charging load. This strategy can be deployed in the RODS and
its output can be calculated based on the VCOM. Finally, simulation results verify the
effectiveness of the proposed day-ahead ESS strategy. The main contributions of this article
are as follows:

• A voltage change optimization model (VCOM) considering the randomness of the EV
load is constructed to alleviate the voltage change problem caused by EV fast charging
and it can be easily solved by traditional intelligent algorithms, such as GA.

• An analytical assessment model (AAM) of the nodal voltage change with shorter
computational time and higher reliability is proposed.
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Nomenclature

PG
jκ Total grid load at the FCS j at κth time interval.

µG
jκ Expectation of PG

jκ .
γjκ . Standard change of PG

jκ
PPV

jκ Output power of the PV at the FCS j at κth time interval.
PS

jκ Charge–discharge active power of the ESS at the FCS j at κth time interval.
PEV

jκ The NFCL at the node j with the FCS at κth time interval.
PEV

jκ The EV’s charging load at the FCS j at κth time interval.
µjκ Expectation of PEV

jκ .
σjκ Standard deviation of PEV

jκ .
STrans

j Rated capacity of the service transformer at the FCS j.
δoκ Nodal voltage change limit at the observation node o at κth time interval.
αoκ Shape parameters for the nodal voltage change at observation node o at κth time interval.
βoκ Control parameter for the nodal voltage change at observation node o at κth time interval.
xκ Optimization variable at κth time interval.
pp Initial population number.
Us Phase voltage at the source node s.
Ud Phase voltage at the load node d.
Uo Phase voltage at the observation node o.
S∗d Conjugate complex draw power at node d.
U∗d Conjugate phase voltage at node d.
Zod Shared impedance between node d and observation node o from the source node s.
PS+

j Rated upper limit of the charge-discharge active power of the ESS at the FCS j.
PS−

j Rated lower limit of the charge-discharge active power of the ESS at the FCS j.
PSd

jκ Dynamic lower limit of the charge-discharge active power of the ESS at the FCS j
at the κth time interval.

PS
jκ . Active power output of the ESS at the FCS j at κth time interval.

ξPs
j A preset constant for restraining PS

jκ .
SOC State of charge.
SOCj0 The initial SOC of the ESS at the FCS j at the beginning of the day.
ξSOC

j A preset constant for restraining the SOC for the FCS j.
SOC+

j Rated upper limit of the SOC.
SOC−j Rated lower limit of the SOC.
SOCjκ Value of the SOC of the ESS at the FCS j at κth time interval.
Γ(.) Gamma function.
Φ(.) Normal probability distribution function.
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